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 The cumulative sum control chart, or Cusum Chart, is primarily used to detect a 

gradual shift (or trend) in a process and can be even more powerful in detecting 

sudden shifts in a manufacturing process than a Shewhart control chart.  We will first 

discuss the one-sided procedure, which is the simpler case, followed by a 2-sided test 

of hypothesis  H0:  = 0  versus  the alternative H1 :   0.  In the one-sided 

procedure, the alternative values of process mean are denoted either by 1 < 0 (the 

left-tailed test), or by 2  > 0 for the right-tailed test.  However, before heading long into 

the discussion of either procedure, we allude to fact that the statistical theory of Cusum 

Charts has its origin in sequential analysis.  In carrying out sequential testing, generally 

samples of size n (=1, but not always) is taken at each stage of the sampling plan, the 

Cusum statistic is updated, and a 3-way decision is made as follows: (1) accept H0, (2) 

reject H0, or (3) continue the experiment by taking additional observation(s).  I would 

venture to say that it is not common to take differing sample sizes at different stages in 

SPC, although this is sometimes done in acceptance sampling for FNC (specially in a 

2-stage sampling plan where n2 = 2n1 but then in this case the decision about a 

submitted lot is definitely made after stage 2 because the difference between the 

acceptance and rejection numbers at the 2nd stage is always equal to 1).   For example, 

the double sampling plan n1 = 50, c1 = 1, n2 = 100, and c2 = 4 implies that a random 

sample of size 50 is taken from a large lot (usually N > 1000 units) and the lot is 

immediately accepted if the number of defectives, D1, at stage 1 is  1 and the lot is 

immediately rejected at stage 1 if D1 > 4.  If the lot quality is mediocre at stage 1, where 

D1 = 2, 3, or 4, then the lot is given a second chance by taking an additional sample of 

size n2 = 100.  At the 2nd stage, the lot is accepted only if the cumulative number of 

defectives in the 150 sampled units is 4 or less, and it is rejected at stage 2 only if  D1 + 

D2 > 4, i.e., the rejection number r = 5.   
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When sequential sampling is applied in SPC, first the reader must be cognizant of the 

fact that the inspection is not always by attributes and that the decision about the mean 

or variance of a normal process is carried out with a statistic whose range space is on a 

continuous (or dense) scale.  The very basic statistical idea behind testing the 

hypothesis H0:  = 0  versus  the alternative H1 :  = 1 < 0  is to make use of the 

Neyman-Pearson Lemma by using the likelihood ratio statistic (LRS) 
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In equation (8) the statistic in the numerator on the RHS is related to the occurrence Pr 

of the sample (x1, x2, ..., xt) given that  = 1 because the likelihood (or Pr) of obtaining 

such a sample is given by [f(x1; 1, 2)dx1][f(x2; 1, 2)dx2] ... [f(xt; 1, 2)dxt] = 
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underlying distribution).  The quantity 
t

2
i 1

i 1

f (x ; , ) 1L


    in this last Pr statement is 

called the likelihood function under H1, and after the sample is drawn and the sample 

values x1, x2, ..., xt  are known numbers (no longer rvs), then  the likelihood function 
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  .  Note that if a baseline distribution has 3 parameters, such as 

Weibull with minimum life , characteristic life , and shape (or slope) , then the 

likelihood function becomes 
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   .  When the likelihood function L (, 2) is 

maximized wrt (with respect to)  and  by setting the two first partial derivatives equal 

to zero, the resulting solutions for  and  are called the maximum likelihood estimators 

(MLE) of  and .  In other words, the numerator of Eq. (8) gives the likelihood that  

lies in an extremely small interval around 1 and its denominator provides the Pr that  
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lies in an infinitesimally small interval around 0.  Therefore, when t is very large, we 

will reject H0 in favor of H1 at the stage (or at time) t; when t is too small, we will favor 

H0 over H1, and when it is neither, then the sample point is still in the indecision region 

of sample space so that we have to continue on sampling to the stage t + 1.  Further, 

for notational convenience, let L() = ln[L ()], i.e., L() is the natural logarithm of the 

likelihood function, and  is a general vector parameter such as  = [      ].  Below 

(pp. 71-72) I will show that working with the natural logarithm of L () is easier than 

using L () itself.  Before providing such an example, we must provide some partial 

answer as to how large t should be before we adopt  = 1 and how small t  should be 

before we adopt  = 0.  In other words, we will reject H0 if  t  cr, will accept H0 if t  

ca,  and we will continue sampling if  the value of t lies in the indecision interval  ca < t 

< cr, which depends on the specified values of  and the type II error Pr, denoted by .  

Note that in general cr > > ca.  Further, the SMD of the LRS, t in Eq. (8), is extremely 

complicated and in some cases intractable.  Fortunately, it has been proven in the 

theory of statistics that for large n (say n > 30) the variate 2ln(t) has an approximate 

2


 -distribution with df  = the number of parameters specified under the null 

hypothesis H0.  For example, if a H0 states that µ =100 and  =2, then 2ln(t) has the 

approximate 2
2 -distribution.  

 One advantage that sequential testing has over the fixed-size sample tests is the 

fact that we can decide in advance on the sizes of type I and II errors (generally   

0.05 and   0.10) that we are willing to tolerate, which is unlike the fixed-size 

sampling, where  is specified a priori and  is computed for different parameter 

values.  Recall that the graph of  versus the parameter under H0 is called the OC 

curve.  Suppose we fix  at 0.05 and  at 0.10 for detecting a downward shift in a 

process mean; then clearly the value of cr must be proportional to 1 (= the Pr of 

rejecting a false H0).  It was shown by A. Wald and G. A. Barnard (1945 and 1946) that 

the acceptance and rejection limits must satisfy 
1


 

  ca and cr  
1 


, respectively.  

The statistic t is also referred to as the sequential Pr ratio test (SPRT) with 
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approximate boundaries  ca  
1


 

  and cr  
1 


.  Note that the boundaries for the 

indecision interval is designed in such a manner that the true type I and II Prs of the 

sequential test are at most  and , respectively.  The reader should observe that the 

denominator of the SPRT statistic t = 
t t
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the likelihood Pr that H0 is true, and therefore, this Pr (i.e., the denominator) must be 

directly proportional to 1   (= the Pr of accepting a true H0) and inversely proportional 

to  (= the Pr of accepting a false H0).  This is how the expression for lower boundary 

ca for the indecision interval  ca < t < cr  was constituted.  Similarly, the numerator of t  

must be directly proportional to 1, which represents the power of the likelihood ratio 

test statistic. 

  

 To better understand how cr  
1 


, we can argue that through stages i (i = 1, 

2, 3, …) of sampling the Pr of rejecting H0 (at stage t) if H0 is false is given by  
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crPr(rejecting H0H0 is true) = cr    cr  (1  )/.  Similar arguments can be made 

to illustrate that ca  /(1 ).   
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THE  TRADITIONAL  ONE-SIDED   CUSUM  PROCEDURE   

 Suppose we wish to control a process at a desired process mean of  

0 (i.e., we wish to test the null hypothesis H0:  = 0) but let the alarm sound ASA (as 

soon as) the process mean  exceeds a rejectable QLEV (quality level)  2  r > 0 .  

That is, we wish to test H0:  = 0  vs the one-sided alternative H1:  = 2  > 0.  It will 

turn out that the LOS of Cusum charts will not necessarily equal to 0.0027.  

Sometimes, the ideal mean 0 is also referred to as the acceptable quality level (AQL) 

and is generally denoted by a.  Further, it is clear to the reader that the QCH, X, in this 

case must be of an STB type because we are concerned only about an upward shift in 

the process mean.  

 The (upper one-sided) Cusum procedure consists of taking random samples of 

size n  1, generally every hour in time-sequence, and compare the Cusum statistic St  

against the UCLt.  Further, a random sample of size n = 1 is very common.  ASA St 

exceeds the decision point UCLt, H0 is rejected at time t and it is concluded that the 

process mean has shifted upward to r  = 0  + 2, where 2 = 2  a .  To arrive at the 

Cusum procedure, we assume that X ~ N(, known 2) and apply this assumption to 

equation (8) and the SPR testing procedure, which requires we must continue sampling  
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The Cusum statistic, for n = 1, from Eq. (9), is defined as the sum  St =  
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where the process is concluded to be out of control at time t iff  St =
t

i 0
i 1

(x )


   > 

2
x

2

1
ln( ) 

 
+ 2t

2


 with the amount of upward shift in the process mean equaling to 

2, and is assumed to be in control at 0  iff St =
t

i 0
i 1

(x )


   <   
2
x

2
ln

1
( ) 

  
 + 2t

2


.  

Note that Montgomery (Chap. 9) uses Ci for the cumulative sum statistic.  Eq. (9) 

clearly shows that the UCL for the one-sided hypothesis H0 :  = 0 versus the simple 

alternative H1 :  = 2 > 0, for sample sizes n = 1 at stage t of sampling, is given by

  

                                    UCLt = 
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1
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  +  (2/2)t.                                  (10a) 

The reader must bear in mind that the above SPRT conservatively maintains the same 

(, ) levels at   = 0 and  = 2, respectively, throughout the control procedure.          

        If the QC engineer is using the statistic St = 
t
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size n > 1 at each time-sequence sampling stage, then the UCL in equation (10a) must 

be modified to  
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Before going into an example, I must caution the reader to the fact that I am going a bit 

against the QC literature by using 1 and 2 as the values of the downward and upward 

shifts in the process mean, respectively.  In other words, my notation in contradiction to 

QC literature is 2 > 0 and 1 < 0 so that  2= 2   0 > 0, while 1 = 1  0 < 0.  I 

believe it is more natural to have 1  to the left of 0 and 2 to the right of 0.  In the 

case of a downward shift in the mean from  0  to 1, equations (9 and 10) stay fully in 

tact, but one must replace 2  by  1 < 0 and change UCLt to LCLt and must observe 

that the slope of the control line will be negative for a downward shift.  Note that 2 is 
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simply the maximum amount of tolerable shift in the mean to right of 0, while |1| is the 

maximum tolerable shift to the left of 0  

           Example 1.   Suppose the ideal target mean for a process is a = 0 = 12 

and the rejectable quality level (RQL) is  r  2  13 with known process variance 2
x  

= 1.80 so that 2 = 1.0 and X = 1.341641.  Further, it is desired that the traditional 

Cusum chart provides a type I error probability of  = 0.01 at 0 = 12.0 and a rejection 

Pr of 1   = 0.90 at the upward shift to 2  13.0.  Samples of size n = 1 are taken 

every hour in time-sequence with the results Xi = 12.7, 12.3, 14.8, 11.2,  10.3,  11.0,  

12.2,  10.9,  12.2,  12.7,  10.5,  11.7,  11.0,  10.8,  11.7,  10.9,  11.1,  13.8,  13.0,  11.4,  

10.0,  11.2,  13.2,  10.9,  11.0,  11.7,  12.3,  11.2,  12.2,  12.0,  15.0,  14.1,  13.9,  13.5, 

15.5.    Equation (9) gives the UCL at time t as follows:  UCLt = 
1.8 0.90

ln( )
1 0.01

 + (1/2)t  =  

8.10 + 0.50t, where 2 = 13 12 = 1.0. 

 The Excel spread sheet on my website shows the Cusum control chart and the 

corresponding Shewhart  Rm and X-chart limits for 35 samples each of size 1. The 

moving range, Rm, chart shows that the process is in a state of statistical control wrt 

variation (within subgroups) but the Shewhart X-chart shows that there is a sudden shift 

in the mean at the time t = 35.  However, the Shewhart X-chart would exhibit no trend 

but the Cusum-chart does show a slight downward trend in the mean starting at the 4th 

hour thru the 28th sample followed by a definite upward trend in the mean starting with 

sample 31.  Further, the Traditional Cusum chart shows that the process is overall in a 

state of statistical control.  

 

      Further, I have also analyzed the data using Modern Cusum Charts on a separate 

tab. In Minitab, copy and paste onto a column named X; then go to Stat           Control 

Charts  Time-weighted Charts; scroll down to Cusum.  Under Cusum options insert 

the STDEV  = 1.341641, then click on Plan-type tab, change h to 3.70 = Nomogram’s  

A, and k = B0 to 0.3727 and ok.   Note that Minitab’s UCL will now be h.  Note that if 

your data is in terms of means of subgroups, I do not believe there is any way to obtain 

the correct answer from Minitab for a 2-sided test of hypothesis.   
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 Exercise 20.   The  data on my website gives the welding joint strength in ksi of 

m = 25 subgroups each of size n = 4.  (a) Set up R-& x -Charts for monitoring the 

process variation and process mean in order to detect sudden shifts.  (b) Given that the 

acceptable mean quality is 0 = 28.5 ksi, x = 3.40 ksi, and rejectable mean quality 

level is r = 1  25 ksi, set up a Traditional Cusum procedure that provides an -level 

of 0.02 and a protection of 1  = 0.95 when there is a downward shift to  = 25 ksi. 

 

 

THE TWO-SIDED PROCEDURE  FOR  TRADITIONAL  CUSUM  CHARTS 

A  2-sided  Cusum chart monitors the mean of a process both for downward and 

upward gradual shifts and trends in the process mean.  As before, the Cusum statistic 

is given by the sum  St = 
t

i 0
i 1

(x )


 , or Ci =
i

j 0
j 1

(x )


 , but there are two control 

limits for the traditional Cusum statistic, St, that are given below. 
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                         LCLt =  
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1
ln

n / 2
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  + (1/2)t                    (11a)

                   UCLt = 
2
x

2

1
ln

n / 2
( ) 

 
  + (2/2)t ,                      (11b)          

where  1 = 1  0 < 0, and  2 = 2   0 > 0.   The most common of  2-sided procedure 

is the symmetrical case where 1 =  2. 

 

 Example 2.   To illustrate the 2-sided Traditional Cusum procedure, suppose the 

specifications for an incline angle, X, in making metal chips (used in the assembly of 

car instrument panels) is 15.00   2.40 degrees, and it is known that the PCR = 1.00 

(i.e., 6-Sigma capable, but process only at Motorola’s 3-Sigma quality).  Hourly random 

samples of size n = 5 has yielded sample means ix  = 15.29 degrees, 16.03, 14.80, 

14.72, 14.51, 13.91, 14.85, 14.61, 14.10, 14.01, 13.89, 14.02, 14.40, 13.90,  and 14.08 

degrees (i.e., m = 15 subgroups).  Our objective is to set up a 2-sided traditional 

Cusum procedure with an AQL (acceptable quality level) 0 = 15.00 and  RQLs 

(rejectable quality levels) of 1 = 14.60 and 2 = 15.40 that guarantees an ARL at 0 

equaling to ARL0 = 100 = 1/, and protections 1  1 = 1  2 = 1   = 0.90 when H0 is 

false.  Then /2 = 0.005, 1 = 14.6  15 =   0.40, 2 = 15.40 15 = 0.40, and equations 

(11) now yield: 

                    LCLt = 
20.8 0.90

ln
5( 0.40) 0.005

( )


  0.20t = 1.662  0.20t 

and similarly, UCLt = 1.66175 + 0.20t.  On the spreadsheet on my website I have 

tabulated the values of t, ix , St, LCLt and UCLt under Example 2.  My spread-sheet 

clearly confirms that the 11th sample shows a downward shift in the process mean in the 

amount equaling 1 =   0.40, i.e., the process is out of control and the experimenter 

has to assume that the new process mean after sample 11 is 1  14.60.  Since the 

ideal target is 0 = 15 degrees, corrective action has to be taken to reset the mean 

angle from 14.60 up to 0 = 15.00 degrees. 

 The reader must bear in mind that the ARL at 0 for a two-sided Shewhart 

procedure is always ½ of the corresponding one-sided procedure because the false 
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alarm for a 2-sided procedure may occur either below the LCL or above the UCL.  This 

implies that for a 2-sided Shewhart 3-Sigma control chart the ARL0 = 1/0.0027 = 

370.40, while for the corresponding 1-sided procedure the ARL0 = 1/0.00135 = 

740.741. 

 

MODERN  CUSUM  CHARTS  for  ONE-SIDED  SHIFTS  in  PROCESS  

MEAN  

 Suppose the measurement, X, is N(, known 2) and we wish to maintain an 

AQL = 0 but let the right alarm sound, if there is an upward shift to the RQL  2 > 0.  

Define the reference value k2 = (2 + 0)/2, i.e., exactly half-way between the AQL and 

RQL, and assume that we are sampling the process in time-ordered sequence on an 

hourly (or other interval) basis with random samples of size n  1 resulting in ix  (i = 1, 

2, 3, ..., t, ... ).  For an upward shift in , define the Cusum statistics 1C  = 1x   k2 + 

0C , 2C   = Max[0, ( 2x   k2) + 1C ] , 3C   = Max[0, ( 3x   k2) + 2C ] , …, tC   = Max[0, 

( tx   k2) + t 1C
 ].  Note that this definition of Cusum statistic assures that tC  is set to 

zero ASA tC  become negative, and as a result the Cusum procedure restarts afresh.  

The quantity 0C , referred to as Head-Start (HS), is commonly set to zero unless a fast 

initial response for an upward shift is needed, in which case it is generally set to either 

HS =(k2  0)/2, or A/2 (defined below).  For a one-sided procedure in order to detect a 

downward shift to 1, the Cusum statistic is defined as tC  = Min[0, ( tx   k1) + t 1C
 ], 

and ASA tC > 0 restart the Cusum procedure afresh.  Note the subscript + denotes 

upward and    denotes downward shift in the process mean (or shift to a lower mean).  

Once tC >  h+ > 0 (= the decision limit) to be defined below, then it is ascertained that 

the process mean may have shifted upward to 2, assignable (or local) causes must be 

searched for, and if none is found, then the Cusum-chart has committed a type I error.  

For detecting a downward shift to 1, the value of tC  is required to be less than h < 0.  

Note that the value of h obtained from both K. W. Kemp’s Nomograms posted on my 
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website is always positive in all cases. 

  

DESIGN  OF  a  MODERN  ONE-SIDED CUSUM  PROCEDURE 

 The 1st concept in designing a Cusum one-sided procedure is the fact that 

modern Cusum charts rarely allow a LOS as large as 0.05; the most common LOS 

values are  = 0.0066667, 0.005, 0.004, 0.002, 0.0016667, 0.001349, and 0.001 at 

which the false alarm (or in-control) average run lengths are ARL0 = 150, 200, 250, 

500,  600, 741, and 1000, respectively.  The most common desired values of average 

run length after an upward shift to 2 (or downward shift to 1) has occurred are ARL1 = 

Lr = 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9 and 10.  I have used the Nomogram (or Nomograph) 

from a paper by K. W. Kemp in Applied Statistics, 11 (1962) on page 23 of the Journal, 

to read the values of A = h/ x  = h n / , the left-vertical scale B() =
x

k  


= 

x

k n 


,  where the reference-point k is exactly half-way between the AQL 0 and 

RQL,  and I am providing the Nomogram (that I copied from page 517 of the text by A. 

J. Duncan,  QC & Industrial Statistics, Fifth Edition, Irwin Publishing, 1986, ISBN:0-256-

03535-0) on my website for your convenience.  Please observe that A = h/ x  gives the 

limit of standardized decision (or acceptance) interval, where h is referred to by A. J. 

Duncan, p. 516,  the decision interval having the same unit as X.  It seems, however, to 

me that Duncan meant h to be the decision limit and not an interval.  For example, the 

Nomogram on my website shows that if La = ARL0 = 150 (the right scale), and the value 

of Lr = the rejectable average run length = ARL1 = 3, then using a ruler to connect the 

two points ARL0 = 150 and Lr = 3, we read the approximate value of A  2.05 and B  

0.87, but if ARL0 = 150 and the out-of-control ARL1 = 6, then A  2.96 and the left scale 

B  0.565.  However, if L0 = ARL0 = 500, Lr = ARL1 = 5, then A  3.17 and B  0.743; 

further, if L0 = ARL0 = 500 and ARL1 = Lr = 10, then A  4.51 and B  0.482; if L0 = 

ARL0 = 370 and ARL1 = Lr = 8, then A  4.00 and B  0.525, etc.  

  Example 3.   We now apply the modern Cusum procedure to the data of Example 

1, where we change n from 1 to n = 4 for illustrative purposes, and recall that 0 = 12, 2 = 
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13, 2 = 2   0 = 1, the reference value k2 = 12.5 (or Duncan’s k = 12.5) and 2 = 1.80 

(i.e., X = 1.3416), but we assume that the 35 values given on my website are the 

averages of random samples of size n = 4, so that x  0.6708.  Our objective is to design 

a tabular Cusum procedure that allows only an ARL0 = 500 (i.e.,  = 1/500 = 0.002).  Since 

we know the sample size n = 4, then the value of the left scale B0 = 0

x

k  



 

12.5 12 4

1.8


 = 0.7454 together with L0 = ARL0 = 500 show on the Nomogram that A  

3.15 = h+ n /  = h+ 4 /1.8 = 1.4907h   h = 2.1131.  Therefore, the Tabular Cusum 

procedure, which is on my website in an Excel file, tells us that if the Cusum statistic tC  = 

Max[0, ( tx   k2) + t 1C
 ]  > h+ = + 2.1131, then we must stop production and look for 

assignable causes that can be corrected by operators, but if at any stage tC   0 then you 

must set tC  to zero and restart the Cusum procedure afresh.  As long as tC  lies in the 

indecision, or continue-sampling, interval (0, 2.1131), sampling will continue and we will 

have to assume that the process lacks a significant positive trend upward.  The Excel file 

clearly shows that for our example 3 the process is out of control after sample number 35 

because 35C  = 3.10 > h+ = 2.1131, and hence the production must be stopped and 

assignable causes for samples 35 must be investigated.  If found, then corrective action 

must be taken to adjust the mean downward toward the ideal target of 0 = 12.00.  

Furthermore, both Nomograms show that the ARL1  5.0, which implies that this is a 

powerful procedure because on the average it takes only 5 random samples each of size n 

= 4 to detect a shift from 0 = 12 to 2 > 12.5.  Note that the Kemp Nomogram that I copied 

from Jerry Banks’ book (1989, Wiley) usually gives a bit larger ARLs. Kenett and Zacks 

(1998) provide an approximate formula on their page 377 for the decision interval h+ = 

2

2 0

ln( )

n( )

 


  
= 

2
x

2

ln( ) 



= 

2 1
x

2

ln( ) 


.  For the example being discussed, this last 

formula gives h+ = 
1.8 ln(0.002)

4(13 12)





 = 2.7966, which is always more conservative or less 
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powerful than the h from Duncan’s Nomogram  (and perhaps not as useful).  Note that as 

before, h+ is directly proportional to 2 and inversely proportional to , n, and 2 = 2   0.  

The reader should be able, by now, to fully understand that Modern Cusum 

charts are more powerful in detecting future gradual shifts than Traditional charts, 

because Traditional charts keep a history of process mean from the very beginning of 

chart construction, while modern Cusum charts set the Cusum statistic to zero if the 

mean quality is better than or near the ideal target.  This procedure of resetting to zero 

will allow the experimenter to detect gradual shifts more rapidly when the process 

mean starts trending in the wrong direction, while ignoring the long past history.  As a 

result of this resetting to zero, the next few future sample means right after the shift will 

sound the correct alarm more rapidly.  

    D. C. Montgomery (Intro to Stat. QC, 7th Ed.) provides a formula (9.5) on his 

page 420 for approximating the value of the upward shifted mean as ̂  = 0 + K + 

tC /N+, where his K = 2 0 2/ 2 / 2   , and thus  ̂  = k2 + tC /N+, tC  > 0, and N+ 

stands for the number successive times (or RL since the last zero value) that the 

Cusum statistic tC  is positive.  In my Example 3 on my website, I have provided a 

column of RL = N+  values so that you will know  what it stands for, which is equal to 1 

at t = 3 and is equal to 5 at t = 35  for that example.  I do not know whether  ̂  = k2 

+ tC /N+ is Montgomery’s own formula (although the formula is intuitively obvious and 

meaningful), because he does not provide a reference for his formula (9.5).  Using 

Montgomery’s formula (9.5), we obtain ̂  = k2+ tC /N+ = 12.5 + 3.1/5 = 13.11 at t = 35.  

I would guess that Montgomery’s formula (9.5) usually provides an estimate of the 

shifted mean close to the range (k2, 2 or beyond).  The larger sudden shifts give rise to 

larger ̂ .  Further, when using tC  to detect a downward shift in  from 0, the value of 

K = 1 / 2  = 1 0 / 2  .  For your benefit I am providing D. C. Montgomery’s 

estimated shift in the mean after an out-of-control signal: 

            0 t t

0 t t

K C / N , if C hˆ
K C / N , if C h

  

  
         

    (Eq. (9.5 of D. C. Montgomery, p. 420) 

 D. C. Montgomery also provides Siegmund’s approximation (1985), in his 
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formula (9.6) on page 423 of his 7th edition, for the ARL after a shift has occurred, 

which he gives as 

         ARL() = 
2

2 b 1 exp( 2 b)

2

  Δ Δ
Δ

 ,               (Eq. 9.6 of D. C. Montgomery) 

where b = A +1.166,  A = xh /  = , and Δ  = 0

x

  


  
x

K


 = 2

x

k 


  for an upward 

shift, i.e.,   0 > 0, and Δ  = 1

x

k  


  for a downward shift.  I am fairly sure that 

Sigmund’s formula is valid only for a one-sided Cusum.  To obtain the ARL of a two-

sided Cusum (to be discussed below), obtain the ARL and ARL+ from Eq. (9.6 of DCM) 

and use the Eq. (9.7) on p. 423  D. C. Montgomery (7e), listed below, to obtain the 

average run length for the 2-sided ARL denoted by ARL(2). 

           
(2)

1 1 1

ARL ARL ARL 
  ,                  (Eq. 9.7 on p. 423 of D. C. Montgomery) 

where for a downward shift Δ  = 1

x

k  


 and    0 < 0.  Note that Eq. (9.7) listed on 

p. 423 of Montgomery (7e) has been known for well over 40 years. 

 For our one-sided example, at  = 2 = 13, x  1.8 / 4  = 0.6708, A = 

2.1131/0.6708 = 3.15, b = 3.15 + 1.166 = 4.3160 , K = 1/2 = 0.5, Δ = 
13 12.5

1.8 / 4


  

= 0.7454, 2bΔ  = 6.4339 so that ARL( =13) = 
2

6.4339 1 exp( 6.4339)

2(0.7454)

  
  = 4.8914, 

which is very close to the L1 = ALR1 = 5.0 estimated from both Nomograms.  Note that I 

had to modify Siegmund’s formula (9.6) given by D. C. Montgomery (7e , 2013) by 

replacing  by x  x / n , because he restricts his discussions on pp. 414-424 to n 

=1, as I have not seen the original paper by Siegmund, but I am fairly certain that the 

modification of replacing x  by the SE( x ) = x / n  in all the terms is correct.  

However, in all cases that I have tried the above modification gives very close readings 

of ARL to those read from both Nomograms.  In fact Montgomery also states atop p. 

425 of his Table 9.5 the same replacement.  Below I will illustrate how to use both 
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Kemp’s Nomograms, already on my website, to guesstimate the ARL() for different  

specified values of  of Example 3.  Note that ARL is a function of . 

 For example, if  = 13.2, then B(13.2) =
x

k  



12.5 13.2

0.6708


 1.0435; 

connecting the Duncan’s Nomogram  left-scale of 1.0435 to A = 3.15 yields L1= Lr = 4.0.  

Using Siegmund’s (1985) approximation, ARL() = [2 b 1 exp( 2 b)] /  Δ Δ  2(2 )Δ , we 

obtain Δ  = 
13.2 12.5

0.6708


 = 0.70/0.6708 = 1.0435, b = A +1.166 = 3.15 + 1.166 = 

4.3160, 2 Δ b = 9.008, and ARL(13.2) = [9.008 1 exp(  9.008)] /    2(2 1.04353 ) = 

3.68.   

 If the QCH is LTB, then the concern will be only about a downward shift in the 

process mean, and the estimated formula for the mean will become ̂  = 0  K + tC /N  

= k1 + tC /N < 0   K, where tC < 0.  The value of ̂  will generally lie in the interval (1 

or below, k1). 

 

Exercise 21.   Use the Nomogram on my website to design a Modern one-sided 

tabular Cusum procedure which has an ARL0 = 500 at  = 10.00, but when the process 

mean shifts downward to the RQL = 1 = 9.50 (i.e., 1 =  0.50), then L1 = ARL1 = 7, 

where X ~ N(, 0.525625).  State your exact procedure.  (b)  Apply your procedure to 

the data that I have provided on my website under Ex21 and make a statistical 

decision.  (c) Compute the ARL values if  shifts to 9.75 and 9.4. 

 

DESIGN  OF  a  MODERN  TWO-SIDED CUSUM  PROCEDURE  

 The easiest way to illustrate the two-sided procedure is to provide an example, 

which we will refer to as the Example 4 on my website.  Reconsider the content of my 

example 2 where 0 = 15 degrees, 1 = 14.6, 2 = 15.40,  = 0.40, x = 2/6 = 4.8/6 = 

0.80, 1 = 0.40 and 2 = 0.40 degrees.  We discuss only the symmetrical procedure, 

where the left reference value is k1 = (1 + 0)/2 = 14.8 degrees and the right reference 

value is k2 = (2 + 0)/2 = 15.20.  Our first objective is to design a two-sided Cusum 
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procedure such that ARL0 = 200 (  = 1/200 = 0.005), and L1 = ARL1 = ARL(at  = 

150.40 =15) = 9.0 when there is a shift in the process mean equaling to either RQLs 

14.6, or 15.40 degrees.  Since the Nomograms on my website was designed for a one-

sided procedure, then in order to use them for a 2-sided procedure, the specified 2-

sided value of ARL0 = 200 must 1st be multiplied by 2, i.e., the corresponding (1)
0ARL  = 

400.    The equation 
(2)

1 1 1

ARL ARL ARL 
   clearly shows that if ARL(2) = 200, then  

1/ARL(2) = 2/ARL(1) so that the corresponding ARL(1) = 2ARL(2).  Further, for the 2-sided 

procedure, the corresponding average run length at 0 can occur both below and above 

0 so that (1)
0ARL = 1/0.0025 = 400.  Now the Nomogram shows that at L0 = 400 and L1 

= Lr = 9, the value of A = h/ x  = 
h n

0.80
  4.22  and it also shows that B0 = 0k n 


  

0.50.  These two equations with two unknowns when solved simultaneously yield n = 4 

and h = 1.688.  Therefore, the Cusum two-sided procedure consists of accumulating 

both tC and tC  for each random sample of n = 4 simultaneously at each stage of 

sampling and then deciding that   has shifted below k1 = 14.80 if tC  < 1.6880,  or 

deciding that  has shifted at least beyond k2 = 15.2 if tC  > 1.6880.  As long as the two 

Cusum statistics fall in the indecision interval (1.6880, 1.6880), then sampling must 

continue.  On my website I have provided m = 20 subgroup means each of size n = 4 

and have computed Cusum statistics for illustrative purposes.  Note that through 20 

subgroups no definitive decision can be made about a shift in the process mean, , in 

either direction because both Cusum statistics fall within the continue-sampling interval ( 

1.688, 1.688), and thus sampling may continue to stage 21. 

 If there is a shift from 0 = 15 to  = 15.20 = k2, the reader must first bear in mind 

that the value of ARL(at  = 15.20) must lie within the interval (L1 = 9, L0 = 200).  Now, 

by definition A = xh /  = 
1.688   

0.80/ 4
 =  

1.688 

0.40
 = 4.2200, b = A + 1.166 = 5.3860, K = 

0.40/2 = 0.20, and Δ  = Δ  = 0

x

  


  
x

K


 = 2

x

k 


 215.2 k

0.4


 = 0.  However, 
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Siegmund’s formula ARL(Δ ) = 
2

2 b 1 exp( 2 b)

2

  Δ Δ
Δ

  yields ARL(at Δ  = 0) = 

0

2

0 1 e

2(0)

 
 = 

0

0
, which is indeterminate.  Using  L’Hospital’s rule and taking the 

derivatives of numerator and denominator of ARL(Δ ) = 
2

2 b 1 exp( 2 b)

2

  Δ Δ
Δ

  twice 

wrt (with respect to) Δ  gives ARL(Δ ) = 
20 0 4b exp( 2 b)

4

   Δ
 showing that  ARL(at 

Δ  = 0) = b2 =  (5.3860)2 = 29.0090, which indeed lies within the interval (L1 = 9, L0 = 

200).  Estimating the ARL(at  = 15.20) from Nomograms is difficult at best because 

the left-most scale B(15.2) = x15.20 /    = 0. 

 Yet as another example, we estimate the ARL at  = 15.50, which will have to be 

less than L1 = 9 because this is a larger shift in the process mean than  = 15.40.  

Proceeding as above, Δ= x(15.5 15.2) / 0.4    = 0.75, ARLr( = 15.50) = L1(15.5) 

=
2

1.5(5.3860) 1 exp( 8.0790)

2(0.75)

  
= 6.30.  In order to obtain this ARL from the 

Nomograms, we compute B(15.5) = 2 xk /   = 0.30/0.4 = 0.75 and connect B = 0.75 

to A = 4.22 and the Nomogram from A. J. Duncan shows that ARL1 = Lr(15.5)  7.1.   

 In order to compare the ARL’s from the Nomograms and Siegmund’s formula, we 

consider a small shift from 0 = 15 to  = 15.05 < k2.  Then, B(15.05) = 

| 15.05 15.20 | / 0.40  = 0.375, Δ=
x

15.05 15.2

0.4


 

=  0.375, 2 bΔ =  0.755.3860 =  

 4.0395   ARL(at Δ=  0.375) = 
2

4.0395 1 exp(4.0395)

2( 0.375)

  


 = 184.0300.  Since B = 

Δ  = 0.375, the Nomogram from Duncan shows that the one-sided ARL+  180, but 

Kemp’s Nomogram gives roughly ARL(1) = 260.  It must be mentioned that when the shift 

in  is in the interval (k1, k2), then it is worth while to consider the possibility of ARL in 

both directions in the Siegmund’s approximation by computing B(15.05)= (15.05  
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k1)/0.4 = (15.05  14.8)/0.4 = 0.625,  -Δ = 1

x

k  


 = 0.625, 2 b-Δ = 1.255.3860 =  

6.7325, and ARL = 
2

6.7325 1 exp(6.7325)

2( 0.625)

  


 = 1064.3331 (compared to Duncan’s La  

950).  Now, the corresponding 2-sided ARL can be computed from the following formula: 

(2)

1 1 1

L L L     (2) L L
L

L L

 

 





  =
184.03 1064.3331

184.03 1064.3331




= 156.901.  Note that the La 

readings from the Nomograms cannot always be adjusted for the ARL of a 2-sided 

procedure (except for  = 0) unless both B   and B+  yield La values within the interval 

100  La  1000, and the Lr readings do not need the above adjustment.  Further, for   

in the interval (k1, k2) the closer  gets to the two reference points k1 and k2 the smaller 

the above adjustment to La becomes.  For example, at  = 15.10 < k2, B(15.10) 

= 15.10-15.20 /SE( x ) = 0.25 and A = 4.22 yield La < 100 from Kemp’s Nomogram.  

However,  +Δ  = 
x

15.1 15.2

0.4


 

 = 0.25 = B, 2b +Δ = 2.693, ARL(Δ= 0.25) = 

2

2.6930 1 exp(2.6930)

2( 0.25)

  


   = 88.6635.  As before, B = (14.8015.10)/0.4 = 0.75= -Δ , 

2 b-Δ = 1.55.3860 =  8.07900, and ARL  = 
2

8.0790 1 exp(8.0790)

2( 0.75)

  


 = 2859.49033 

  (2)L (15.10)  = 85.99701 (an adjustment of roughly 88.6635  85.9970 = 2.6665).  

Note that the above adjustment should be done only for k1    k2. 

 The reader should not confuse the two different uppercase deltas used in these 

notes.  The regular  stands for the specified tolerance on either side of the ideal target 

m, is independent of , and is used only for process capability analysis.  For the Ex22 

below  is specified at 2.4 degrees.  The second delta, Δ , stands for the deviation of   

from either reference points k1 and k2 in standardized ( x ) units, is a function of , and 

is used during process control in approximating the ARL from Siegmund’s (1985) 

approximation.  The value of Δ  is a function of , i.e., Δ () = 2 x( k ) /   , orΔ () 

= 1 x(k ) /    for a downward shift below 0.  Further, when B() = xk /    is 
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connected to A, one can approximate an ARL from the Nomograms. 

 

 Exercise 22.    Use the Nomogram on my website to design a two-sided tabular 

Cusum procedure which has an ARL0 = 250 at  = 15.00, but when the process mean 

shifts by  = 0.40 in either direction, then ARL1 = 6, where design specification on X are 

15  2.4 = 15  degrees but the process is 8-sigma capable (i.e., Motorola’s 4-sigma 

quality).  State your exact procedure.  (b) Apply your procedure to the data that I have 

provided on my website under Ex22 and make a statistical decision.  (c) Compute L1 at 

 = 15.3. 


