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INSY 7330  Reference : Chapters 3 & 4                        Maghsoodloo                 
Review  of  Fractional  Factorials  For Base-2 &-3 Designs    
 
      The notation 23 implies a factorial experiment involving 3 factors each at 2 levels 

(low = 0 or  1, high = +1).  Since 23 = 8, then one full replicate of a 23 factorial requires 

8 experimental runs.  The 8 FLCs in alphabetical order are  (1), a, b, ab, c, ac, bc,  and 

abc.  For example, the FLC  ‘ac’ means that factors A, and 

 C are at  +1 (high level) while factor B is at  1 (the low level), i.e.,  ac = (1, 0, 1).  To 

generate the 8 FLCs in an OA format, write 3 arbitrarily columns of zeros and ones (or 

minus ones and plus ones) as shown below. 

 

 

0     0    0         (1)              Note that the OA on the LHS has 8 rows, and             

0     0    1          a                hence, it provides 7 df for studying effects. 

0     1    0          b               If we wished to generate 8 more FLCs in  

0     1    1        ab               order to obtain a 24 design, then we would  

1     0    0          c                simply multiply d = (0, 0, 0, 1) by the 8 

1     0    1        ac               FLCs (1), a, b, ab, ..., abc.  Similarly, we 

1     1    0        bc               would use “e” and all the 16 FLCs of a 24 

1     1    1       abc              factorial to generate all the 32 FLCs of 

 

a 25 factorial design by multiplying e by (1), a, b, ab, c, ac, ...., abcd. 

 A full replicate of a 28  factorial design (with n = 1) requires 256 experimental runs, 

but only 36 (= 8 + 8C2) df of the 255 total df are absorbed by the 8 main factors A, B, ..., 

H and the 28 two-way interactions AB, AC, ..., GH.  This implies that such a design 

uses only 14.12% of the total df to study the most important effects (main factors and 

their 2-way interactions), and therefore, is somewhat wasteful of resources.  When our 

resources are limited, then we must resort to running only a fraction of all possible FLCs.  

Such experiments are called fractional factorial designs (FFDs, or fractional replicates), 

and their application in industrial settings is extremely helpful in separating the vital few 

effects from trivial many.  Once the influential effects are identified, their levels can then 

be adjusted in such a manner as to reduce waste and to improve outgoing quality. 

C   B  A    FLC 
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 As an example, suppose that through a brainstorming session we have identified 

8 factors (or inputs) that may impact our output y.  However, we cannot afford 

conducting 256 = 28 experiments but have sufficient resources to conduct 32 

experiments.  This leads to a 32 = 25 = 283 = 
3
1

2
 28 = (1/8)th fraction of a 28 factorial.  

Similarly, a one-fourth fraction of a 25 factorial leads to a 
1

4
(25) = 

2

1

2
(25) = 22(25 ) = 

252  FFD.  In designing a FF from scratch, the experimenter must exercise extreme 

care in order not to lose the effects of  main factors and, if possible, must reserve 

sufficient room (or df) to study the 2-way (or 1st – order) interactions of interest.   

 

 Example 8.   Consider an injection molding process, where 5 factors ‘A = Mold 

Temperature,  B = Holding Pressure,  C = Gate Size,  D = Feed Rate, and E = Hold 

Time’ may have an impact on the strength, y, of the molded piece (an LTB QCH).  

Further, the decision has been made that each factor has 2 possible levels of interest 

(Low and High) so that one full replicate will need 32 = 25 experiments, but we can 

afford conducting only 8 experiments.  This leads to a (1/4)th fraction of a 25 factorial, or 

a 252 FFD.   Further, the process engineer is also interested in studying the 

interactions AD and AE. 

 To design such an experiment from scratch, we will herein state rules and 

patterns that will apply to all FFDs in all prime bases (2, 3, 5, 7, etc).   (1)  Since 252  = 

8 , then we must have 8 rows (or FLCs) in our design matrix.  (2) Because the 

exponent 52 = 3, then we will be able to write 3 columns arbitrarily.  (3) Generating the 

other 4 columns is the one that requires extreme care!  That is, we must generate them 

in such a manner that all 5 main factors occupy separate columns and are also 

separate from AD and AE interactions.  The use of the above 3 rules leads to the 

design matrix below with the corresponding response values y.  Note that none of the 

3-way interactions ABD, ACD, ADE, ABE, ACE can be a design generator because in 

that case either AD or AE interaction will become aliased with one of the main factors, 

but our objective is to keep AD and AE interactions separate from the 5 main factors.  

Therefore, we must select our 2 independent generators from the remaining 5 three-



 18

way interactions ABC, BCD, BCE, BDE, and CDE in such a manner that they involve 

all 5 main factors, and also the 3rd generator (i.e., the generalized interaction) has at 

least 3 letters.  This leads only to 2 possible set of generators. 

 

Table 1. (Two independent generators ABC, BDE; g3= ACDE) 

A   B    D C = AB E = BD AD AE   FLC   Y (LTB) 

         
        + 
    +     
    +    + 

      + 
      + 
       
       

      + 
       
       
      + 

  + 
   
  + 
   

  
 + 
 + 
  

   ce 
   cd 
    b 
  bde 

14 psi 
35 
32 
12 

+         
+        + 
+    +     
+    +    + 

       
       
      + 
      + 

      + 
       
       
      + 

   
  + 
   
  + 

 + 
  
  
 + 

   ae 
   ad 
  abc 
abcde 

9 
18 
5 
7 

 

Since C = AB, then one generator of the above design is g1 = ABC, and similarly, the 

2nd independent generator is g2 = BDE.  Thus, the 3rd generator of this FFD is the 

generalized interaction of g1 and g2 given by g3 = g1g2 =ACDE.  Note that this pattern 

will persist for all FFDs, i.e., because we have divided our original 32 FLCs into 4 

blocks of 8 FLCS each (only one of which is studied and shown in the above table), 

and the 4 blocks each with 8 FLCs carry 3 df amongst them, then all of our generators 

must also have 3 df.  Since we have 3 generators, then each effect will have 3 aliases, 

i.e., for each block of FLCs that is left unstudied, we create exactly one alias for each 

effect! 

 

 The contrast functions (cfs) for the above (1/4)th FFD are 1 = 

x1 + x2 + x3  and   2 =    x2 +   x4 + x5.  Note that since we have only 2 independent 

generators,  we need only 2 contrast functions; further, for base-2 designs the values of 

cfs can be only 0 or 1.  For base-3 designs, the values of cfs can be 0, 1, or 2; for base-

5 designs,  can take on only the values 0, 1, 2, 3, and 4, etc. 

 To determine which block the FFD of the Example 8 is, we simply insert one of 

the FLC of the generated block of Table 1 into our cfs:  1(ce) = 0 + 0 +1 + 0 + 0 =1, 

2(ce) = 0 + 0 + 0 + 0 + 1 = 1.  Similarly, 1(bde) = 1 and  2(bde) = 3 = 1 (mod 2).  You 

should verify that the remaining 6 FLCs also have 1 = 2 =1, i.e., the 8 FLCs [ce, cd, b, 
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bde, ae, ad, abc, abcde] belong to  the (1 = 1, 2 =1) block.  The principal block (PB) 

for all FFDs of prime bases is the one for which the values of all cfs are zero, i.e., the 

PB always contains the FLC  00000....  The response table (RT) for the data of Table 1 

is provided in Table 2 below. 

 

Table 2.  (The RT for the data of Table 1)   

Effects A          B       C       D         E AD = CE AE = CD 

L0 93        76      71     60       90 61 49 

L1 39        56      61     72       42 71 83 

Contrast 54    20   10      12     48 10 34 

Ri  1        4        6.5       5        2 6.5 3 

 

 

   

       

 

 

 

 

Exercise 10.   Use the same 3 arbitrary columns of Table 1 to generate the PB 

by letting C =  AB  and E =  BD.   (b) Use the 8 FLCs in the PB to generate the 

other 2 blocks, giving the cf values of each block.  (c)  Use the procedure as in Table 1 

to generate the  (1 = 0, 2 =1) block by using the proper signs in front of  AB  and 

BD columns.  (d)  In Table 1, suppose we wish to keep the AD and AE interactions 

separate from the main 5 factors.  Generate another design, similar to Table 1, where 

the 3 arbitrary columns are A, B, and E. 

Note that in Table 1 the only 4-letter generators that will allow us to protect AD 

and AE are g1 = ABDE, or g1 = ACDE (both of which contain all 3 factors in AD and AE 

interactions).  As a result the only 3 arbitrary columns that can be written are any 3 

factors out of one of the two generators ABDE, or ACDE.  Thus, there are a total of 8 

choices for the 3 arbitrary columns.  Table 2 clearly shows that the strongest effect is A, 

A     E   0  1 

  0 67*  26 

 1 23  16 

C     D 0 1 

0 41* 30 

1 19 42*

         AE           CD 
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the 2nd most influential effect is E, the 3rd is AE = CD, and B has only a moderate 

impact on the response y.  Based only on the RT, it seems that the preliminary optimal 

process condition is X0 = A0B0C?D?E0.  To finalize our optimal condition X0, we have to 

analyze our significant interactions by crossing A with E and cross factor C with D.   

The two interaction tables on page 19 clearly show that the optimal levels of A and E 

are A0 E0 and those 

of C and D are either C0D0 or C1D1.   Hence, X0 = (1), or X0 = cd.    

 

Exercise 11.    Obtain the ANOVA table for the data of Table 1.  (b)  Verify the 

value of SS(AE) = SS(CD) by using the formula for a contrast SS given by 

SS(Contrast) =
N

2 2
i i

i 1
(Contrast) n c/


  , where N = 8 for this example. 

(c)  Verify your answers using the orthogonality of the design matrix.   Answer:  SS(AE) 

= 144.50. 

 Exercise 12.   Carefully study Chapter V (pp. 39 – 48) of my Manual and rework 

the Example 5.1 using the same data as on page 45.  However, column (1) will consist 

of 8 minuses followed by 8 pluses, column (2) will be 4 minuses, 4 pluses, and so on.  

The independent generators are g1 = ABCE and  g2 = BCDF.   Assign A to column (1), 

B to (2), and C to column (3).  Obtain X0 assuming that y is an STB type QCH.  (b)  

Obtain all the aliases of only effects C and AD.  (c) Work Exercise 5.2 on page 48 of 

my manual. 

 

Fractional   Factorials  For  Base-3   Designs 

 The notation 34 implies a factorial experiment involving 4 factors, and the 

quantitative factors must be at 3 equi-spaced levels 0, 1, 2, and hence one full replicate 

(with n = 1) will require running 81 experiments at 81 different FLCs of the factors A, B, 

C, D.   The superscript 4 in the notation 34 will signal that we may write 4 arbitrary 

columns of 0’s, 1’s and 2’s in order to generate the 81 FLCs of this CR (completely 

randomized) 34 factorial design.   I will show the writing of these columns during the 

discussions in class.  The ANOVA Outline is summarized below.  The ANOVA outline 

clearly indicates that only (8+24)/80 =   
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ANOVA  Outline 

Source of Variation   df 

 

Total      80   

Main factors (A, B, C, D)               

 8 

2-way Interactions   24 

3-way Interactions    32 

ABCD                     16 

 

40% of the total df of the design will belong to effects through the 2nd order (or 

interactions through the 1st order); the other 60% of the df are absorbed by high-order 

interactions (HOIs). 

      This situation worsens for a 35 factorial (with n = 1), where only 50/242 = 20.66% of 

the total df are absorbed by effects  through the 2nd order.  In other words, as design 

base increases from 2 to 3, to 5, and to 7, full factorials use more and more resources 

of experimenters and become more and more wasteful in the use of df if studying only 

the main factors A, B, C, ..., and their 1st –order interaction AB, AC, BC, ... were of 

interest. 

 Example 9.    The life (or time-to-failure = TTF) , y, of  a cutting tool in a 

numerically controlled machine is thought to be affected by the tool angle (A) and the 

cutting speed (B).   Table 3 shows the layout of the design and the resulting coded data 

with n = 2 observations per cell taken in a CR (completely randomized) experiment.  As 

always in any factorial experiment the USS =
3 3 2

2
ijk

i 1 j 1k 1
y

  
    = 156.00  (with 18 df),  

the CF = 242/18 = 32 (with 1 df)   SST = 156  32 = 124.00 (with 17 df).  Since the 

model deals only with variation amongst the 9 cells (or FLCs), then  SS(Model  with 8 

df)  = 
2 2 2 2 2 2 2 2 2(-3) +(-3) +5 +2 +4 +10 +(-1) +11 +(-1)

2
    CF = 111.00   

SS(Experimental Error) = SST  SS(Model) =124  111 = 13.00  (with 9 df). 
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Table 3 

A         B 125 (in/min) 150 175 yi.. 

15 degrees  2,  1 
(y11. = 3) 

 3, 0 
(3) 

2, 3 
(y13. = 5) 

 1 

       20 0, 2    (2) 1, 3 (4) 4, 6  (10) 16 
       25 1, 0  ( 1) 5, 6 (11) 0, 1 ( 1) 9 
               y.j.  2 12 14 y... = 24 
 

  We may also verify this SSError  = SSE from within the 9 cell variations, each cell 

contributing exactly 1 df to the Error SS.   Therefore, F0(Model) = MS(Model)/MSE 

= 13.875/1.4444 = 9.6058.  Since F0.05,8,9 = 3.23, then the impact of the model (A, B, 

AB) on the mean response (MTTF) is definitely significant at the 5% level.  The P-

value of this test is given by ̂  = P(F8, 9  9.6058) = 0.001337, i.e., we may easily 

declare that the overall impact of the 3 model terms on the mean response is significant 

at a level as small as 0.00134.  The % contribution of the model to the variation in the 

mean response is 89.516%.   We next decompose SS(Model) into 4 orthogonal  (i.e., 

additive) SS’s each with 2 df.   

To this end, we define a contrast function for any effect in base 3 as  = a1 x1 + 

a2x2 + ....  Since the elements of base 3  are 0, 1, and 2 (the base –10 number 3 does 

not exist in base 3 and has to be represented by 10 in base-3), then 3  = 0 (modulus 3), 

4 =1 (mod 3), 5 = 2 (mod 3), 6 = 0 (mod 3), 7 = 1 (mod 3), etc.  Further,  and the 

constants a1, a2, ... in a base-3 design can take on only the values of 0, 1, and 2.  For 

example, for the effect A, the contrast function (cf) is (A) = x1 .  The corresponding 

values of A0 = 0= 3 3 +5 = 1,  1= A1 = 2 + 4 + 10 = 16,  and 2 = A2 =  1 + 11 1 = 

9.  This yields, SSA = [(1)2 + 162 + 92 ]/6   CF  =24.333 .   Similarly, SS(B) =25.333 .  

Because SS(Model) has 8 df and SS(A) + SS(B) account for only 4 df, then the 

remaining 4 df must pertain to SS(AB), i.e., SS(AB) = 111  49.666 =61.3333 .  

However, there is absolutely no way that 

 we could write a cf for AB because every cf in base-3 design takes on only 3 values of 

0, 1, and 2 and hence can have only 2 df.  Therefore, we have to decompose AB into 2 

orthogonal components each with 2 df.  These 2 orthogonal components of AB are AB 

and AB2 .  (Note that AB = A2B2  and A2B 
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= AB2.)  The OA in table 4 illustrates how to generate the columns for A, B, AB, and 

AB2. 

 

Table 4              AB                 AB2 

A      B x1 + x2  x1 + 2x2 FLC yijk 

0       0 
0       1 
0       2 

0 
1 
2 

0 
2 
1 

00 
01 
02 

2, 1 
3,  0 
  2,  3 

1       0 
1       1 
1       2 

1 
2 
0 

1 
0 
2 

10 
11 
12 

0,  2 
1,  3 
4,  6 

2       0 
2       1 
2       2 

2 
0 
1 

2 
1 
0 

20 
21 
22 

    1, 0 
 5,  6 
 0, 1 

                                                                       y...  =         24.00 
 

Table 4 clearly shows that SS(AB) = 
2 2 2(-3 +10 +11) +(-3 +2 -1) +(5 + 4 -1)

- CF
6

  = 

33.3333 (with 2 df) and similarly, SS(AB2) = (02 + 182 + 62 )/6   CF = 28.00  (with 2 df).  

Note that AB and AB2  are 2 orthogonal components of the AB interaction because 

SS(AB) + SS(AB2) = 33.3333  + 28 = 61.3333  = SS(AB).   Further, note that unlike 

base-2 designs, all columns in base-3 designs must have 2 df.  Since the design matrix 

in Table 4 has 9 rows (therefore 8 df for all effects in the model), then we can write only 

4 independent columns, namely A, B, AB, and AB2  (each with 2 df).  Again, this implies 

that A2B2 = AB and A2B = AB2.  The statistical convention is that the 1st letter should 

never be squared and thus the notations AB and AB2 are conventional while A2B2 and 

A2B are correct but not common!  Later we will see that Taguchi sometimes uses the 

unconventional components A2B2 and A2B. 

Before discussing the FFD for base-3, we must assert that unlike base-2 

designs the question “about the magnitude of the effect of factor A ” in base-3 is 

ambiguous unless we specify whether we are asking for the linear or the quadratic 

impact of factor A.  When factor levels in base-3 designs are equi-spaced and 

quantitative, there are two orthogonal effects of a factor: Linear and Quadratic.  The 
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linear contrast for factor A of the Example 9 is  AL =  1(1) + 0 16 + 19 = 10.00, 

and the quadratic effect is AQ = 1  (1) 2(16) + 19 =  24.00.    

 Using the definition of SS(Contrast), we can compute the  

SS(AL) = 102/(62) = 8.3333  and SS(AQ) = (24)2/(66) = 16.00    SS(AL) + SS(AQ) = 

24.3333 = SS(A), as expected because the linear contrast vector [1       0       1] and  

the quadratic contrast vector [1         2         1] are orthogonal. 

 

 Exercise 13.    For the Example 9, compute SS(BL), SS(BQ) and verify that these 

2 components are orthogonal.  (b) Compute the four orthogonal components of 

SS(AB).  

 

The 33  Factorial  Design 

 Consider an experiment involving the effects of three factors, each at three levels, 

on the response variable y = yield.  The factors that may impact yield are factor A = 

Temperature at levels 90, 105, 120 0F; solvent concentration at 0.50, 1.0, 2.0, and factor 

C which represents 3 operators (O0, O1 and O2).  Note that although the levels of factor B 

(0.50, 1.0,  2.0) are not equi-spaced, their natural logarithms (0.69315, 0, 0.69315) are 

equi-spaced so that we can still use mod 3 algebra. Thus, we have an experiment 

involving 3 factors each at 3 levels with n = 2 observations per FLC taken in a completely 

random order.  In order to write the OA for this design, we can write 3 arbitrary columns 

as depicted in Table 5 on the next page.  The design matrix in Table 5 provides 26 df for 

studying effects and hence it has 13 independent (or orthogonal) columns each with 2 df.  

The coded subtotals (by subtracting 20) are given in the last column.  I generated the 

orthogonal columns 4 through 13 using the corresponding cf with mod 3 algebra.  As an 

example, I generated the 13th column under AB2C2 by using its contrast function ( 

AB2C2) = x1 + 2x2 + 2x3,  which shows that column 13 must be generated by adding 

(using mod 3 algebra) the column under A, twice the column under B, and twice the 

column under C.   Or even simpler is to add the AB column with the BC2 column (mod 3).  

To compute the SS(AB2C2), we must 1st add all observations in the FLCs (000, 012, 021, 

101, 110, 122, 202, 211, 220); this will yield (AB2C2)0 = 68.2.  Note that these 9 FLCs all 
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Table 5 

A B C AB AB2 AC AC2 BC BC2 ABC AB2C ABC2 AB2C2 yijk. 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
0 
0 
2 
2 
2 
1 
1 
1 

0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
2 
1 
0 
2 
1 
0 
2 
1 

0 
1 
2 
1 
2 
0 
2 
0 
1 

0 
2 
1 
1 
0 
2 
2 
1 
0 

0 
1 
2 
1 
2 
0 
2 
0 
1 

0 
1 
2 
2 
0 
1 
1 
2 
0 

0 
2 
1 
1 
0 
2 
2 
1 
0 

0 
2 
1 
2 
1 
0 
1 
0 
2 

0.20 
 5.8 
13.6 
1.0 
7.0 

12.2 
2.6 
9.2 

14.4 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 

1 
1 
1 
2 
2 
2 
0 
0 
0 

1 
1 
1 
0 
0 
0 
2 
2 
2 

1 
2 
0 
1 
2 
0 
1 
2 
0 

1 
0 
2 
1 
0 
2 
1 
0 
2 

0 
1 
2 
1 
2 
0 
2 
0 
1 

0 
2 
1 
1 
0 
2 
2 
1 
0 

1 
2 
0 
2 
0 
1 
0 
1 
2 

1 
2 
0 
0 
1 
2 
2 
0 
1 

1 
0 
2 
2 
1 
0 
0 
2 
1 

1 
0 
2 
0 
2 
1 
2 
1 
0 

0.8 
7.2 

12.4 
1.0 
6.8 

11.6 
1.2 
8.0 

13.6 
2 
2 
2 
2 
2 
2 
2 
2 
2 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 

2 
2 
2 
0 
0 
0 
1 
1 
1 

2 
2 
2 
1 
1 
1 
0 
0 
0 

2 
0 
1 
2 
0 
1 
2 
0 
1 

2 
1 
0 
2 
1 
0 
2 
1 
0 

0 
1 
2 
1 
2 
0 
2 
0 
1 

0 
2 
1 
1 
0 
2 
2 
1 
0 

2 
0 
1 
0 
1 
2 
1 
2 
0 

2 
0 
1 
1 
2 
0 
0 
1 
2 

2 
1 
0 
0 
2 
1 
1 
0 
2 

2 
1 
0 
1 
0 
2 
0 
2 
1 

3.0 
9.6 

14.4 
1.5 
8.6 

13.6 
1.8 
7.6 

12.6 
 

have (AB2C2) = x1 + 2x2 + 2x3 = 0.  Second, we must add all yijkl values obtained under 

the FLCs (002, 011, 020, 100, 112, 121, 201, 210, 222); this will yield (AB2C2)1 = 67.3.   

The reader should verify that (AB2C2) = x1 + 2x2 + 2x3 = 1 for these last 9 FLCs.  

Similarly, (AB2C2)2 = 65.8.  Hence, 

SS(AB2C2) = 
2 2 2 268.2 +67.3 +65.8 201.3

=
18 54

0.16333 . 

Exercise14.   (a)  For the design matrix of the above example, use the above 

procedure to compute SS(AB2C), SS(ABC2), and SS(ABC).  Then verify your answer 

by using the orthogonality of these 4 components of ABC.   (b) Use the same 
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procedure to compute SS(AC2).  Given that the SST = 331.7883333  and SS(Error) = 

10.125, obtain the ANOVA Table and identify the vital effects using  = 0.05. 

 

Fractional  Factorials  for  Base-3  Designs 

 If the experimenter’s resources are limited and therefore cannot conduct a full  

3k (k  3) factorial, then s/he must settle for running a (1/3)rd, (1/9)th, (1/27)th, etc FFD 

with all quantitative factors at 3 equi-spaced levels.  For example, a (1/3) 33 FFD 

consists of dividing the 27 FLCs of the 33 design into 3 blocks of 9 FLCs each, selecting 

one of the 3 blocks at random, and then running the 9 experiments in the chosen block 

in a completely random order.  Such a design is called a 31
3

3
= 331 FF, which will need 

one generator to be selected from ABC, AB2C, ABC2, and AB2C2  in order to maximize 

resolution.  Because there are only 3 letters (A, B, C) in a 33 design, it is impossible for 

this case to generate a FFD with R > III. 

  As in the case of FFs in base-2 designs, it will be easiest to obtain a 331 FFD 

by using an (L9) OA and generating the PB first.  Suppose we let g = AB2C2; for the PB 

the value of contrast function  = x1 + 2x2 + 2x3 must be set equal to zero.  As before, 2 

columns can be written arbitrarily, but the column pertaining to factor C must be 

obtained from  x1 + 2x2 + 2x3 = 0.  This yields  x1 + 2x2 =  2x3 = (2 +3)x3 = x3, i.e., the 

levels of factor C must be obtained from A + 2B (Mod 3).  The PB is given in Table 6.  

Table 6.  (The PB Block with  = x1 + 2 x2 + 2 x3 = 0)    

A B x3 = x1 + 2 x2 = C 
0 
0 
0 

0 
1 
2 

0 
2 
1 

 1 
1 
1 

0 
1 
2 

1 
0 
2 

2 
2 
2 

0 
1 
2 

2 
1 
0 

 

 



 27

Once the PB is obtained, the ( = 1) and ( = 2) blocks can be generated by simply 

identifying only one FLC in these 2 blocks and then adding the identified FLC to those 

of the PB to generate all the FLCs of ( = 1) and ( = 2) blocks. 

  The alias structure of the above FFD is given by A = BC = ABC (with 2 df),  B = 

AC2 = ABC2 (with 2 df),  C = AB2 = AB2C (with 2 df), and AB = AC = BC2 (2 df). 

 

 Exercise 15.   A company manufacturing engines was concerned about 

emission characteristics of the engines.  To try to minimize various undesirable 

emission variables, the company proceeded to build and operate experimental 

engines varying five controllable factors:  throat diameter at 3 levels 0, 1, 2; ignition 

system at 3 levels 0, 1, 2; temperature at 3 levels 0, 1, 2; velocity of the jet stream at 3 

levels, and timing system at 3 levels.  Since it was cost-prohibitive to build 35 = 243 

experimental engines, it was decided to conduct a (1/9)th fraction of all the 243 runs.  

(a) Comment on the deficiency of the FFD with the generators g1 = AD2E and g2 = 

AB2CD2E.   (b) Obtain the PB using the generators g1 = AB2C  and g2 = BCD2E2.  Then 

use this PB to generate the (1 = 2, 2 =1) block.  (c) Give the outline of the ANOVA 

table listing only the effects through the 1st order.  (d) Given the (STB) coded 

responses for the PB starting with (0, 0, 0, 0, 0)       15,  

19, 30, 7, 14, 2, 8, 15, 20, 23, 35, 10, 14, 3, 11, 9, 5, 13, 19, 28, 20, 25, 15, 33, 16, 14, 

22, obtain the RT and estimate the optimal setting X0.  The response y = 15 was 

obtained under the FLC 00000, and the last response,22,  was obtained from the FLC 

22020. 

  

 Exercise 16.    Consider a 363  FFD ;  describe the exact nature of this design, 

i.e., determine the values of k, p, how many independent generators, what fractional 

replicate, how many blocks and the number of FLCs in each block.  (b) Give a set of 

generators to maximize R.  (c) Determine all the aliases of factor E.  (d) Generate the 

PB.                       

  


