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Tel:  (334) 844-1405     Fax: 1381 

 

Taguchi’s Major Contributions to QE (Quality Engineering): (1)  Redefined Quality, (2) 

Introduced OAs (orthogonal arrays) as an aid for engineers to design experiments, (3) 

Introduced Robust (i.e., Parameter and Tolerance) Designs and recommended the use 

of his S/N (Signal-to-Noise) ratios in analyzing data from a Robust design.  

 

There are 3 types of  Static Quality Characteristics (QCHs):  STB  

(Smaller-The-Better), LTB,  NTB (Nominal-The-Best) 

Examples of STB type QCH: Error Rate, Tire Imbalance, Noise level of an engine, 

Tool Wear, Braking Distance, Warpage, etc.   All STB QCHs have 2 common features:  

Their ideal target is m = 0, and they have only a single consumers’ USL (Upper 

Specification Limit) denoted by yu.   

 

Examples of LTB QCH:  % Yield, TTF (Time-to-Failure), Weld Strength, (Fuel) 

Efficiency, Net Profit, Tape adhesiveness, etc.   All LTB QCHs have 2 common 

features: Their ideal target m = , and they all have only a single LSL = yL 

 

Examples  of  NTB QCHs:  pH level in a chemical compound, Output voltage (of a 

TV set), Tape Edge Weave, Clearance, etc.  All NTB QCHs have 2 common features: 

They have an ideal target denoted by m  , and they all have 2 consumers’ 

specifications yL = LSL = m  and  yu = USL = m + , where  is called the 

manufacturing allowance by Taguchi.  Majority of nominal dimensions are symmetrical, 

i.e., m = (LSL + USL)/2, but asymmetric tolerances occur often in manufacturing 

processes, in which case  yL = LSL = m  1  and  yu = USL = 

m + 2, where 1  2.  
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Traditional (or Conventional) View of Quality 

If a unit’s dimension is within specification limits (LSL, USL), then the amount of 

quality losses imparted to society is 0.  Further, if a unit is out of specs, no matter how 

far out of specs, then the amount of quality losses imparted to society is only $Ac.  

Thus, QLTrad(y, STB) = 





u

c u

0, 0 < y y

A , y > y
 ,    

QLTrad(y, LTB) = 
L

c L

0, y y

A , y y

  
 

,  and QLTrad(y, NTB) =  
 




L u

c

0, y y y

A , Otherwise
. 

 

Taguchi’s  View  of  Quality 

 The farther a unit’s dimension is from the ideal target m, the more quality losses is 

imparted to society by that unit, i.e., Quality is the amount of losses an item imparts to 

society from the instant that is shipped   Lack of Quality for one item = y  m      L(y) 

= k(y  m)2, where L(y) is called Taguchi’s QLF (Quality Loss Function).  For the case of 

asymmetric tolerances, this last QLF generalizes to 

L(y) =
2
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2
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∆
, A1 and A2 are the amount of 

QLs at the LSL and USL, respectively.  Note that Taguchi’s QLF is the same as Karl 

Gauss’s quadratic loss.  When 1 = 2 = , then k = Ac/2. 

 

  Example 1.    y = The  Output Voltage of a TV Set, the ideal target m = 115 volts,  

 = 20 volts    yL = LSL  = 115 - 20 = 95,  yu = USL = 135 volts,  Ac = $150.00 

Data from Manufacturer 1 (M1):  121,  131, 117,  94,  110,  112, 118,  109,  114,  

93      n1 = 10  

Data from M2:  97,  110,  116,  129,  133,  101,  96,  98,  134,  96,  137,  99  n2 = 

12.   Since the amount of QL at 95 and 135 volts is $150.00, then 150 = k(115  20 
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m)2     k = 150/ 400 = 0.375  M1:  L1 =  0.375 (121 115)2 = $13.50,  L2 = 

0.375(131 115)2 = $96.00,  ...,  L10 = $181.50     1L  = 
10

1j
1 j=1

1
L

n
 = 487.875 /10. 

          1L  = $48.7875;   Similarly,  2L  = 
12

2j
2 j=1

1
L

n
 =  99.3125       

QDPU (quality difference per unit) = $50.525  for M1 over  M2. 

Clearly, Taguchi’s  average QL per unit must be  L= 
n

j
j=1

1
L

n
 = 

n
2

j
j=1

1
k (y m)

n
=   

k[ 
n

2
j

j=1

1
(y m)

n
]  = k(MSD).  It can be shown (study pp. 9-10 of my manual) that for a 

nominal dimension  MSD = 
n

2
j

j=1

1
(y m)

n
 = 2

nS  + ( y  m)2 , where 2
nS  = 

n
2

j
j=1

1
(y - y )

n
   is the sample variance, as illustrated in the following table. 

                   k = 0.375 

 y  ( y  115)2 2
nS  MSD L= k(MSD) 

M1 111.90 9.61 120.49 130.10 $48.7875 

M2 112.1666 8.027778 256.8055 264.8333 $99.3125 

   

       From the traditional view of quality, AQLTrad1  = (2150)/10 = $30.00/ TV set,  

AQLTrad2 = (1150)/12 = $12.50/set    QDPUTrad of M2 over M1 is $17.50 per set. The 

amount of contradiction between the two views of quality evaluations is $68.025 per 

unit. 

 

The  Use  of  Taguchi’s  QLF, L(y),  to  Set  Up  Production Tolerances   

 For the sake of illustration, consider the QLF for the Example 1, where L(y) = 

0.375(y 115)2  for both manufacturers.  Suppose that during (or at the end) of 
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production the output voltage of a TV set, y, can be adjusted (or calibrated) toward the 

ideal target of  m = 115 volts with the use of a resistor.  Further, the total cost of such 

an adjustment before shipment is $6.00.  The question arises “for what values of y 

should the $6.00 be spent” ?   Answer : Spend the $6.00 before shipment only if the 

unit’s quality loss  L(y) > $6.00.  That is, spend the $6.00 only if  0.375 (y  115)2 > 

$6.00   (y  115)2  > 16   y - 115  > 4   Either  y  115 <  4, or  y  115 > 4  

Spend the $6.00 only if  y  < 111 or  y > 119.    

Therefore, the production (or on the drawing) tolerances for the output voltage are 115 

 4 volts, as opposed to  115  20  volts for consumers’ tolerances. 

   It can be shown that for an NTB type QCH, in general, in-factory allowance f = 

c f cA / A ,  where for the above example c = 20 volts, Af = $6.00 and Ac = $150.00. 

Exercise 1.   Work the QE Exercise on page F-H of my manual, carrying at least 

4 decimals.  

 

The  QLF  for  an  STB  QCH  

 Substituting the value of m = 0 into the Taguchi’s QLF L(y) = k (y  m)2    

results in L(y) = k(y  0)2 = ky2.  Since it is assumed that the amount of societal QLs at 

the USL = yu is Ac, then  Ac = k 2
uy     k = Ac/ 2

uy  . 

Exercise 2.    Show that for an STB type QCH,  L  = k(MSD) = k[ 2
nS  + (y )2 ] , 

where the MSD = 
n

2
i

i=1

1
y

n
. 

Example 2.   As an example, consider Exercises 2.7 and 2.8 on page 23 of my 

manual.  Clearly, the Radial Force Harmonic (RFH) of a passenger tire is of an STB 

type QCH.  (a) Since  k = Ac/ 2
uy  = 10.00 / 262 = 0.014793, then for one tire  

L(y) = 0.014793y2 .  (b) Trad1AQL = (210)/10 = $2.00/ tire,  and  Trad2AQL = 

(110) /12 = $0.8333/ tire      QDPUTrad of  brand 2  over brand 1 = $1.166667.    

 (c) k = 0.014793. 
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Brands y  2(y)  2
nS  MSD  L = k(MSD) 

      B1 18.64 347.4496 45.3424 392.792 $5.8106 

      B2 21.65 468.7225 19.2825 488.005 7.2191 

 

From the above Table, QDPUTag of Brand 1 over B2 = $1.4085    Quality 

contradiction between the traditional and Taguchi’s view = $2.5752 per tire. 

 

Taguchi’s  QLF  For  an LTB  Type  QCH 

 Since the ideal target is , then L(y) = k(y   )2 =  for all values of y, no matter 

how large y is or how far y exceeds the LSL = yL.  Therefore, in the case of LTB QCH, 

we have to make a transformation in order to evaluate the quality of an item by letting x 

= 1/y.  Because y is LTB, then the random variable (rv) X is an STB type QCH, i.e., the 

ideal target for X is zero, leading to the Taguchi’s QLF as L(y) = k(x  0)2 = k(1/y)2 = 

k/y2.  The amount of societal QLs at the LSL  = yL  is Ac, and thus k = Ac
2
Ly .  The 

Taguchi’s average QL for n randomly selected items is given by L   = k (MSD), where 

MSD = 
n

2
i

i=1

1
(1 / y )

n
 .   The reader must not confuse the 

n
2
i

i=1

(1/ y )  with the 1/( )
n

2
i

i=1

y .   

In fact, if at least one yi  0 and  n > 1, then 
n

2
i

i=1

(1/ y )  > 1/(
n

2
i

i=1

y ).   I have not been 

able to find a counter example to this last claim that I am making?!   Can you? 

Example 3.   Consider the data of Exercise 2.9 on page 24 of your manual.  

Clearly welding strength is an LTB type QCH and hence k = Ac
2
Ly  = ($20.00) × 

(1.20ksi)2 = 28.80$ksi2      L(y) = 28.80/y2. 

MSD1 = 
1

9
 [

2 2 2 2 2

1 1 1 1 1 1 1 1
+ + 1 + + + + + +

16 4 361.3 1.1 4.8 1.5 0.9
] = 

1

9
 [4.48085516] 

= 0.4978728   L 1  = 28.8(MSD1) = $14.33874 per unit. 

Exercise 3.   Repeat the above Example for the data of Exercise 2.10 on page 25 

of the manual.  (b) Compute the QDPU of the two welding methods from both the 

traditional and Taguchi’s view of quality.  Compute the amount of quality contradiction 
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(QCTDN) per unit if there is any.  (c)  Recompute the MSDs for both welding methods by 

transforming the data to the dimension x = 1/y, and then using the fact that MSD = 2
nS + 

( x )2 .  (d) For the welding method 1, compute the values of L1, L2, ..., L9 and use these to 

re-compute L1 . 

 

Computation  of  Taguchi’s  Expected  QL  When  Process Parameters 

Are  Known and  the  QCH  Y  is  an  NTB   Type  

Suppose the process mean  and process standard deviation  are known (or 

specified).  Thus, sampling the process is totally unnecessary because the Taguchi’s 

expected societal QLs, E(QLTag), for the entire population can easily be computed as 

follows: 

  E(QLTag) = E[k(y  m)2] = kE{[(y  ) + ( m) ]2} =  

          = k[E(y  )2  + E( m)2 ]  = k[2 + (  m)2].               (1)  

If the process is centered, i.e., if  = m, then  E(QLTag) = k2. 

Example 4.   Suppose the output voltage,  y,  ~ N(110, 121 volts2).  The 

consumers’ Specs are 115  20 volts and Ac = $150.00; then the societal QLs for one 

unit is L(y) = 0.375 (y 115)2.   However, over the life-cycle of this particular brand of TV 

sets, the average QLs over all sets produced and sold by the manufacturer from Eq. (1) 

is equal to 0.375[121 + (110  115)2] = $54.75  per set. 

 Note that sampling the manufacturer’s product in this case is unnecessary because the 

process parameters are known and need not be estimated. 

 

Computation  of  E(QLTrad)  When  the  Sampling  Distribution  of y  is  

Known 

 For the sake of illustration, consider the scenario of the Example 4 above, as 

depicted in Figure 1 atop the next page.  Figure 1 clearly shows that  ZL = (95  110)/11 

= −1.363636   pL = (−1.363636 ) = 0.086341, and Zu = (135  110)/11  
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                                         Figure 1 

 

 = 2.272727 pu = 1 ( 2.272727 ) = ( 2.272727  )  = 1 0.98848 = 0.01152  p =  

pL + pu  = 0.097862   E(QLTrad) = Acp = 150  0.097862 = $14.68.  Note that, in general, 

E(QLTag)  E(QLTrad).  In this case $54.75 vs  $14.68  QCTDN/unit = quality 

contradiction per unit = $40.07. 

 

Natural  (Or  Statistical)  Tolerances  (Known Parameters)   

 Natural tolerances of a machining process are determined by its standard 

deviation , while the consumers’ (or design) tolerances are specified as m  .  The 

reader must not confuse the two issues because  and   practically determine the 

process capability while yL = LSL =  m  ,  and  yu = USL =  

m +  are specified by the buyer or the designer (or some outside agency unrelated to 

the manufacturing process).  Once m   are specified, then a process is capable of 

meeting specs iff its natural tolerances are within, or inside, the interval (LSL, USL). 

 Definition.   The  (1 )100% natural tolerances of a process are defined as the 

interval of y values that contain exactly (1 ) proportion of the entire population.  For 

example, the 99% natural tolerance limits, LNTL0.99  and UNTL0.99, of a process contain 

the dimensions of  99% of all the units produced by the process.  If the interval (LNTL0.99, 

UNTL0.99 ) lies within the interval (LSL, USL), then the process is said to be capable of 

meeting the tolerance level  = 0.01.  This in turn implies that the FNC (Fraction 

 = 11 

   110    USL = 135     LSL = 95 

pL 

pu 

y 
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nonconforming) of the process, p, is less than  = 0.01; if  p > , then the process is not 

capable of meeting design specs, where  may be thought of the level of FNC below 

which the company will survive and prosper! 

Example 5.    The length of (steel) pipes, y, from a certain manufacturer is N(12”,  

0.0016 inches2) with consumers’ tolerances 12  0.10. 

Our objective is to determine if the 99% natural tolerances meet consumers’ 

specs (11.90, 12.10).  Since the process is normal and centered, then LNTL0.99 = 12.00  

Z0.005 = 12  2.575830.04 = 11.896967, and  UNTL0.99  = 12.00 + 0.10303320 = 

12.103033.  Thus, the tolerance interval (11.8970, 12.1030) contains 99% of the pipes’ 

dimensions produced at a confidence probability of 100%  (because  and  are known).  

However, because the 99% tolerance interval (11.8970, 12.1030) contains the 

consumers’ tolerance range of (11.90, 12.10), then the process is not capable of 

producing a maximum FNC of  = 0.01.  We may verify this fact by actually computing p 

for this Gaussian process from ZL = (11.90  12.00)/0.04 =  2.50   p/2 = ( 2.50) = 

0.00621  p = 0.01242 >   = 0.01. Thus,  

the process is not capable of meeting specs because p > .  In general, the (1)100% 

natural tolerances for a Gaussian process is given by   Z/2.   Because,  and  are 

assumed known, the interval (  Z/2,   + Z/2) contains (1 ) proportion of the 

Gaussian process with certainty.  

Exercise 4.   (a) For the Example 5 above, determine the maximum value of  at 

which the process is barely capable of meeting specs.  (b)  For the same example, 

suppose y ~ N(12.03, 0.0016), the specs as in part (a) are 12  0.10, compute the 

process FNC, p, and determine if it meets the company-wide tolerance level of  = 0.01.  

(c) For the situation of part (b) determine the maximum value of  for which p   = 0.01.    

 It should be emphasized that in most manufacturing processes in the USA, the 

amount of tolerable company-wide FNC is set roughly at  = 0.0027.  This leads to 6-

sigma natural tolerances if y ~ N(, 2) as depicted in Figure 2; please note that /2  = 

0.00135.  Further, note that y represents a single (n = 1) observation  
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                       Figure 2. 

 

from a N(, 2).  Figure 2 illustrates that if  LSL     3, then pL    0.00135, and if  USL  

   + 3, then pu    0.00135.   That is, if the tolerance range (LSL, USL) lies outside the 

6-sigma natural tolerances (  3,   + 3), then  p   0.00270 no matter how off-

centered the machining process is!  Only then the process is said to be capable of 

meeting the Quality Level (QLEV) of 0.0027.  As the result, it follows that in this case 

USL  LSL    (  + 3)  (  3), i.e., USL  LSL   6, which in turn will imply  that the 

process capability ratio  PCR = Cp = [(USL  LSL)/(6 )]  1.  It is generally best and 

preferable that we require the value of  PCR to exceed 1 because p <  does not 

guarantee that the corresponding (1 )100% natural tolerances lie inside the design 

specifications for an off-centered process.  For example, given design specs 12  0.10,  

= 0.01, and y ~ N(12.01,  0.001369), then ZL= 0.11/0.037 = 2.972973, pL = 

0.0014746521, Zu= 0.09/0.037 = 2.432432 , pu = 0.00749889474, p = 0.00897355 <  

= 0.01.  However, the UNTL0.99 = 12.01 + 2.57580.037 =12.1053046 lies outside the 

USL = 12.10.  It seems that if natural tolerances lie inside specs, then for certain p  .  

However, the converse of this statement is not necessarily true. 

Exercise 5.    It is known that the output dimension of a machining process is N(, 

2) and the machine is capable of meeting a QLEV of  = 0.00046530.  Given that the 

  

 

 + 3 

0.00135 

     3 

0.00135 

y 
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process is centered, i.e.,  = m, compute the improved value of  PCR = (USL  

LSL)/(6).  [Hint: Since the machine is capable of the QLEV 0.00046530, then p  ].  

 

Natural  Tolerances  When  Process  Parameters  Are  Unknown  

 When the population parameters  and  are unknown, then the process has to 

be sampled in order to estimate  and  with sample statistics y   and S, respectively.  

For a N(, 2) process, it was shown on pages 7-9 of these notes that the (1  

)100% natural tolerance limits are given by   Z/2  with 100%  confidence 

probability (Pr).  However, when  and  of  a  N(, 2) process are unknown, then no 

longer the interval  y  Z/2S contains at least (1 ) proportion of the population at 

100% probability.  Further, the value of Z/2 has to be adjusted upward to the level of 

tolerance factor K (see Table 1 on p. 17 of my manual ) in order to account for the error 

in estimating  with y   and estimating  with S.  The (, 1 ) tolerance interval, y   

KS,  has a confidence Pr (before drawing of the sample)  of    to contain at least the 

(1 ) proportion  

of all  y values produced by a manufacturing process.  For n ≥ 30, the 2-sided tolerance 

factors can be approximated, to 3 decimals, from  

        K = 

2
/2 ,n 1

2
/2 ,n 1

[(1 1 / (2n 1.5)] Z (n 1) / , 0.95

[(1 1 / (2n 2.0)] Z (n 1) / , 0.99

  

  

       

       

 

I do not presently know a good approximation for K of a one-sided tolerance factor,  

because the exact value of the tolerance factor in this case is given by 

         K = noncentraltinv(, n 1, Z n )/ n  

where the noncentrality parameter of the t distribution is given by  = Z n , and the 

noncentral t rv is defined as Tn  1() = 
n 1

2(Z ) n 1 /


    .  The good news is the 

fact that Minitab will invert the noncentral t distribution.  In Minitab, go to Calc  

Probability  distributions  t  in the dialogue box, select inverse cdf  insert the 

values of , df (degrees of freedom),  , and ok.  The Matlab syntax for the one-sided 

tolerance factor is K = nctinv(, n 1, Z n )/ n . 
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Example 6.    A random sample of size n = 30 steel pipes has a mean of  y  = 

11.98 and S = 0.0525, where LSL = 11.90 and USL = 12.10.  Obtain the (0.95, 0.99) 

natural tolerance limits of the process.  Table 1 of my Manual shows that K = 3.35, and 

hence LNTL0.99  = 11.98  3.350.0525 = 11.8041;  similarly, UNTL0.99 = 12.1559.   This 

implies that the interval (11.8041, 12.1559) contains at least 99% of y values of all the 

pipes produced by this process at a confidence level of 0.95.  Note that the Pr that at 

least 99% of all pipe dimensions to lie in the interval (11.8041, 12.1559) is either 0 or 1.  

Our next objective is to determine if this process is capable of meeting the QLEV of  = 

0.01? 

 In the case of unknown  and , a measure of process capability (PCP) is given 

by the process capability index 

          pkĈ = 
/ 2

1

Z
Zmin =  

/ 2

1

Z
 Min ( L u

ˆ ˆZ , Z ),                             (2) 

where LẐ  = (LSL  y )/S  and  uẐ =  (USL  y )/S.  For our Example 6 above,  LẐ  = 

(11.90  11.98 )/0.0525 = 1.5238095 and  uẐ  = 2.2857143  so that  pkĈ  = 
/ 2

1

Z
 

Zmin = 
1

2.57583
Min(1.52381, 2.28571) = 0.591580  << 1.00      The process is not 

capable of meeting the QLEV of   = 0.01, i.e., p̂  > 0.01.  Note that this is consistent 

with the fact that the estimated tolerances (11.8041, 12.1559), at the confidence level 

of  = 0.95, do fall outside the consumers’ specs of 12  0.10. 

 

    Exercise 6.   Compute the value of  p̂  for the above Example 6,  

assuming that y is N(, 2).   

        Exercise 7.   The design specs for diameter of holes on a VCR board is 5  0.003 

cm.  The drilling machine is capable of producing dimension y that is N (5.00, 0.000001 

cm2).   (a) Assuming that 6 holes must be drilled on each board, and the resulting 

board is conforming only if all 6 holes meet design specs, compute the FNC of all 

boards, pb, produced by the drilling machine.  (b) If the production rate is PR = 50,000 

boards/month, compute the expected number of boards that have to be scrapped 
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annually.  (c) Determine the machine’s natural tolerances (i.e., its value of ) that 

reduces the scrap rate to 228/year.   ANS:  (b) 9653.9014/year.  

 In the context of the above Exercise 7, if 9654.6 scraped boards /year is 

intolerable, i.e., pb = 0.016091 is too large and has to be reduced to an acceptable 

level, then 2 options exist.  (1) Reduce machine  as in the part (c) above to a level such 

that pb < , if at all possible.  (2) Widen the design tolerances on a hole from 5  0.003 

cm to, say, 5  0.004 cm and manufacture the VCRs in such a manner that they still 

will function properly from consumers’ standpoint.  Such a design that tolerates larger 

variation (or larger tolerances) in manufacturing, and still works satisfactorily from 

consumers’ standpoint, is called a robust design.  Robust designs can withstand 

relatively more manufacturing noise.  Note that in general option (1) is far more 

expensive than option (2). 

 

The  Relationship  Between  Natural  Tolerances  and Taguchi’s E(QL) For 

a Nominal Dimension 

 We will consider the 4 most common possibilities (out of infinite) as outlined 

below. 

(i)   = m and  6-sigma PCP   USL  LSL = 6   E(QLTag) = k2 = c
2

A


 [(USL  

LSL)/6]2 = c
2

A


(2/6)2 = Ac/9; note that in this case  = /3. 

(ii)  = m and  8-sigma PCP, QI cost = Af,    USL  LSL = 8    

             E(QLTag) = c
2

A


 [(USL  LSL)/8]2 + Af = $Ac /16 + Af 

(iii)   = m + 0.50  and  PCR = 1       USL  LSL = 6 

     E(QLTag) = k[2 + (  m)2] = c
2

A


[ (/3)2 + 0.25 (/3)2] 

                = Ac(1/9 + 0.25/9) = $1.25Ac/9.  

     (iv)   = m + 0.50  and  8-sigma PCP,  QI cost = Af,     USL  LSL = 8   

           = /4   E(QLTag) = c
2

A


 [(/4)2 + 0.25 (/4)2] + Af = $1.25Ac/16 + Af 
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 Exercise 8.    Suppose that QI (quality improvement) at a cost of Af on a 

machine has improved the process mean from the off-target value of  m + 0.75  to   

= m and the existing 6-sigma process capability (PCP) to 7-sigma PCP.   Compute the 

% reduction in Taguchi’s expected societal QLs. 

 

Review  of  Factorial  Designs  and  the Associated  ANOVA 

We will review this topic quickly through an example, but those of you who do not 

have the background or need a more careful refresher, please refer to my website at                                

                      www.eng.auburn.edu/~maghssa/homepage.html 

then scroll down to the section STAT 3610 (the prerequisite to this course), and clicking 

on Chapter 11 (DOE With Several Factors).  Further, you will benefit from studying the 

chapter 4 of my manual. 

 Example 7.    The shear strength of an adhesive in a chemical process is 

thought to be affected by the application of process variables A = Pressure, and B = 

Temperature.  A factorial experiment was conducted to asses the effects of the inputs 

A and B on the process output y = shear strength.   The coded data is displayed in the 

table below.  Such a design is said to be a 23 complete factorial  

 

A               B 250  oF 260 270 yi.. 

120 (lb/in2) 7,  9 10,  13 14,  16 69 

150 15,  19 9,  8 16,  17 84 

y.j. 50 40 63 y...  = 153 

 

experiment (implying that there are at least one response at each possible factor level 

combination), and since there are n = 2 observations per every cell (or FLC = factor 

level combination), the design is said to be balanced.  Further, N = 232 = 12 total 

responses.  The USS (Uncorrected Sum of Squares) = 
2 3 2

2
ijk

i 1 j 1 k 1

y
  
 = 2127.00  (with 

12 df) ,  the  CF = Correction Factor = 
2
...y /N = 1532/12 = 1950.75  (with 1 degree of 

freedom, df or DOF)    SST = SS(Total) = USS – CF = 176.25  (with 12  1 = 11 
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degrees of freedom = df).  SSA = (692 + 842 )/6   CF = 18.75   (with 1 df);  similarly you 

may verify that SS(B) = 66.50 (with 2 df).  The experimental (pure) error SS has to be 

computed only from the within each cell variation as follows: SS11 = 72 + 92  162 /2 = 

2.0 (with 1 df), SS12 = 102 + 132  232/2 = 4.5,  SS13 = 2,  SS21 = 8, SS22 = 0.50, SS23 = 

0.50 (with 1 df)     SS(Experimental Error) = 17.50  (with 6 df)  SS(Model) = 

SS(Total)  SSError = 176.250  17.50 = 158.75  (with 5 df); however,  SS(A) + SS(B) = 

85.25  (with 3 df)   SS(AB) =  SS(Model)  (SSA + SSB) = 158.75  85.25 = 73.50  

(with 2 df).   The ANOVA Table  from Minitab is provided below.  

   

Analysis of Variance for y From Minitab    
Source   DF      SS         MS       F0        P-value 
    A         1     18.750   18.750   6.43**     0.0440 
    B         2     66.500   33.250  11.40***   0.0090 
  A*B       2     73.500   36.750  12.60***   0.0070 
 Error      6     17.500    2.917 
 Total    11   176.250  
 
The reader must be cognizant of the fact that in all factorial experiments (involving 2 or 

more factors), SS(Model) will account for the effects of all inputs in the experiment.  In 

the context of the experiment of Example 7, the two obvious process inputs are factors 

A and B, but SS(A) + SS(B) < SS(Model), and therefore, there has be another hidden 

input in the process that affects the output  y, which is called the interaction between 

the two inputs A and B, denoted by AB.  You must use the symbol AB for all factorial 

designs to denote the interaction between the two inputs A and B, except when all 

factors are at 2 levels where AB may also be used to denote the interaction effect AB.   

 Definition.   Two factors, A and B, interact if the impact of B on y at A1 (the low 

level of A) is different from the effect of B at A2 (the high level of A).   Figure 3  



 15

10

20

30

250                        260                  270

x

x

x
x

x

x

  
 

illustrates the interaction effect of A and B on y for the experiment of Example 7.   

Figure 3 shows that the effect of B at the low level of A (A = 120 lb/in2 ) is almost 

completely linear, while the impact of B at A2 (A = 150) is positively quadratic (or 

convex upward).  Therefore, A and B interact in affecting the response variable y.  

 

 Exercise 9.   Work Exercise 4.3 on page 34 of your manual.  Use Minitab to 

verify your answers.  In your ANOVA table put one * on effects that are significant at 

the 10% level, ** on effects that are significant at 5%, and place three *** on effects that 

are statistically significant at the 1%  level. 

 

 

B 

y.j. 

The effect of B 
on y at  A2 

The effect of  
B on y at A1 

Figure 3 


