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D. C. Montgomery (2009) provides a good description of Response Surface
Methodology (RSM) on pp. 417-434 with a very good practical Example 11.1 on p. 420. You
should carefully study pp. 417-434 of Montgomery’s 7™ edition (pp. 408-422 of the 6" edition),

where below | will provide detailed explanations of what may be difficult to comprehend.

The Path of Steepest Ascent (POSA)

For the Example 11.1, where the objective is to maximize the response, a 1%*-order

approximation to the true response surface (RS) n = f(x1, x2) at the design center (§; =35
Minutes, &, =155 °F) was 1% obtained to be § = 40.4444 + 0.775x: + 0.325x,, which describes

a plane in D-3. Note that the coded design variables x1 and x; are related to the natural

variables reaction time and temperature through the linear transformation x; = (&; —35)/5 and
X2= (§2—155)/5. These last 2 transformations imply that the half-design spacing for both Time

and Temperature were 5 units. The coefficients of the regression model § = 40.4444 +

0.775x1 + 0.325x, were obtained from § = C(X'Y), where the matrix C = xx)"=(x"x)™" _

1/9 0 0 364
0 174 0 |and XY=X"Y=[3.10]. Itis paramount to realize that we are
0 0 1/4 1.30

assuming the experimenter is far from the optimum region, and therefore the true RS, 1, can
be well approximated by a plane (or 1%t-order model) in 3 dimensional space. This further
implies that a 2-level design can be used to estimate the slopes in the x1 and x; directions. A
contour of a surface is defined as those pairs of (x1, x2) values for which the model 3\/ has the
same constant value ¢, i.e., the equation

C = 40.4444 + 0.775x1 + 0.325x,
is a contour of the surface § = 40.4444 +0.775x1 + 0.325x; for any fixed specified constant c.
For example, for the constant c = 45% yield, we have the contour

45% = 40.4444 + 0.775x1 + 0.325x,. (30)



35
However, Eq. (30) simply represents the line x; =14.0171 — 2.38462x; in D-2 with slope

—0.775/0.325 = — 2.38462 and ordinate-intercept equal to 14.0171. Further, if we increase yield
to ¢ = 50%, we will obtain another contour with the same slope —0.775/0.325 but intercept at

29.40171. In other words, all the contours of the response surface § = 40.4444 +0.775x; +

0.325x; are parallel lines with slope equal to —0.775/0.325. The path of steepest ascent is along
the line that is perpendicular to all the contours. Since this perpendicular line (i.e., the path of
steepest ascent, denoted POSA) has a slope that is the negative reciprocal of the contours c =
40.4444 + 0.775x1 + 0.325x,, then the slope of the POSA is equal to 0.325/0.775. This clearly
shows that in order to move in the direction of the POSA for every 0.775 unit increase in the x;-
direction we must increase the design variable x; in the amount of 0.325 unit. For example, if
the increase in the x; direction is Ax; = 3, then Ax, = (0.325/0.775)x3 = 1.258067, i.e., if we
increase the natural variable &; from 35 minutes to 50 minutes of reaction time, then the
natural variable &, has to change from 155°F to 161.29033; then we are indeed moving the DC
(Design Center) in the direction of the POSA. Note that this is consistent with Table 11.3 on
page 423 of Montgomery (7e). In casey is an smaller-the-better type response, then the
experimenter has to move the DC in the direction of path of steepest descent (POSD).

On the other hand, suppose our objective is to minimize the response y, for example,
the porosity in aluminum die castings would be a measure that has to be minimized.
However, we do not have information about the exact shape of the response surface, but we
have determined that two process parameters x1 = Die Temperature, and x; = “Multiplied
Pressure at Stage 3” have a significant impact on the response y, i.e., the mean of the

response surface (RS) may be some quadratic function of x1 and x; as shown below.
Nn(xs, X2) = E(y) = Bo + Brxe + Baxa + P1r X + P22 X5 + Praxaxa (31)
If the coefficients in the above quadratic form were known, then we could attempt to obtain
the (relative) minimum point, Xo = [Xf X(z)]T = [Xf X(z)]' that minimizes the response
surface given in equation (31). Such a procedure would consist of the following steps:
(1) Set all the first partial derivatives equal to zero, i.e., require that jx—n =0,i=1,2,3, ..k
i

where for the RS in Eq. (31) the value of k = 2. Then solve the above system of k equations
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with k unknowns simultaneously for the stationary (critical, or optimal) point Xs = X, = [Xf

0 04
Xy o X

(2) Then obtain mixed-partials 1 = foralli,j=1, 2, ..., k. Our objective here is to

OX0X ;
ascertain whether the RS has a point of relative (or) local minimum, maximum, or a saddle

2

0
point (i.e., minimax). Then evaluate the values of n;j = N

OX;0X ;

atx5=[x? X(z) Xﬁ]’.

(3) If the value of i = —2 atXs>0foralli=1,2, .., k, and the corresponding (n;i X, )

aXi

8211
8Xian

x(Njj X, ) > ( X, )2 fori#j, then these conditions are sufficient to guarantee that Xs

0
is at least a relative (or local) point of minimum. If the value of n;i = —121 atXs<Oforalli=1,

o2
., k, and the corresponding (n..‘ )><(n”‘X ) > (—n

)2 fori#j, then Xs is a local
OX; 8X

)X (

point of maximum.

O <G

X )2 for anyi=#j, then xs is a saddle
S

)X (

point (or a minimax) . X )2, then further investigation is
S

_(_ 9
s)—(aXaX

necessary. As examples, you can easily verify that the three response functions n(xi, x2) =

x12 +x§, 1- X12 - x%, and xixz have global minimum, maximum, and saddle point at the
origin Xs=[0 0], respectively. The surfaces X12 X% and 1 _X12 X% have the origin as their

2 2 2
gm 9 and o

1, all
oxi  ox3 OX;0X j

0
critical point (because gn =0fori=1, 2 at the origin), but

i

vanish at the origin. However, upon further inspection it is obvious that the latter two
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response functions have a global minimum and maximum at the origin, respectively.

In practice, the coefficients B; and [3; of the RS (31) are unknown and have to be
estimated, but if the experimenter is running the process far from the optimal point xs = Xo,
then it is nearly impossible to obtain accurate estimates of 3j and Bj;, and it is advisable to
move closer to Xs = Xo in the direction of POSD (or POSA when maximizing y) before fitting a

2" order model using regression analysis. In order to move the DC most rapidly toward the
point of minimum, the experimenter has to determine the path of steepest descent (or ascent

if y is an LTB type response). This will require fitting a 1*-order model in some region of the
factor space far away from xo. Just as an example, suppose we use MLREG and obtain the
fitted plane §=21-2 X, T3x, atthe design center (0, 0). If this were a maximization

problem, then the path of steepest ascent would consist of decreasing x1, say by one unit, but
increasing x; by 1.5 units. That is to say, our next design center would be at (— 1, 1.5).
However, if we are minimizing the response, such as y = Porosity, then the path of steepest
descent is to increase x1 by 1 unit but decrease x, by 1.5 units, i.e., our next design center for

the minimization problem would be at (1, —1.5).

The ANOVA Table 11.2 on Page 422 of Montgomery’s 7" Edition (p. 410 of
the 6 Edition)
Since this ANOVA table includes both the pure quadratic terms x7, x3, and the
interaction term x12 = x1x, then its corresponding 2"%-order regression model is given by
y = Bo+ Pix1 + Pax2 + P11 xl2 + B2 x% + Braxaxz +€
The design matrix X for the above model that pertains to Table 11.1 on page 421 of

Montgomery (p. 409 of 6e) is given on the next page.

Note that this design matrix X has 4 factorial and 5 center points so that using

Montgomery’s notation ns =4, nc =5 and n = 9; thus X is a 9x6 matrix. Further, columns x12
and x% are identical implying that these two effects are hopelessly and completely aliased, and

hence the rank of matrix X, R(X), is not 6 but its rank is R(X) = 5. Therefore, attempts at
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inverting the 6x6 matrix (X’X) will prove to be futile because its determinant is zero.

Consequently, we redefine the design matrix X consisting of only 5 independent columns as

follows:
Xo X1 X2 Xl X% X1X2 Xo X1 X2 X12=X§ X1X2
1 -1 -1 1 1 1] 39.3 1 -1 -1 1 1]
-1 111 -1 40.0 T R T B
1 1 -1 1 1 -1 40.9 11 -1 1 -1
11 1 1 1 1 41.5 11 1 1 1
X={1 0 o0 0 0 ol , Y= [403 X={1 0 o 0 0
1 0 0 0 © 0 405 1 0 0 0 0
1 0 0 0 0 0 407 10 0 0 0
1 0 0 0 0 0 402 1 0 0 0 0
1 0 0 0 0 0 40,6 10 o0 0 0]
Column 4 of the above Design-matrix, X, now
represents the joint effect of x7 and x3
[ 364 ]
3.10
and X'Y=| 130 |. These lead to the regression model (using the IM = X'X given below)
161.700
| —0.100 |
§=40.46 + 0.775 x1 + 0.325 x, — 0.0350x% — 0.0250x1X,. (32a)
(900 4 0] Note that the exact definition of the information
0400 0 matrix, IM, is the [COV(B )]t = (X'X)/ o> if the
IM=X'X=XX=10 0400 vectorB were the MLEs and n were very large.
40040 However, the LSQESTSs in regression are also the
100 00 4] MLEs. Thus, | am taking the liberty to refer to the

’ . .
T020 0 0 -020 0 ] X’'X matrix on the LHS as the IM for convenience.

0 025 O 0

0 The inverse, C, of this oblique IIM matrix is also
C=(XX)t=| o 0 025 0 0
0
2

given on the bottom LHS .

-02 0 0 045
0 o0 0 0 025

38



39

Further, the information matrix, IIM, given above is not diagonal implying that the design matrix

Xis not orthogonal. This is due to the fact that the X12 =X% =x? column of X is not orthogonal

to the xo column. Therefore, | will make a simple (linear) transformation in X to attain

orthogonality. The revised orthogonal design matrix X, denoted X,, is given below.

Xo X1 X2 Xx*—4/9 X1X2

1 -1 -1 5/9 1]
1 =1 1 5/9 -1 The design matrix, Xo, on the LHS is the
1 -l 579 -1 orthogonal representation of the design
1 1 1 5/9 1
matrix. The orthogonal (diagonal) IM is now
Xo=1|1 0 0 -4/9 01,
1 0 0 -4/9 0 given below. Note that every column of Xo
1 0 0 —4/9 0 is a contrast and any 2 columns are
1 0 0 -—4/9 0 _ . _
orthogonal, i.e., their dot product vanishes.
10 0 -4/9 0]

9 00 0 0] [1/9 0 0 0 0]
0 4 0 0 0 0 025 0 0 0
IMo= (XIX,)={0 0 4 0 0|5 Co=(IMo)t=|0 0 025 o0 0
0 0 0 20/9 0 0 0 0 045 0
0 0 0 0 4 10 0 0 0 0.25 |
364 [ 364/9 ]
3.10 n 3.10/4
X'OY = 130 |—> B =Co><(X'O Y)=| 1.30/4 |. Therefore, the orthogonal
~0.07778 —0.035
| -0.100 | | —0.10/4 |
representation of the regression model is given by:
9 = 40.4444 +0.775x1 + 0.325x, — 0.0350(x2 — 4/9) — 0.0250x1x, (32b)

where x? simultaneously represents the effect x12 +x%. In order to compute the net (or

partial) contribution of each regressor to the overall SSreg, we need to compute Siy, Say, S11y =

S22y and S1zy. Below, | will compute one of these and you should verify the values of the rest.
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9
OxHCy)

, 4% 364
Si1y = Sz2y =161.7 — =1 -

=161.7 - = —0.07777778. Similarly, Sz, = 3.10, Syy =
9

1.30, and S12y = — 0.100. Therefore, SSpec = 0.775x3.10 + 0.325%1.3 — 0.035x% (-0.077777 ) —
0.025%(—0.10) = 2.830222. Note that the regression model in (32a) and its orthogonal

representation (32b) have identical ﬁj , and therefore, SSgres(x1, X2) =0.775%3.10 + 0.325%x1.3 =

2.8250 (with 2 df), which is identical to the SS(due to linear effects) given by Montgomery in
the first line of ANOVA Table 11.2 at the bottom of page 422. Since SSt = SSrotal= USS — CF =
14724.7800 — 14721.77777 =3.0022222 (with 8 df), then for the linear model of Eq. (30),
SSres = SSt— SSrea(x1, X2) = 3.0022222 — 2.8250 = 0.177222. In order to test for LOF, we need to
15t compute the SS(PE=Pure Error) from replications at the design center. SS(PE) =0.3%+0.52 +
0.72+0.2%2 + 0.62 —2.3%2/5=0.1720 (with 4 df). Hence, SS(LOF) =0.17722222 —0.1720000 =
0.00522222. For your benefit, below | am providing the ANOVA Table that is more expanded

than Table 11.2 on page 422 of Montgomery (p. 410 of 6e) when fitting a 15*-order model.

Augmented Table 11.2 of Montgomery

Source df SS MS Fo P-value
Total 8 3.00222222 p
1st-order 2 2.8250 1.4125 47.82132 0.0002057
Model
Residuals 6 0.17722222 0.029537
Pure Error 4 0.17200 0.0430
LOF (= x12, X?) 2 0.00522222 0.0026111 0.060724 0.9419342

Montgomery further divides the 2-df LOF SS into 2 orthogonal components due to

x12+x§ <> x? (Pure Quadratic), and due to the interaction term xix,. To confirm his results, we

(—0.035)° )

use results from regression and proceed as follows: 8121 = [3121 / Caa= 9720

0.002722222 = —0.035%(— 0.0777778) = [311 x S11y, Which is identical to the SS(Pure Quadratic)
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given at the bottom of page 422. We may also re-compute this SS(Pure Quadratic) using the
fact the Xo matrix on page 40 of these notes clearly shows that the X12 —-4/9= x% -4/9 =

x>—4/9 column is indeed a contrast and therefore SS(x?) is given by

(5xy; —4xy.)’  (5x161.7-4x202.3)"
4%5% +5%(—4)° 452 +5% (—4)°

SScontrast = =0.002722222,

where by yr. we mean the sum of responses at the factorial portion of the design and v..
represents the subtotal at the center. Finally, the xi1x2 column in the Xo matrix on page 40 of
these notes shows that this column is also a contrast and thus SS(Interaction) = SS(x1xz2) =

SS(x12) = (39.3 — 40.0 — 40.9 + 41.5 + 0)%/4 = 0.0025. Note that due to orthogonality, SS(x?) +
SS(x1x2) = 0.00522222 = SS(LOF). Further, the LOF test in the ANOVA table on the previous

page reflects the contributions of the quadratic terms, and as long as these quadratic
contributions remain trivial, then we are far from the optimum region.

Before leaving 15*-order experimentation, we must assert that because the information

2

4 20325 -0.035)°  (=0.025)°
matrix, IMo, is orthogonal, then ZS? = 0.775 + + ( ) + ( ) =
= 0.25 0.25 0.45 0.25

2.830222222 = SSgec = SS(Model), as was computed on page 41 of my notes. If a design matrix

is oblique (i.e., not orthogonal) and cannot be orthogonalized by a linear transformation, then

k
most likely ZS? < SSgec.
i=l

NALYSIS OF SECOND ORDER SURFACE (Section 11.3 of Montgomery)

Consider the response surfacey =n + €, where n = E(y) and € ~ N(O, (Si ), givenin Eq.

(11.4) near the bottom of page 425 (p. 413 of Montgomery’s 6" edition). In order to

comprehend axes translation followed by axes rotation, it will be easiest if we work with the
specific response surface 1 = E(y) =8 — 18x1 + 18x, + 5 Xf +5 Xi — 8x1x2. Then, for our example

the parameter values are Bo=38, f1=—18, B2=18, P11 =22 =5, and the interaction

coefficient 12 = —8. Recall what we mean by the contours of a surface! These are the points

41



42

at which the surface n has the same constant value, say specifically n = 10 = ¢ (note that |
could have selected any other feasible constant value). Further, the graph of n versus the
independent variables x1 and x, will be in 3-D, while the graph of the contour 8 — 18x; + 18x, +
5 X12 +5 x%— 8 x1x2 = 10 will be in 2-D. The obvious question that now arises ‘is this last
contour, with n = ¢ =10, an ellipse, a hyperbola, or just a straight line?’

To answer the above question, we must 1% determine the optimum nature of the
surface n by obtaining its stationary point xo. Note that Montgomery uses xs for the location of
the stationary point, but | prefer the subscript o (or O) to s (o = optimal; further, o is perhaps
more universal than s). | will go thru the procedure W/O explanation as the optimization

process by now should be self-explanatory.

0 0
A =—18 +10x; — 8%z, and A 18 + 10x2 — 8x1 .

aX] aXZ
In order to find X, (assuming it exists), we must require that the above two partial derivatives
to be zero at the optimum vector x,. This leads to a heterogeneous system of 2 equations with

2 unknowns shown below.
{ 10x, —8x,= 18

. To determine whether x, is a point of minimum
-8x,+10x,=-18

response, maximum response, or a saddle point (or minimax), we must examine the
Gzn/axiéxj, i,j=1,2atxo. Since both 0°n/0x; =10, 0°n/0x; =10 >0and 0°n/dx0x, =

—8, showing that (9°n/8x; )x(8°1/0x3) = 100 > (0°1/ &x,X, )? = ( — 8)?, then X, is a point of

minimum response and 1 is said to be strictly convex. Below, | will again summarize the

sufficient conditions for all types of optimality: (1) Point of (local) minimum response: g =0

forall i, 62n/8xi2> 0 for all i, and (8211 / 8X12 )x(&zn / 5X?) > (8211 / 8Xi(9xj )% for alli#j
all evaluated at x,.

0
(2) Point of (local) maximum response: a 0 for all i, 62n/6xi2 <0 foralli, and

0X;

(8211 / 8X12 )x(&zn / 8x?) > (8211 / 8Xi(9xj )? for i #j all evaluated at x, and then 1) is called a
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strictly concave surface.

(3) A saddle point : el =0 for all i at xo, but [(5211 / 8X12 )x(82n / 8XJ2 )]X0 <

OX;

[ 8211 / Gxiﬁxj )?] Xq for at least one i #j.

If ( 8211 / 8X12 )x(azn / 5X?) = (8211 / Gxiﬁxj )2, i#]j, at Xo, it will not be clear as to what type of

optimum (if any) the surface n has at the exceptional point x, and further investigation is
necessary. It is sometimes possible that no assessment can be made about the optimal nature
of the RS (response surface). Note that a function is strictly convex (concave) iff the minimum

(maximum) on any interval occurs at one of the end points.

Exercise 12. Identify the stationary points and their nature for the following 6

surfaces. (a)n=1-x; — x5, (b) N=x; + x3, (c) n=x1%2, (d)n=1-x7x3, (€) N=x;x3,

and (f) n=x7x3.

Because our example surface 1 = 8 — 18xs + 18x, + 5x; +5x5 — 8x1x, meets the criterion

X1
(1) above, xo =
Xz =

1
J is a point of minimum response. To determine the global minimum
value of the response, we simply insert X, into the surface above 1 to obtain N, =8 -18-18 +5
+5+ 8 =-10. Therefore, for our surface example, a contour of n =—11.5 does not exist
X
becausen =8 —-18x1+ 18 x2 +5 X12 +5 x% —8x1x2 = —10 =, for all vectors x = { 1 } in the
X
universe of 2-D. Note that for a surface whose exceptional point is one of minimum response,
the objective will be to move in the direction of the path of steepest descent (not ascent).

Our next objective is to translate the (x1, x2) axes with origin at (0, 0) to a new set

of (X1, X2) axes whose origin is at Xo. This translation will eliminate the two linear terms in our
2"d-order surface 1| = 8 — 18x1 + 18x2 + 5 x; +5x5 — 8x1x2. Accordingly, we make the

transformation X1 =x1—1and X2 =x, + 1 and substitute these into the surface equation n. In

x; —1
matrix notation we have X =x— X, = { : } . This eliminates the linear terms and reduces n

X, +1
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to: n=-10+ 5X12 +5X5 — 8XiXa. (33)

Note that partial differentiation of equation (33) wrt X1 = x1—1 and X, = xo+1 verifies the fact
that in the translated coordinate system the optimal occurs at Xo = [0 0]’, and this in turn
implies that a translation of axes to the point of optimum removes the linear terms from the
model. Since the nature of a surface of the type (34) given below
n=n0+K11wf+Kzzw§=no+K1wf+kzw§ (34)

is well known, our next objective is to rotate the (X1, X2) axes of the model (33) thru an angle 0
into a (w1, w2 ) axes to force its interaction term , which is equal to — 8X1X;, to zero. The
equation of the RS in the rotated axis is given in Eq. (34). | will show the exact geometry in
class that leads to the following orthogonal transformation.

X; = wiCos6 —w, Sin6
{XZ = w;Sin 6 + w,Cos0

. In matrix form this transformation can be written as X =

X Cos® —Sin6 W,
MW, where X = , M= ) , W= , and M is called the rotation
X, Sin6 Cos6 W,

matrix.

Definition. A square matrix, B, is orthogonal iff B2 = BT = B’, i.e., a matrix is
orthogonal iff its inverse is equal to its transpose.

Exercise 13. (a) Show that the above rotation matrix M is indeed orthogonal. (b)
Substitute the transformation X = MW into equation (33) and equate this to Eq. (34) in order

to determine the angle of rotation 6 such that the interaction term Ai2wiw; = 0, and as a result
show that our response surface equation reduceston =-10+9 W12 + wg =MNo+9 W12 + wi .
Note that the value of no = —10 stays in tact after the rotation of axes. (c) For the general

surface N =No + P11 Xl2 + B2 X; + B12X1X2 show that the coefficient of wiw; is equal to A1z =

[(B22 — B11)Sin(20) + B12Cos(20)]/2, and hence the angle of rotation, 0, must satisfy the

equation

Tan(20) = L. (35)
11 _BZZ
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Note that A1 and A, should be selected such that the corresponding eigenvectors M;

Cos6 —Sin0
and Mz result in the rotation matrix M = [My M:]=| .
Sin6 Cos6

In your development in part (c) of Exercise 13 you will also observe that Ai1 =41 =

By +Byy )+ Byq cos(20) —2[322 c0s(20) +f;, sin(20) cand Az =

B11Cos?(0) + B22Sin%(0)+ B12Cos(0) Sin(0) =

_ (By7 +B2z)—Byq cos(20)+ By, cos(20)—P;, sin(26)

A22 = P11 Sin%(0) + B22 Cos?(0) — B12Cos(0)Sin(6) :

where Sin(20) = B, /\/(B11 —522)2 + Blzz and | have made use of the trigonometric identities

1+ cos(20) 1—cos(20)

cos?(0) = and sin?(0) = #; further for your info, Sin(01+0,) =

Sin(01)Cos(02) + Cos(01)Sin(02), and Cos(01+6,) = Cos(01)Cos(62) — Sin(01)Sin(O2).

To determine what type of contours the surface “n —no=A1w; +A2w3” has, or what

curve the contour Ay w; + A, w3 =1 — 1o = Co represents, we need to examine the product Ai\..

Exercise 13(d). Use your results from part (c) to prove that Aidz = B11B22 — ( P12)? /4.

There are 3 possibilities for the product A1k, = det(B) = B11 P22 — (B12)%/4:
(i) det(B)=2A1A2>0, (ii) A1A2=0, (iii) A1A2<0.

The Case of det(B) = A2 = B1af22 — (B12)?/4>0

Clearly in this case A1 and A, must have the same signs. If Co has the opposite sign to
those of Ai’s, then such contours of 1 do not exist. On the other hand, if Co has the same sign
as those of A/’s, then the contours of 1 =10+ A1 W + A, w3 = C represent ellipses centered
around Xo.
The Case of det(B) = AMA2 = B1if2z — (B12)>/4=0

This case occurs iff either A1=0 or A,=0. Then the contours of n are simply parallel

straight lines and this case generates the ridge system, described by Montgomery on p. 434

(pp. 422-423 of the 6™ edition).
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The Case of det(B) = MA2 = B1if22 — (B12)*/4<0

The coefficients A1 and A; must have opposite signs. If Co # 0, then the contours A; W12

+\ wé = Co represent hyperbolas. If Co has the same sign as A1, the symmetry axis of the

hyperbolas coincides with w1, and vice a versa for w,. If Co =0, then there are only 2 contour

lines going thru the translated origin Xo.

TRANSLATION AND ROTATION OF AXES USING MATRIX ALGEBRA
Consider the following full quadratic fitted regression model for 3 independent
. 3 3, 2 R
variables: y=B, + z Bx; + Z Bix; + > > Bixix;, (36)
i=1 i=1 =1 i
where for simplicity and specificity | am letting k = 3 independent variables; this is unlike

Montgomery’s Model (11.4) on page 425 (p. 413 of the 6" edition) which is for general k. We

first write model (36) in matrix formas y= Bo + x'ﬁ +x'Bx, (37)
X, Bl Pii Pip /2 Pis/2
where the vectorx=|x, |, B = [32 , and the 3x3 matrix B = Blz /2 Bzz B23 /2
X3 Ps Bis/2  PBy/2 Bss

To fully understand the relationship between (36) and (37), you should take a few minutes to
insert the definitions of vector X and matrix B into (37) and show that Eqg. (37) indeed reduces
to (36). Further, you should note that all 3 terms on the RHS of (37) are indeed scalars.

Exercise 14. (a) Use partial differentiation with respect to x; (i = 1, 2, 3) to show that

the optimal solution of model (36) is given by the vector x, = —(B‘IB )/2. (b) Verify the result
of part (a) by vector partial differentiation of equation (37). (c) Use the results of part (b) to
show that the optimal value of 9 is given by 90 = ﬁ0+ x;,fi/2. Note that the Trace(B) =

k k

ZXJ- and the det(B) = ij , Where it can be shown that A’s are the eigenvalues (or

j=1 j=1

characteristic roots) of the symmetric matrix B.
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1. TRANSLATION OF AXES TO x,

We 1t translate the coordinates x’ = [ x3 X2 x3] to X=X—Xo, where xo =
1 1A - . .
_EB 1[3 is the stationary (or exceptional ) point at which y is optimized and clearly X is also

a kx1 vector (k = 3 for our example). Next, it is necessary to express ¥ in (37) in terms of the

translated coordinates X, and thus we substitute x = X + xo into the vector equation (37). This

will, after 6 algebraic steps, result in
A N 1 AI ' A ’
y=B0+5B X,+X'BX =y + X'BX (38)

Exercise (14d). Derive equation (38) according to my statement in the above

paragraph.

Equation (38) clearly shows that if Y is an STB QCH (i.e., Xo is a point of minimum
response), then for certain X'BX > 0, i.e., the quadratic form X'BX is positive definite. On the
other hand, if Y is an LTB type QCH (i.e., X, is a point of maximum response), then for certain
X'BX <0, i.e., the quadratic form X'BX is negative definite. If xois a saddle point (i.e., neither
a point of minimum or maximum response), then the quadratic form X'BX is indefinite. An
indefinite quadratic form can become positive for some vectors, X, and negative for others,
i.e., —o<X'BX <oo. Further, regardless of the nature of y, the critical value of y occurs at Xo
=[0 0 0]'. Put differently, the origin of the coordinate system (X1, X2, X3) is now at

the stationary point xo, while that of (x1, x2, x3) is at (0, 0, 0).

1 1A
Exercise 14(e). Substitute X, = _EB IB in (38) to verify that X'BX must equal to zero

at Xo, which again verifies that the optimum response occurs at Xo = [0 0 0]'.

Now, consider a contour of ¥ ; recall that all the values of ¥ on a contour are equal to
the same constant, say c. Then, equation (38) shows that on this contour c = §/0 +X'BX .
Since c and 3\/0 are both constants, then the functional form of any contour is given by
X'BX=c- 9, =Co (39)

where Cp=c— 90 is also a constant. Equation (39) is called a quadratic form because its LHS
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contains only terms of the type Xiz (i=1,2,3)and XX (i #]). Our next objective is to rotate

the coordinates (X1, X2, X3) in such a manner that the quadratic form in (39) has no cross-

product terms Binin (i=#j). Thatis, we rotate the (X1, X2, X3) axes such that the quadratic

3
form X'BX transforms to the pure quadratic form Z Kiwf in the (w1, w2, ws) coordinate
i=1

system. Then in the rotated coordinates, from equation (38) our model becomes

3

~ A 2

V=90t 2 MW (40a)
i-1

2. ROTATION OF AXES to Pure Quadratic Forms

Since the nature of contours of the following pure quadratic form
2
> AW =G (40b)

having no interaction terms, is well known, then our objective is to rotate X into W such that
the rotated quadratic form has no cross-product terms Ajwiw; and is as a result diagonalized.
Accordingly, let M be a 3x3 rotation matrix such that MxW = X, (or W = M~1X ), where
my, My My
M=|m,  m,, m, |.ltturnsoutthatthe rotation matrix M has to be an orthogonal
My Mz My
matrix because otherwise the rotation will not accomplish the task of reducing the original
guadratic form (38) to a diagonal form. Substituting MxW for X into equation (39) results in
(MxW)B(MW) =Co —  W/(M’BM)W = WT(M'BM)W = Cp (41)

In order to compare Eq. (41) with equation (40b), we write (40b) in matrix form:

\ A 0 0 W,
Co=Y Awi=[wi w2 ws]|0 &, O [[w,|=WAW (42)
- 0 0 %yl ws

where A is a 3x3 diagonal matrix. Comparing (41) with (42), we deduce that W'(M'BM)W

must equal to WTAW, and hence M'BM =A (43)
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Eqg. (43) shows that in matrix operations, the problem of axis rotation such that the interaction
terms Ajjwiw; (i # j) vanish becomes one of choosing the 3x3 (in general, kxk) rotation matrix M
in such a manner that MTBM becomes a diagonal matrix A. This will require that M to be an
orthogonal matrix, i.e., M must be constructed in such a manner that M~ = M’ = M7, or MxM’
= Ik, where k = 3 for our example. Therefore, to put Eq. (11.5) on page 426 (415 of 6e) of
Montgomery in the rotated form (11.9) on his p. 428 (416 of 6e), we must find an orthogonal
kxk matrix such that

M'BM =M'BM =MBM=A — BM=MA (44)

Letting M=[M1 M, M;s], where Mj's are the 3x1 vectors near the bottom of page 49,

we can rewrite equation (44) as BM = B[M; M; M;s] = [BM, BM; BMs] =
% 0 0
=MA=[M; M; Ms]|0 Ay 0 |=[MM1 XoM2 Ah3Ms] (45)
0 0 2,

Egs. (44) and (45) show that M’BM becomes the diagonal matrix A iff we select A's and My’s
in such a manner that
BM;=AM; forallj=1,2,3, ..,k (46)
Equations of the form in (46) are called eigenvalue (or characteristic) equations; A1, A2, A3, ...
are called the eigenvalues of the matrix B, and M; (j =1, 2, 3, ...) are called its eigenvectors. To
obtain the solutions M;, we rewrite Eq. (46) as
BM;—AM;j=0 — (B —All)M;=0 (47)
Since My’s cannot equal to the zero vector, then we must require that (B — Ajlk)M; = 0;
but this is a homogeneous system of k = 3 equations with k = 3 unknowns mjy;, my;, and ms;.
The homogeneous system of equations in (47) has a nontrivial (i.e., Mj not equal to the zero
vector) iff the determinant of the coefficients, det(B — Ajl«), is zero. Therefore, in order to
obtain the eigenvectors M;, we must 1% solve for A;’s from
|B — Al =det(B — A1) =0
and then use Eq. (47) to obtain the eigenvectors M; of B. It is necessary that these
eigenvectors to be of unit length and perpendicular to each other so that the rotation matrix

M=[M; M; Ms] becomes orthogonal. To illustrate the above concepts, | will go thru
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the detailed explanation of Montgomery’s Example 11.2 on his pp. 428-434 (pp. 416-422 of the

6t edition).
From the computer output on page 431 (p. 419 of the 6™ edition), we have:

For our surface example }Af: 79.940 +0.994975x1 + 0.515165x%, — 1.37625 X12 —1.00125 x% +

B, 0.25

= =—2/3 520=
B, =B, —1.37625+1.00125

0.2500x1x2 and hence Tan(20) =

— 0.5880026044 Radians —0 = —0.294001302 Rad = —16.845033763 degrees. For the above

A 0.994975 -1.37625 0.1250
model, B = , X=[x1 x2]’,and B= ,
0.515165 0.1250 -1.00125
-0.734946 -0.09175354
and B! = . Further, Matlab computations give xo =
-0.09175354  -1.0102064

_ B_IB/Z =

A 0.3892604
0.3058577

} and 90 =80.21244. This last optima can also be obtained thru

direct partial differentiation of §1 with respect to x1 and x2 and requiring that both partial

derivatives to be zero. Recall that our 1% task is to translate the (x1, x2) coordinate system to

0.3892604

X
. This is done thru the translation X = P lax— Xo
0.3058577 X,

the new origin at xo ={

{xl ~ 0.3892604

. Note that the optimal value of y in the translated coordinate system now
x, —0.3058577

X, =0

occurs at Xo =
,=0

} . So, in the new coordinate system the above model can be written as

¥=80.21244 137625 X; —1.00125X; +0.25X:X2 = ¥, + X'BX. However, this last model in

(X1, X2) coordinates has the interaction term 0.25X1X>, and the only transformation that

removes this cross-product term is a rotation of the coordinate system (X1, Xz) into the (w1, w3)
coordinates that will yield }7 = glo + A1 le + A2 Wi . This task is accomplished by the rotation

matrix M thru the transformation X = MW. As shown on pages 49-51 of these notes, we must
1%t obtain the eigenvalues of the matrix B by requiring that the det(B — Al2) = 0, i.e., we must

require that we solve the following characteristic equation for A.
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-1.37625-\ 0.125

0.1250 —-1.00125 0 X 0.125 ~1.00125-2|

-1.37625  0.1250 A0
‘B —Mk|= | - | =

(1.37625 + 1)(1.00125 +A) — 0.015625 = A2 + 2.3775 1 + 1.36234531 =0 —
A1 =-1.41409696, and A, = —0.96340305. | checked these eigenvalues with Matlab function
eig(B), and Matlab gave A1 =-1.4140969547 and A, = —0.9634030453.

To obtain the eigenvector M1, we have to insert A1 = —-1.4140970 (6 decimal accuracy)

into equation (47) and solve the resulting homogeneous system of 2 equations with 2

-1.37625 0.1250 —1.414097 0 m,,
unknowns, i.e., (B — A1 lx)Mq = ( — )
0.1250 —1.00125 0 —1.414097 m

21

0.037847 0.1250 m
X
0.1250 0.412847

! :| . The resulting homogeneous system is
m
21

0.037847m;, + 0.1250m,,=0
. Note that if the determinant of this system were not

0.1250 m,, + 0.412847m,,=0
equal to zero, then the 2 equations would be inconsistent and there would be only a trivial
solution m11=m31=0. However, recall that we computed both A1 and A; in such a manner

0.037847 0.1250

that would force the determinant of (B — A1 lk) =
0.1250 0.412847

} equal to zero. This

is why A1 and A, are called the characteristic roots of B. Therefore, there are infinite number
of solutions to the above system of 2 equations with 2 unknowns. Clearly, the 1°t equation

. 0.1250 . —
requires that we select mi1 = ——— xmjy1. Now given a value of my1, then we will find

0.037847
the corresponding value of mi1. For example, suppose you specify mz1 = -1, then mi1 =
3.3027756. Similarly, using (B — A2lk)M2z = 0 you may verify that for this case the value of mi; =

1 and my, = 3.3027756 will also be a possible solution. Note that the two vectors M; =

3.3027756 ] T T
and Mz = are indeed orthogonal because (M; )xMz2=(M, )xM; =
- 3.3027756
3.3027756 1
0, but the problem with this solution set is the fact that the matrix M = { }
-1 3.3027756
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is not an orthogonal matrix because its transpose given by MT= M’ =

3.3027756 -1
is not equal to its inverse. In fact the inverse of the matrix M =
1 3.3027756
3.3027756 1 0.27735037  —0.08397504
is given by , Which is obviously not
-1 3.3027756 0.08397504 0.27735037

equal to MT = M’. In order to make M an orthogonal rotation matrix, i.e. such that M2 =M" =

M’, we must normalize each of its component M1 and Ma. This implies that both vectors M1

3.3027756

and Mz must be of unit length. Therefore, M1 = { } /\/3.30277562 +(-1)° =

0.957092
—-0.289784

}, which is a unit vector in the w1 direction. Further, the largest eigenvalue in

0.289784

, Which is a
0.957092

absolute value gives the direction of highest variation. Similarly, M, = {

unit vector in the w; direction. Further, note that now the rotation matrix M = [M1 M;] =

0.957092 0.289784
-0.289784 0.957092

} is indeed orthogonal because MxMT =

0.95709203  0.28978415 0.95709203 -0.28978415 1 0 b b
X = = ecause
—-0.28978415  0.95709203 0.28978415 0.95709203 0 ?

M-1=M". | also used the Matlab function [EIGVEC, lamda]= eig(B), which gave the results

{ 0.9570920265 0.2897841487} [—1.4140969547 0 }
EIGVEC = ) - .

—0.2897841487  0.9570920265 0 —0.9634030453
Note that these eigenvalues and eigenvectors do not completely agree with those of
Montgomery’s on page 432 (pp. 420-422 of the 6™ edition). Although, it is somewhat arbitrary

as to which eigenvalue and eigenvector we designate as 1 and 2, | have intentionally selected

Cos6 —Sin 9}

A1 =-1.4140969547 such that the resulting rotation matrixM=|
Sin6  Cos0

0.95709203  0.28978415
—-0.28978415  0.95709203

] where 6 =-16.845033763 degrees. Then, according to my

above designated results the relationship between the two coordinates (w1, wz) and (x1, x2) is
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W=MIX=Mx—-x0) =

[0.95709203  —0.28978415 ][ x, — 0.3892604 we | W
or W=
0.28978415 0.95709203 || x, —0.3058577 |

[0.95709203  —0.28978415 ][ x, — 0.3892604 |

. Therefore, the relationship between the
| 0.28978415 0.95709203 | | x, —0.3058577 |

(w1, w2) and (x1, x2) coordinates are w1 = 0.95709203x1 — 0.28978415x; — 0.28392527, and w:
=0.28978415x; — 0.95709203x; — 0.40553550.

To check on the validity of these 2 last relationships, suppose we wish to calculate the

response at (x1 = 2, X2 = 1). Substituting x1 =2 and x; = 1 into the model §l= 79.940 +

0.994975x;1 + 0.515165x; — 1.37625 X12 —1.00125 x% + 0.2500x1x, yields §1(2, 1) =

76.43886454%. At (x1=2,x2=1) the coordinates w1 and w; are w1 = 1.34047462934036 and
wz =1.13112482720609. To determine if in the (w1, w;) coordinates the value of the response

is also equal to 76.43886454%, we use Eq. (40a) to compute:

A

Y =9, +XBX = §_+ (MWYB(MW) = §_+W (MBM)W =§_+WAW

2
A 2 2 2
=Y.+ O AW, =80.2124357 ~1.4140970 W — 0.9634030453 W,

i=1
= 80.2124357 —1.4140970 x1.34047463% — 0.9634030453 x1.131124832
= 76.43886454% (Check!).

L, to obtain the angle of

11 22

Exercise 15. Use Eq. (35), that shows Tan 20 =

rotation for the Example 11.2 of Montgomery. (b) Then, use the equations A1 = B11 Cos? 0 +
B22 Sin2 0 + P12 Cos 0 Sin 0, and A2 = B11 Sin? 6 + P22 Cos? 6 — B12 Cos O Sin O to re-compute the

-1.37625 0.1250

. Determine why Montgomery’s
0.1250 —1.00125

eigenvalues of the matrix B = {

expressions for w; on page 422 will yield almost the same exact answer for }7 at (x1 =2, x2 =1).

(c) Draw the 95% contour of 9 (i.e., 0.95x% 3’0) clearly indicating the two coordinate axes (X,

Xz2) and (w1, wa).

53



54

By now the reader may have diagnosed that the quadratic form X'BX is positive
definite iff all the eigenvalues of B strictly exceed zero, in which case the matrix B is said to be
positive definite. The quadratic form X'BX is negative definite iff all the eigenvalues of B are
negative, in which case B is said to be negative definite. The quadratic form X'BX is said to be
indefinite iff some eigenvalues of B are positive and the rest are negative. Note that for X'BX
to be indefinite, B must have at least one positive eigenvalue and at least one negative

eigenvalue. As long as this last statement is true, then some eigenvalues can be zero. For

Montgomery’s Example 11.2, the quadratic form X'BX =-1.37625 X12 —1.00125 X§ +0.25X1X2
=—1.37625( X12 +0.72752044 X; —0.18165304X1X,) = —1.37625[(X1—0.09082652X,)? +

0.719271 X; ], which shows X'BX < 0 unless both X; & X2 =0, i.e., X'BX is negative definite.

Bonus HW3. Let B be a real symmetric kxk matrix with orthogonal eigenvectors
Mj, My, ..., My, i.e., the rotation matrixM=[M1 Mz ... Mg] with eigenvalues A1, A2,
..., M. Prove that M1 = MT and further all My’s must be of unit length.

Exercise 16. Consider the quadratic response surface y =60 + 28x; —28x3 +5 xf +

6x§ + 7X§ 22 xaxa+ e = N+ €. (a) Determine if the response is one of Min, Max, or

saddle point (or minimax) type and obtain x, and y.. (b) Then obtain its canonical formy =

3
YO+Z7HW12 + € and verify that your answer is indeed correct by computing y at x = [-1 2

i=1

1]7 from both the RS equation and its canonical form. (c) Repeat parts (a) and the 1%t part of
part (b) for the RS n = (165 + 24 \/§)+ (8\/57 —30)x1— (80 + 6\/5 )x2 — 5X12 + 10X§ -

2+/54 x1x2, and draw the contour of this surface whose value is 1 = ¢ = 30.

Summary of RSM

1. In real-life situations, the experimenter has no knowledge (except for either
minimizing or maximizing the response) what type of quadratic surface underlies
the response y in the region of factor space. Assuming that the present DC is far

from optimum, s/he must conduct a 1%-order experiment at the present operating
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conditions of xi, X2, X3,.... If a 1%t-order good fit is not obtained, then the
experimenter must decrease spacing until a good fit is obtained and at least one
linear coefficient (i.e., slope) is statistically significant at the nominal value of 5%. If
the experimenter is very far from the optimum, then a 1%t-order good-fit is possible
but the linear coefficients will not be significant, in which case the experimenter
must increase design spacing in order to obtain a good 1%*-order fit with at least one
significant linear coefficient. If a good-fit and significant slope(s) are obtained, then
the experimenter must move the DC in the direction of the POSA (or POSD). This
procedure should continue until no longer a 1°-order good fit with significant
coefficients can be obtained (or the experimenter can follow the procedure
outlined in Table 11.3 on p. 423 of Montgomery). Bear in mind that near the
optimum region, the slopes in all directions become very small relative to pure
guadratic coefficients.

. Once the experimenter suspects that the last DC is near the optimum region, then a
full quadratic model must be fit with the same design spacing of the last 15*-order
experiment. Assuming that the full quadratic model is a good fit with some
significant quadratic coefficients, then the design spacing must be increased so that
a better picture of the RS is attained.

. Once a 2"-order model with good fit is obtained in Step 2 above, then the

experimenter must proceed to use the procedure that | have outlined on pp. 36-54

of these notes to arrive at the stationary point xs and its optimum value of 90.

Simultaneously Analyzing and then Optimizing Multiple Responses

Reference: (Section 11.3.4 of Montgomery, pp. 435-439)

Many response surface problems involve the simultaneous optimizations of two or

more responses. For example, see table 11.6 of Montgomery atop page 429 (p. 417 of the 6"

edition) where 3 simultaneous responses (y1 = yield, y, = viscosity, and y; = molecular weight)

were measured from each experimental unit at all 4 factorial, 5 center, and 4 axial design

points (N = 13); it will be shown that n. = 8 center points will make the k = 2 CCD 2"-order
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orthogonal. Through RSM the response variable y1 = yield was optimized with optimum value

910 = 80.21244, reaction time at &;, = 86.9463 minutes and temperature at

€70 =176.5293°F, i.e,, E_,O = [86.9463 176.5293]'. This optimal solution would be exactly
correct if the three responses were independent; unfortunately the correlation coefficient ri3 =
0.475201 is significant at the 5.1% level (P-value = 0.050389) and hence it is very doubtful that
y1 and ys are independent. The problem now is how to select the levels of reaction time (&1)
and process temperature (&) as to optimize all 3 QCHs (quality characteristics) simultaneously
when the responses are not independent, where in this experiment y; is LTB with only an LSL,
viscosity is a nominal dimension with specs 6543 poise (or centipoise which denotes Dyne-
seconds/cm?), i.e., 62 < y,< 68 and molecular weight (MOW) is apparently considered an STB
QCH with a single USL = 3400, i.e., 0 < y3 < 3400; | am not sure what the units of MOW is?
Montgomery uses the notation Mn, which could stand for grams/mol but | am not certain? As
the author mentions (see p. 437, p. 424 of the 6™ edition), this multiple response optimization
can now be solved as a constrained optimization problem as follows: Max y1; subject to: 62 <
y2< 68 & 0 < y3<3400. As D. C. Montgomery states the Design-Expert software gives the

optimal solution through a search routine as &;, = 83.5 minutes, &,,=177.1°F, & ¥, =

79.5%; or reaction time &10 = 86.6 minutes, 520 = 172.25°F & and the optimum value of §110

79.5%. Examining the contours of y, & y3 in Figure 11.16 on page 436 of Montgomery (p. 425
of the 6" edition), it is not quite clear what the optimum values of y, & y3 are. Thus, | will use
the regression functions in the middle of page 435 (p. 423 of the 6™ edition) to estimate the

optima ¥,, and ¥3,. At &,=83.5, &,,=177.1, ¥,,=—9030.74 +13.393(83.5) +

97.708(177.1) —0.0275(83.5)2 — 0.26757(177.1)% — 0.05(83.5x177.1) = 68.3577 as opposed to
67.5 from Figure 11.16 neither of which are desirable because the ideal target for viscosity is

65. The value of §130 ~—-6308.8 + 41.025(83.5) + 35.473(177.1) = 3399.0558 barely satisfies
the constraint 0 < y3 < 3400; Figure 11.16 of Montgomery gives roughly 930 =3350. Similarly,
the other stationary point (&, = 86.6, &, =172.25)gives ¥,,=68.39778 >USLand ¥3,=

3354.1893, which is not exactly in the mid range of [3200, 3400]. It seems that y; has been

optimized but y, and y3 barely meet constraints and may not have been optimized. Further, it
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is not clear to this author whether MOW (molecular weight) is an STB QCH or a nominal
dimension. The constraint ys < 3400 on page 437 (p. 424 of the 6™ edition) indicates that y3
may be an STB QCH but Montgomery’s statement in the middle of page 438, 3200 < MOW <
3400, would imply that y3 is a nominal dimension with specs: 3300+£100.

As pointed by Montgomery, in the middle of p. 436 (near the bottom of page 423 of
6e), when there are more than 3 responses to optimize simultaneously, the above procedure
becomes awkward, and it is not clear to this author that the design expert software did find
the best operating conditions of time and temperature for all 3 QCHs. Thus, Derringer and
Suich (JQT, Vol. 12, pp. 214-219; 1980) proposed a desirability function that simultaneously
optimizes several responses whose quality specifications are given.

Their general optimization approach consists of identifying the levels of one or more
factors (or independent variables, or process inputs) that will simultaneously optimize at least
two correlated response variables which are functions of the same (but not necessarily all)
factors. The responses are generally in different units (e.g., % conversion, Ibs, amount of
material removed, psi, out-of-round, etc). Each response is first converted to a unit-less
desirability value using its proper desirability function, d, whose domain is the interval [0, 1],
where 0 implies complete undesirability and 1 implies perfect desirability. We first give the

definitions by Derringer and Suich (1980) below.

(1) The response Y is an STB Type QCH
Generally the ideal target, T =y, is zero and there is only a single USL denoted by U =y, = USL;
then a unit’s desirability function is defined as

I, y;<T

di={[(U-y)/(U-DI, T<y,

. <U (48a)
O, Yi >U

If the ideal target T = 0, then the above equation reduces to

di=<[(U-y,) /U], 0<y <U (48b)
O, Yi >U

57



58

where r is a constant whose most common value is 1 (in which case d is a linear function of y)

d
but can range within the open interval (0, ). If r lies in the open-interval (0, 1), then d—di <
Yi

0and dzdi /in2< 0 so that di is strictly concave. Whenr>1, dd; / dy; <0 but dzdi /dyi2

> 0 so that d is convex [see Figure 11.17(b) on page 438 of Montgomery, p. 426 of the 6%
edition]. Therefore, when r > 1, a smaller desirability value is obtained for a y; far from the

ideal target than when 0 < r < 1 for the same ;.

(2) The response Y is an NTB Type QCH
Generally the ideal target, T =y, is different from zero and there is both a single LSL denoted

by L =y and an USL denoted by U =y, ; then a unit’s desirability function is defined

0,y;<L
—L)/(T-L)]", L<y, <T
di= (i =L /( )]r Yi ; Most commonly, the weights (49)
[(U-y)/(U-T)]?, T<y;<U
O, Y >U

ri=r2=r,and U — Lis the spread of the acceptable range L<y; < U, i.e., if a unit’s dimension is

outside the interval [L, U], then that item is considered nonconforming to specs.

(3) The response Y is an LTB Type QCH
Generally the ideal target, T, is infinity and there is only a single LSL denoted by L =y, = LSL;
then a unit’s desirability function is defined as

0, y;<L

di=<[(y;—L)/(T-L)]', L<y; <T (50)

L, y;>T
Note that it will be impossible to define a desirability function for an LTB type QCH where T =
oo. Thus, the target is generally a maximum value that is difficult to achieve in practice. There
may be a typo in the middle of p. 438 (at the bottom of page 426 of Montgomery’s 6 Ed.)
because y1 = “yield” is an LTB type QCH and hence must have an LSL =L = 70.

After individual desirability values are computed for all m responses (in our example m
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= 3), they are converted to an overall desirability defined below

D(at FLC;) = Dj = (d1xd2x...xdm)¥™ (51)
Note that D; at the j*" FLC is simply the geometric average of the m individual desirability’s at
that FLC. As an example, again consider Table 11.6 (p.429) of Montgomery where at the first
FLC: yi(yield) = 76.5% (L = 70% and the target T = 80%), y> = 62 (viscosity Specs:65+3), and y3 =
2940 (MOW Specs: 3200 <y3 <3400). The d; values for run number 1 are d1 =
[(76.5—70)/(80—70)] =0.65; d; =(62-62)/3 =0, and d3 = 0 because y3; = 2940 < L = 3200 — D(at
FLC1) = D1 = (dixd2xd3)3 = 0. | used MS Excel to compute the values of D, through D13, where
the corresponding computations are tabulated below (and the corresponding Excel file is on
my website). Unfortunately, all Dj=0forj=1, 2, ..., 13; In such situations there are two
alternatives:
The Desirability Function Values for Table 11.6 on p. 429 of Montgomery
y1 =yield (LSL = 70), T =80; y, = Viscosity (62 < y» <68) ; ys = Molecular Weight (3200 < y3 < 3400)

Run &1

No. (time) &E(Temp)  vi1 d: Y2 dz Y3 ds Dj=(d1d2d3)*®
1 80.0000 | 170.0000 | 76.50 | 0.65 62 0 2940 0 0
2 80.0000 | 180.0000 | 77.00 | 0.7 60 0 3470 0 0
3 90.0000 | 170.0000 | 78.00 | 0.8 66 0.66667 3680 0 0
4 90.0000 | 180.0000 | 79.50 | 0.95 59 0 3890 0 0
5 85.0000 | 175.0000 | 79.90 | 0.99 72 0 3480 0 0
6 85.0000 | 175.0000 | 80.30 1 69 0 3200 0 0
7 85.0000 | 175.0000 | 80.00 1 68 0 3410 0 0
8 85.0000 | 175.0000 | 79.90 | 0.99 70 0 3290 0.9 0
9 85.0000 | 175.0000 | 79.80 | 0.98 71 0 3500 0 0
10 92.0711 | 175.0000 | 78.40 | 0.84 68 0 3360 0.4 0
11 77.9289 | 175.0000 | 75.60 | 0.56 71 0 3020 0 0
12 85.0000 | 182.0711 | 78.50 | 0.85 58 0 3630 0 0
13 85.0000 | 167.9289 | 77.00 | 0.7 57 0 3150 0 0

(1) Compute an overall desirability index, D, that is weighted sum of individual di’s, i.e.,

m m
Dj= Zwidi , Where Zwi =1. As an example, suppose we assign a weight of 0.50 to yield,
i=1

=1
0.35 to viscosity, and 0.15 to MOW (generally the weights must be assigned according to the
importance of the QCHs that are being optimized). Then, the value of D; = 0.50(0.65) = 0.325,
D, =0.35, D3 =0.6333, ..., D(FLC13) = D13 = 0.35, and run number 3 would give the maximum
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overall desirability so that &0 =[90 170]"and yo =[78 66 3680]" and Do=0.63333.

Unfortunately, the location of the stationary point ?;0 heavily depends on the assigned weights

Wi's and most often it is not clear what set of weights would lead to the true stationary point.
In this example if we assign w1 =0.60, w2 = 0.20 and w3 = 0.20, then E_,O =[85 175]" and yo

=[799 70 3290]" so that y20 = 70 is outside the required specs 62 <y,<68. Thus, it is
generally best to use the desirability index based on the geometric average proposed by
Derringer and Suich (1980) unless the experimenter is certain about the relative importance of
all the responses.

(2) Estimate yi from a regression model and estimate the corresponding di(i=1, 2, ...,
m) and D;. Such a procedure led to the optimal solutions given near the bottom of page 438

(p. 427 of the 6™ edition) of Montgomery. However, for €1, =86.5and &,,=170.50n p. 438

of Montgomery, my Excel file gives Do = 0.8571 versus the reported value of 0.822 by the
Design-Expert software. | surmise that the discrepancy is in the way the specs are assigned to
y3 because | am certain about L1 = 70, 62 <y, <68, and the fact that | used slightly different
models for y, & yz. In my Excel file | assigned an ideal target of T3 = 3300 to ys with LSLs = 3200
and Us = 3400, while the Design-Expert software may have just used the constraint yz < 3400.

Further, for &;, =82 and &,, = 178.8, my Excel file yields Do= 0 not close to D = 0.792 reported

by Montgomery. This last discrepancy is due to the fact that Montgomery used a full-quadratic
model for y, (on p. 435) and only a linear model for y3, while | used Minitab’s Best-Subset to
identify the best models for y, & y3. Both models are given in my Desirability Excel file.
Further, | asked one of our Ph.D. students (MS. Yang) to write a set of Lingo codes to obtain the
true optimal solution. Her program yielded &;,=87.00 and &,,=170.1760 with D, = 0.99018,
but unfortunately she did not use the best fitted models in her program. This is probably why
my Excel solution, &;, =86.76101 and &,, = 170.32625, does not match hers.

If direct optimization via regression is not the objective, then D = (d1xd2x...xdm)Y™ can
still be used as the response in ANOVA to determine which factors most significantly influence

D and then ascertain what FLC is best to attain the maximum desirability. Similarly, D can be

used as the response in a control chart with the intention that the LCLp will alarm that a
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process may be well below an acceptable desirability level and the UCLp can be used to stop a
process and look for assignable causes that are improving desirability and ensure that those
causes are perpetuated into the process. The following exercise is an example from a factorial
experiment from two of my colleagues (C. W. Curtis in Chemical Engineering & J. N. Hool of

ISE), where D must be used to locate the best FLC for the process.
Exercise 17. The objective is to convert coal and plastic-waste to energy expressed in

%. Three factors Temperature (A at 2 levels 400C and 430), Time (B at 30 minutes and 60) and
Catalyst (Z & NZ) may impact %conversion but two other responses y1 = %Gas and y, =

%HX (HX may stand for Hydrogen Oxide) are also emitted and measured along with
%conversion. Both y, & y3 are LTB type QCHs, which | am assigning L, = 20%, L3 = 30% and
ideal targets of T, = 75% and Tz = 95%, respectively, while y1 (=%Gas) is an STB type QCH with
an ideal target, T1, of zero and | am assigning an upper limit of U; = 40%. The data for the

factorial experiment with two replicates are provided below.

Data from C. W. Curtis & J. N. Hool

U:=40 wi=0.1  L[,=20 w>=0.3 w3=0.6 L3=30%

A B C v1 =%Gas y1 =%Gas y,=%HX y,=%HX y3=%Conv y3=%Conv
-1 -1 -1 20.700 | 17.700 | 16.990 | 16.010 | 36.190 35.210
-1 -1 1 23.900 | 21.500 | 10.180 | 8.620 32.090 31.110
-1 1 -1 20.500 | 19.900 | 6.090 4.110 26.180 24.620
-1 1 1 22.600 | 21.600 | 7.140 5.860 29.910 27.090
1 -1 -1 20.400 | 18.800 | 23.590 | 21.610 | 43.540 40.860
1 -1 1 29.100 | 27.900 | 24.830 | 22.570 | 53.370 50.830
1 1 -1 25.400 | 23.600 | 70.550 | 68.850 | 95.680 92.720
1 1 1 38.000 | 36.200 | 56.920 | 55.080 | 94.940 91.260

m
(@) Using r=1, and the weights wi=0.10, w>=0.30, and ws = 0.60, use D; = Zwidi to
i=1

compute the values of D at both replicates and use ANOVA to determine which effects have a
significant impact on D. What FLC should the process be operating at? ANS: SS(Total)
=1.676441024, SS(ABC)=0.013250707. (b) Use Eq. (51) to compute the D values at each

replicate for each run (1 through 8); then average the two D’s and obtain the optimal condition

based on ﬁj.
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Designs for Fitting Response Surfaces (Section 11.4 of Montgomery )

Definition. A design is said to be orthogonal iff the IM = (X"X) is a diagonal matrix. All

resolution Il 2P FFDs (fractional factorial designs) with nc center points are orthogonal. This
was illustrated when | discussed the Example 11.1 of Montgomery’s 7t edition on pp. 420-425
(pp. 405-423 of 6e).

Another example of a 1%t-order orthogonal design (OD) is the simplex, which is a
modification of a fractional replicate of the 2X when the experimenter can assume that the
interaction between x; and x; (i # j) is practically nonexistent. However, For k = 2 factors, the %4
fraction reduces to 2 runs providing only one degree of freedom to study the effects x1 and xa,
and hence another design point has to be added to the points (-1, -1) and (1, -1) that is

orthogonal to both and such that X'X = 3I3. Hence, the coordinates of the vertices for k =2 are

at(0, V2 ), (—/3/2, —=1/2),and (\3/2, —1//2). Therefore, the design matrix for k =
1 0 V2

2 simplexisgivenby X=|1 —+/3/2 —1/\/5 . Note that the distance d of all 3 points

1 B2 -2

(0, \/5 ), (=~3/2,-1/ \/5 ),and (\/3/2, -1/ \/5 ) to the design center (0, 0) is equal to d =
\/E =\/5,' further, every column except Xo is a contrast, the matrix X is 1%-order orthogonal,

the distance between any 2 design points (DPs) is m =\/g, and X'Xis indeed equal to 33,
which implies Xt = X"/(k+1). Further, simplex designs are appropriate only for constructing
1%t-order models and should be avoided for use when the required model must have 2"-order
regressors. Note that the angle that any two adjacent points subtends with (0, 0) is equal to 0

= arcos(-1/k) = 120 degrees.

,_
—
|
—
|
—

1
The k = 3 simplex design matrix is given by X = X , Which is a

—
—
—_
—_

2%1_11 FFD with the generator g = ABC and contrast function value equaling 1; again every

column is a contrast and X is 1%-order orthogonal. The distance of all 4 points (1, -1, -1), (-1,
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1,-1),(-1,-1,1),(1, 1, 1) to the design center (0, 0, 0) is equal to d = \/E = \/5 , and the

distance between any 2 DPs is \/ﬁ = \/g ; further, the IM = X'X = 414 so that X~ = XT/(k+1).
The angle that any side (or any two adjacent points) subtends with the origin is equal to 6 =
Cos~Y(—1/k) = arccosine(—1/k), which is equal to 109.4712 degrees for k = 3 independent (or
design) variables, and is equal to 120 degrees for k = 2. Thus, Cos(0) = —1/k for all k.

None of the Simplex designs can be made 2"-order orthogonal because they do not
provide sufficient df to study all quadratic effects and the interaction column x1x; cannot be
made orthogonal to the x;-column no matter how many center points, n, is used. For
example, if we select n. = 3 for the k = 2 Simplex, then the IM matrix, as illustrated below will
have only rank 4 no matter how many center points are used. Further, only three parameters
can be estimated and PE has 2 df. Note that there are also two things wrong with the IMc

because its rank is equal to 4 as anticipated [instead of 6 and hence the det(IMc) = 0] due to
the fact that there are two linear dependencies amongst the 6 columns: (1) Cz/\/i +Ce=0,
(2) G3+C, /\/5 -C; /\/5 = 0. This again should illustrate the fact that Simplex designs are

appropriate only for 15-order modeling and should be avoided as a 2"%-order design.

Note that x;+ x1x2= 0 and

Xf — Xi = (. Thus the rank of X

2 2
X0 X1 X2 Xl X2 X1X2

! 0 V202 o is 6 — 2 =4. This simply
1 =372 —1/\2 15 05 +3/2 confirms the very fact that the
design matrix on the LHS has 4
Xx= |1 V3i2 -2 s 0s =312 distinct points and hence
1 0 0 0 0 0 it has a rank of 4 and not 6. Thus,
1 0 0 0 0 0 only 3 effects x1, x2 & either x11
or x22 can be studied.
B 0 0 0 0 0]
[6 0 0 0 0 0
0 30 0 0 -3/\2
, 0 0 3 =3/2 3/4/2 o0 5 det(IMc) = 0
IMc = (X[ Xc )=
0 0 -3/J2 3 0 0
0 0 3/42 0 3 0
0 -3/V2 0 0o 0 15 |
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Exercise 18. Obtain a simplex design for k = 4. Hint: Start with the k = 3 simplex and add

one row and one column to retain orthogonality. Then rescale some of the vectors such that the

distance of all 5 design points to the originis d = \/Z = \/E =2 and your IM must equal to X'X =
5ls. This implies the added 5™ point has to have dimensionPs=[1 0 0 0 2], and hence

the 5% input variable xs = [-0.5 -0.5 -0.5 -0.5 2]". The distance between any 2 DPs must
be V2N =\/E . Obtain the angle 6 that any side (or any two adjacent points) subtends with the

origin in radians and then in degrees. Note that cos(0) = Pi'P;/(|Pi|x|Pj|) , where Pi'Pj represents

the dot product of any 2 of the 5 points in the design matrix and |Pi| x| Pj| = 4 when k =4.

DESIGNS FOR FITTING A SECOND ORDER MODEL

The most commonly used designs for 2"4-order models in RSM are the Central
Composite designs (CCDs). These are shown on pages 440-445 of Montgomery (429-435 of 6t
edition) for 2 and 3 independent variables. A CCD for k factors consists of a 2X = n¢ factorial
plus n, = 2k axial points located the same distance d from the origin (0, O, ...., 0) as the
factorial points. The choice of d is not arbitrary and 1%t and foremost should be selected in
such a manner that the CCD becomes rotatable. We now define a rotatable design.

Rotatability: A design is said to be rotatable iff the
VIY ()] = V(x'P )= xTCOV(ﬁ )x = x'[(X'X)? G‘é]x = (X'Cx) ci
is the same for all vectors X of the factor space that are of equal distance to the design center

(0,0, ....,0). Such a design when rotated about (0, O, ...., 0) will not alter the V[ 9 (x)]. ACCD

becomes rotatable if the distance of axial points from (0, O, ...., 0), d, is selected according to d
= (ng)/4 = (2%)/4 = 24, Note that most authors use a. for the distance d of the axial points to
the origin, but | would refrain from such usage because o is almost universally used for the LOS
of a statistical test. Thus, my notation d is used herein for Montgomery’s «. Further, you must
be cognizant of the fact that a CCD is not in general rotatable unless d is selected according to
d=(ns)/* .

Figure 11.20 on page 441 of Montgomery (p. 429 of 6 edition) shows the CCD for k =
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2 and k = 3 independent design variables x1, x2 and x3. For k = 2, the factorial portion of the
CCD is simply a 22 factorial, which is automatically 1%-order orthogonal and rotatable.
However, in order to study quadratic effects of a response surface, we must augment our 22

factorial with the ny = 4 = 2xk axial points (d, 0), (0, d), (—d, 0), and (0, —d). Then, the choice of

d=(nf)V4 = (4)¥4 = \/5 makes this CCD also rotatable. Before | show that such a CCD is
indeed rotatable, you should note that all the ns + n, = 8 points now are of equal distance from

the origin. This is due to the fact that, for example, the distance of the factorial point (x1 =—1,

X2 = 1) to the origin (0, 0) is given by \/(—1)2 +1% = \/5, and similarly the distance to the origin

is \/5 for the remaining 3 factorial points. Further, the 8 points lying on a circle provide 7 df, 5
of which can be used to study the effects x1, X2, X11, X22, and the interaction xix2 = x12.

Designs for which all of its points (with the exception of its center points) are of equal
distance to the origin are called equiradial.

Therefore, the rotatable CCD for k = 2 is also an equiradial design because all of its 8
design points lie on the circle of \/5 radius. | will now show that the k =2 CCD with d = \/5

but zero center points is not rotatable. Note that | am using the general regression notation of

X11= Xf, etc. The IM = X’X matrix listed below clearly shows the k =2 CCD is not 2"¥-order

Xo X1 X2 X111 X22 Xi1X2

1 -1 -1 1 1 1] .

. . . . —_— Factorial ) .
B - Region 8 0 0 8 8 0

11 -1 1 1 -1 08 0 0 0 0

. 1 1 1 11 LoJoos 00 o
r-v2 0 2 0 0 - /8 0 0 12 4 0

10 -v2 0 2 0 . § 0 0 4 12 0
NG Axial 00 0 0 0 4

1 v2 0 2 0 0 Region . ]

10 2 0o 2 o]

. 2 .
orthogonal, and even if we make the x11 and X5 = x22 columns contrasts, the IM will not
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become a diagonal matrix. Therefore, when n. =0, the k =2 CCD is not an orthogonal design.

Further, the IM matrix is indeed singular because Col4 + Col5 = 2xCol1, and hence its rank is 5

not 6. Further, in order to prove that the k = 2 CCD W/O center points is not rotatable, we

need to show that for any 2 arbitrary points, P1 and Py, in the (x1, X2) coordinate plane of equal

distance to (0, 0), the V[ ¥ (P1)] = [P1/(X'X)*P1] 6> # [P,/ (X'X)*P;] 6> Let Py = (-1, 2)

and P2 =(1/2, \/19/4 ) both of which are exactly a distance of d = \/g from the origin. Then

x1=[1 -1 2 1 4 -=2]",butbecause (X'X)tis singular, the V[ ¥ (x1)] = [x'(X'X) 4] Gi

cannot be computed. However, it can easily be shown that n. = 8 center points will make a k =

2 CCD 2"-order orthogonal. | will next show that if we add an n¢ > 1 center points to the k =2

CCD, then it will become rotatable. The corrected design matrix withN=ns+na+n.=4+4+8

Xo X1 X2 Xll_ill Xzz—izz X1X2
S | 1/2 1/2 1]
1 -1 1 1/2 1/2 -1
1 1 -1 1/2 1/2 -1
1 1 1 1/2 1/2 1
1 —\/5 0 3/2 ~1/2 0
1 0 —\/5 ~1/2 3/2 0
Xcorr = 1 \/5 0 3/2 —1/2 0

1 0 \/; —-1/2 3/2 0
1 0 0 -1/2 ~1/2 0
1 0 0 -1/2 ~1/2

1 0 0 -1/2 ~1/2 0
1 0 0 -1/2 ~1/2 0
1 0 0 -1/2 ~1/2 0
1 0 0 -1/2 ~1/2 0
1 0 0 -1/2 ~1/2

1 0 0 -1/2 ~1/2 0 |
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= 16 points is given above, where iu =§22 =8/16=1/2. You will show later that the choice

of n. =8 makes this also a 2"%-order orthogonal design but orthogonality is not a necessary
condition for rotatability. The Xcorr matrix is now 2"-order orthogonal because the corrected

IM (listed below) is diagonal and has a rank of 6. Note that the corrected design matrix for the
k = 2 CCD with n¢ = 8 center is now a diagonal matrix; further, V(Bj Jforj=1,2,3,4,and5is
minimized for the orthogonal design relative to a corresponding oblique design with n.

2 2
Xo X1 X2 X} Xy XiX2

(16 0 0 0 0 O
0800 0 0
0080 0 0

"VIC = X' r Xcorr =
¢ 0008 0 0
00008 0
(0000 0 4]

different from 8 center points. For example, for nc = 8 center points the V (ﬁj )=0.125 Gi forj
=1,2,3,4and V (B5) =0.25G7, while for k = 2 CCD with n = 6 center points V (3 ;) = (0.125,
0.125, 0.1354, 0.1354, 0.25) Gi , respectively. We now check on rotatability of our Xcorr. Again
let P1=(—1,2)and P2 =(1/2, \/M) both of which are exactly a distance of d = \/g from the
(0,0). Thenxic=[1 -1 2 1/2 3.5 -2]", which yields V[¥ (x1)] = [X1c"(X"corrXcorr) * Xac] Gé
=32502, andxac=[1 1/2 /19/4 -1/4 (19/4-1/2) ~/19/16 I", which yields V[§ (xzc)]
=3.25 Gé. Matlab was used in these computations.

Exercise 19. Compute the V[f’ (x)] at the points P3 = (x1 = \/5, X2 = \/5 ) and Ps = (x1

=0, x2= \/g ) for the above CCD and draw conclusions.
Exercise 20. Assume that the value of nc in the above k =2 CCD is not known to you.
Prove that the only value of n. that makes the corrected design matrix, Xcorr, orthogonal is n. =

8 and hence N = 16. (b) Show that the k = 2 CCD with nc = 2 is rotatable but not 2"-order
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orthogonal.

Exercise 21. Show that a 32 design is orthogonal but is not equiradial and not
rotatable. Hint: First transform the coordinates (0, 1, 2) to (-1, 0, 1) and then proceed as | did
for the case of k=2 CCD.

Montgomery provides the Table 16-8 in his 3™ Ed. (borrowed from “Multifactor
Experimental Designs for Exploring Response Surfaces’ by Box and Hunter, Annals of
Mathematical Statistics, vol. 28, 1957) that lists the required number of center points for a CCD
to become orthogonal and the value of the axial distance d that makes the design rotatable.
| am summarizing a part of that Table below, where N = the total number of design points

Table 16-8 of Montgomery’s 3™ Edition on his page 546

k= 2 3 4 5 2>1 6 261
Nt 4 8 16 32 16 64 32
Na 4 6 8 10 10 12 12
Ne 8 9 12 17 10 24 15
N 16 23 36 59 36 100 59
d V2 20.75 2.00 21.25 2.00 L5 (32)025

needed for (near) orthogonality. Note that the CCD matrix in Table 11.6 atop page 429 (p. 417
of Montgomery’s 6 ed.) is not 2"%-order orthogonal because its n. = 5 and the needed n.for
orthogonality is 8 but the design is indeed rotatable. It turns out that all designs that are
equiradial and 2"-order orthogonal are not necessarily rotatable. One such example is the
Box-Behnken design with n. = 4 center points, which is equiradial and 2"¥-order orthogonal but

not rotatable. Further, if a 2"%-order design is both 2"-order orthogonal and rotatable, then it

seems that V( Bj ) for j>0and V( 9) are minimized.

Other Designs
There are many other RSDs only some of which are orthogonal and rotatable. For k =2
regressors, we can use either 4, 5, or 6 equi-spaced points on a unit circle. The problem with

na = 4 axial points on a unit circle (called a k = 4 polygon denoted Pa4) is that the interaction
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term cannot be studied because xix2 = 0 for all 4 rows of the design matrix. Further, any
attempt to obtain an n. to make this design 2"%-order orthogonal will be futile as there does
not exist an N for which the design becomes 2"%-order orthogonal. However, if the
experimenter is certain that the two factors x1 and x> do not interact and does not care about

orthogonality and rotatability, then this circular design can be used with 4 to 6 center points to
study the linear effects (x1, x2) and the pure quadratic effects (Xlz, Xz ). The corrected design

matrix for a polygon, P4, with the 4 points (1, 0), (0, 1), (-1, 0), (0, -1) and n. = 6 center points is

given below.
Xo X1 X2 Xiu1— il 1 X22— 222 X1X2
110 .80 -2 0 ]
1 0 1 -2 .80 0
1 -1 0 .80 -.20 0
1 0 -1 -2 .80 0
P4 = 1 0 0 -2 -2 0
1 0 0 -2 -2 0
1 0 0 -2 -2 0
1 0 0 -2 -.2 0
1 0 0 -2 -2 0
0 0 -2 -2 0 |

Note that the Rank(P4) = 5 so that the (P4'xP4)! exists only if we remove the xix, column,
and then, it will be a 5x5 non-orthogonal matrix.

Montgomery provides two other equiradial designs on page 444 (p. 432 of his 6"
edition). An equiradial hexagon is a polygon with 6 equal sides each of which subtends an

angle of 21t/6 = 60 degrees with the origin. The (x1, x2) coordinates for the 6 points on a unit
circle are (1,0), (1/2, +/3/2=~0.75 ), (<1/2, \/3/2), (-1, 0), (<1/2, =3 /2), and (1/2,
—\/5/2). This design is 1°-order orthogonal with or W/O any center points, but needs more
than one center point to become 2"%-order orthogonal and rotatable. | now derive the

necessary value of n. for a hexagon to attain 2"¥-order orthogonality and rotatability. We

assume n¢ > 1 so that N = 6 + n.. The 2"-order design matrix for N points is given atop next

page. Note that every column in P6 is orthogonal to any other column with the exception
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of pure quadratic xll—fu and x22—X,, columns. The dot product of columns (3) and (4) of P6
is given by: (—6/N )(1 —3/N) + 4(0.25 —3/N)(0.75 —3/N) + n¢(9/N?). To attain 2"%-order
orthogonality, we must require that the dot product (xll—ill )( sz—izz) becomes zero, i.e.,

we must require that (—6/N )(1 —3/N) +4(0.25 —3/N)(0.75 —3/N) + n(9/N?) = 0. This last

equation reduces to N(N —12) = 0, and hence N = 12, which yields nc = 6. With n. =6
center points, the IM for the orthogonal Hexagon is given below. The V(ﬁj ) for j>0is smaller

for nc = 6 than any other number of center points.

X0 X1 X2 X11 _ill X22 _i22 X1 X2
11 0 1-3/N ~3/N 0 |
1 5 75 25-3/N  75-3/N  .75/2
1 -5 75 25-3/N  75-3/N =4.75/2
Circle 1 -1 0 1-3/N _3/N 0
1 -5 =75 25-3/N  75-3/N .75/2
1 5 —-J75 25-3/N  75-3/N —-4.75/2
P6 =
1 0 0 -3/N -3/N 0
1 0 0 -3/N -3/N 0
Center
1 0 0 -3/N —3/N 0
(120 00 0 0]
0300 0 0
0030 0 0
IM = (P6)'(P6) =
000150 0
000015 0
1000 0 00.75]

Next, | will show that the Hexagon is also rotatable. Accordingly, let P1=(2,0) and P2=(1,

\/5) be two points in the (x1, Xx2) plane both of whose distances to the design center (0, 0) is

equaltod=2.00. Thenxic=[1 2 0 4-0.25 0-0.25 O] and xc=[1 1 /3 1-0.25
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3-0.25 +/3]. Matlab Computations give V[¥ (x1)] = 10.8333333 Gé. | emphasize that in

order to attain rotatability, we do not need to make the design 2"%-order orthogonal, neither is

it absolutely necessary to make it equiradial. However, note that making the above design 2"-
order orthogonal does yield V[ ¥ (x2)] = [X1c' (X’ corrXcorr) X1c] Gé= 10.8333333 Gé, ie.,
smaller V(Bj ) for j> 0.

Exercise 22. Validate the rotatability of the Hexagon design with n. =4 center points
by computing the V[ff (x)] atP3= (\/5 , —\/5 ) and P4 = (- 0.50, \/m ).
Exercise 23. Repeat the analysis, that was performed above for a Hexagon, also for a
Pentagon design matrix.
Exercise 24. Study section 11.4.3 on pages 446-450 of Montgomery (pp. 436-439 of
6e) but you will not be tested on the contents of this section.
| am not sure what is exactly accomplished by orthogonal blocking from the analytical
standpoint except for the fact that the experimenter is forced to use blocking in the design
because of time and/or resource constraints. | can easily generate the blocks orthogonally
according to the definitions given near the bottom of page 446 (p. 436 of Montgomery’s 6
edition) and repeated below.
(1) A 2"d-order design blocks orthogonally if each block is 15t-order orthogonal
(2) The number of runs in each block is proportional to the SS of the variable levels in
different columns of the blocks.
However, | did not find the design matrices in different blocks of matrix D atop page 448 (p.
436 of the 6™ edition) to be 2"%-order orthogonal. Furthermore, the 2"¥-order k=2 and k=3
CCDs listed in Table 11.11 on page 450 (p. 438 of Montgomery’s 6% edition) are not 2"%-order

orthogonal.

Mixture Designs (Section 11.6, pp. 466-476)

Mixture designs have widespread applications in Textile Engineering, Chemical
Engineering and Chemistry, Food Industry, Soft-Drink Industry, oil refinery, Asphalt Technology,

etc, etc. Cornell (1990) reports a mixture experiment from Textile Industry in which 3
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components (x; = the ingredient amount of Polyethylene by volume, x; = the amount of
Polystyrene by volume, and x; = the ingredient amount of Polypropylene by volume) were mixed
in order to make fiber that will be spun into yarn for draperies. The primary objective was to
produce fiber of elongation y, measured in Kgs of force applied, that had maximum elasticity. The
1%t order of business is for the reader to bear in mind that the three proportion variables x1, x; and
x3 (by volume) are not independent because the manufactured batch of fiber consists of only 3
components (and nothing else), and therefore, the sum of the 3 proportions x1 + x2 + x3 must
equal to 1, i.e., if the mixture consists of p components, then the mixture design (MD) must
satisfy the constraint ixj = 1. Then, unlike classical regression where the p regressors were

j=1
assumed independent, in MDs the p components of the mixture are not independent, but exactly
p —1 of them are independent. For example, in the textile experiment under consideration, the
experimenter has the freedom to specify x1 = 35% (by volume), x3 = 40%, but now the value of x,
is automatically determined to be 25%. Such a mixture is said to be complete because it consists
of all 3 possible ingredients.

Secondly, if x1 =x2=x3 =0, then no mixture can be made and the corresponding fiber
elongation, y, must be identically equal to zero. Therefore, a linear mixture model cannot have a
y-intercept term Bo and is given by

P
yi= ZBinj + € (52)
=1
Again, please note that the value of the y-intercept o = 0 so that y = 0 when all the x;’s are zero,

and the linear model (52) is used only when the factor space is far from the optimum region.

) . 2 .2 2 . .
hirdly, pure quadratic terms such as x;, X5 , ..., X, are practically nonexistent

p—1
in MDs because x12)= Xp (1l —X1— X2 — oo — Xp-1) = Xp — Z X,X;. For the textile example under
j=1

consideration, xg = X2(1 — X1 — X3) = X2 — XaX2 — X2x3. This implies that the quadratic effects in

MDs are expressed as X1X2 , X1X3, ..., X1Xp-1, X2X3, ..., Xp-1Xp. Therefore, the quadratic model for a

p p-l p
MD is given by yi= 2B+ 2 2 BypXXy t e (53)
=1 j=1k>j
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The two models in (52) and (53), specially model (53), are the most commonly used MDs.
However, there are also cubic models which are listed in the middle of page 469 (p. 447 of
Montgomery 6™ edition): the full cubic (11.26) and the special cubic (11.28). | would venture to
claim that over 66% of all MD models encountered in practice are of the shape given by Eqgs.
(52) & (53). There are basically two types of MDs:

(1) The Simplex Lattice, and (2) The Simplex Centroid MD.

THE SIMPLEX LATTICE MIXTURE DESIGN
A {p, m} lattice MD consists of a simplex, discussed in section 11.6 of Montgomery (11-5
of 6e), but with the following restriction on the xj’s, j=1, 2, ..., p, and x; = 0/m, 1/m, 2/m, 3/m,
4/m, ..., m/m, where 2 < m < p and larger values of m lead to more design points. Some of the
cases for p = 3 and 4 lattices are given in Figures 11.40 on p. 468 of Montgomery (Figures 11.34
on page 446 of 6 edition). | will work out the design aspects for the case of p = 4 simplex lattice
MD, which is not given in Figures 11.40 on page 468 of Montgomery. The {4, 4} simplex lattice
design points are obtained from the following fractions:
xj=0/4,1/4,2/4,3/4,4/4. The corresponding design points are listed below.
Pure blends: (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) —» 4 Points

Binary blends: (1/4,3/4,0, 0) — 4P2 = 12 Points
Binary (of-equal) blends: (1/2,1/2,0,0) —» 4C2 =6 Points
Triblends: (1/4,1/4,1/2,0) ——» (4C3)x3C; =12 Points
Complete (or full) blend : (1/4, 1/4, 1/4, 1/4) —> 1 Point

Total = 35 Points
The complete blend (1/4, 1/4, 1/4, 1/4) is also called the centroid of the lattice MD. Note that
the simplex lattice has a centroid only in the case of {p, p} lattice. Next we try to outline the proof
that in general a simplex lattice MD has a total of (p+m-1)Cm = (p + m =1)!/[m!(p — 1)!] design
points. For the case of {4, 4} simplex lattice we showed above that there are 35 design points.

To prove that 35 = 7C4, we proceed as follows: 35 = 7x5 = 7x6x5/3! = (7x6x5)x 41/(3!x4!) =

(7] (p+m—lj
71/(3!1x41) = A = =7C4.
m

Exercise 25. Perform a complete analysis of the {4, 3} and {5, 4} simplex lattice MD as
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| did above for the {4, 4} case.

THE SIMPLEX CENTROID MIXTURE DESIGN

74

Unlike the {p, m} lattice, all simplex centroid MDs have a centroid given by the

complete mixture (1/p, 1/p, ..., 1/p). All centroid MDs have design points consisting of pure

blends, binary of equal blends, tri of equal blends, quad blends of equal proportions, ..., (1/p,

1/p, ..., 1/p). Below, | will work out the case of p = 4 components simplex centroid.

Pure blends: (1,0, 0, 0), ..., (0,0, 0, 1) —
Binary blends: (1/2,1/2, 0, 0) —_—
Triblends : (1/3,1/3,1/3, 0) - 5
Centroid: (1/4,1/4, 1/4, 1/4) _—

Note that the blending (1/3, 1/2, 1/6, 0) is not a

point for the centroid design because of unequal proportions. The total number of design

4 Points
6 Points
4 Points

1 Point

Total =15

p p
points, in general, for a centroid MD is given by ,C1+ pCa + pC3 + ... + .Cp = Y ,Cj= > ,Cj -1

=271, Forp=4, 2*— 1 =15 as counted above.

Simplex MD’s are generally constructed in such a manner as to minimize the V(B ),
although | am not sure that which of the two structured MD’s (Simplex Lattice or Centroid)
yield smaller variance for the same comparable designs. Further, a D-optimal design is one

whose determinant of matrix C = (X'X)™ is minimum (or nearly minimum). For example, the

J=1

=0

covariance matrix for the {3, 2} simplex mixture design with n =1 response is given below with

determinant value of 4096.

x1 x2 x3 xIx2 | xIx3 | x2x3
1.0| 0.0 00| -2.0 -2.0 0.0
00| 1.0 00| -2.0 0.0 -2.0
X'xX)!'= 00| 00| 10| 00| -20| -20
-2.0| -2.0 0.0| 24.0 4.0 4.0
-20| 00| -2.0 40| 24.0 4.0
00| -20| -2.0 4.0 40| 24.0

While if we construct an unstructured MD such as
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x1 X2 x3 x1x2 x1x3 X2x3
0.7 0.3 0 0.21 0 0
0 0.35 0.65 0 0 0.2275
0.3 0.4 0.3 0.12 0.09 0.12
0.5 0.5 0 0.25 0 0
0.333333 | 0.333333 | 0.333333 | 0.111111 | 0.112111 | 0.111111
0.25 0.5 0.25 0.125 0.0625 0.125

75

A 2
The determinant of the corresponding covariance matrix COV(B) / O = CU

explodes to 59267346867.3616000.

Exercise 26. Perform a complete analysis of the p = 5 simplex centroid MD as | did
above for the p = 4 case.

As an example of MD application, consider the Example 11.5 on pages 469-472 (448-
450 of Montgomery’s 6% edition). Assuming that we are close to the optimum region, the

fitted quadratic model is of the type given in equation (53) and can further be expressed as

6
Yi= ZB]XIJ + €j, (54)
j=1

where X4 = X1X2, X5= X1X3, X6 = X2X3, andi=1, 2, 3, ..., 15. If we now form the LSF for the model
of (54) as

n 2 n 2

LB) = D& = D> (v; —Bixj —--—BsXis)

i=1 i=1
and partially differentiate wrt Bj (j= 1, 2, ..., 6), we will obtain a set of 6 normal equations with
6 unknowns, but with the constraint x1 + x2 + x3=1. In order to use standard regression
packages by Minitab or SAS, it is best 1 to invoke this constraint into model (54) and proceed

as though it were a regular regression model. That is to say,

Yi=PBixi+Baxa+P3(l—Xx1—%2) +Paxa+Psxs+ Pexs+ €. (55)
However, model Eq. (55) is equivalent to
yi= B3+ (B1—B3) X1 + (B2 — P3)x2 + Pa xa + Ps X5 + Pe X6 + Ei
=bo+ b1 x1+baxa +baxs+bsxs+bexe+ € (56)
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where bo =3, b1 =1— B3, b2=pP2—Ps,and bj=;forj=4,5, 6.
| actually used Matlab and fitted the model (56) to the data of Example 11.5 on pp. 469-470 of
Montgomery (pp. 448-450 of 6e) and obtained the following model and the corresponding IM

Listed below.

15 5 5 0.75 0.75 0.75 |
5 35 075 0375 0375 0
5 075 35 0375 0 0.375
0.75 0375 0375 0.1875 0 0
0.75 0375 0 0 0.1875 0
1075 0 0375 0 0  0.1875 |

IM=X'X =

(X'Y)"=[203.1 71.7 57.5 11.475 12.675 7.875], and

§= (X'X)YX'Y) = 16.4 — 4.7x; —7.0x2 + 19.0x1%2 + 11.40x1%3 — 9.60X2X3 (57)
However, the above model (57) is identical to the one given in the middle of page 470 (p. 448
of Montgomery’s 6% edition), which | will illustrate below. Recall the constraint x; + X + X3 =
1. We simply multiply the value of 130 =16.40in (57) by 1 =x1 + x2 + x3 and simplify the
resulting equation.

¥ =16.4(x1 + X2 + X3) —4.7x1 — 7.0%2 + 19.0x1x2 + 11.40x1x3 — 9.60x2X3
=11.70x1 + 9.40%; + 16.4x3 + 19.0x1x2 + 11.40x1x3 — 9.60x2X3. (58)

This last Eq. (58) is indeed identical to the mixture model in the middle of page 470 (p. 448 of
Montgomery’s 6™ edition). The advantage of model (57) over this last mixture model (58) is
that (57) is in the format of the classical regression model and hence we can use regression
theory from Chapter 10 to arrive at the proper ANOVA Table. WE 15t rewrite model (58) in the
classical regression format, as before in Eq. (57)

¥y =16.4 —4.7x1 — 7.0x2 + 19.0x1x2 + 11.40x1x3 — 9.60x2X3, (57)

A

where Bo =16.4, [31 =-4.7, ..., Bs =—9.60. The regression model in (57) clearly shows that
5 15

the Model SS must carry 5 df and is computed from SS(REG) = ) Bj Sjy , Where Sy = Zxﬂyi -
j=1 i=1

. x)Cy)/15=71.7 - 5(203.10)/15 = 4.00, Sz, = —10.20, S3, = 1.320, Sa, = 2.520, and Ss, =

76



77

5 ~
—2.280. Therefore, SS(REG) = )’ Bj Sjy = 128.29600 = SSmodel With 5 df. As usual, USS =
j=1

2884.830 with 15 df, CF = (X y)?/15 =2749.9740 with 1 df, and hence the SStotal = SSt = USS —
CF =134.8560 with 14 df. As a result, SSges = 6.56 with 14 — 5 =9 df.

Note that the value of SSges can also be computed directly from SSges = SSpe = (112 +
12.4% —23.42/2) + (152 + 14.8% + 16.1> — 45.92/3) + (8.82 + 10% — 18.8%/2) + (102 +9.72 + 11.82 —
31.5%/3) + (16.82 + 162 —32.8%/2) + (17.7%> + 16.4% + 16.6> — 50.7%/3) = 0.98 + 0.98 + 0.72 + 2.58
+0.32 + 0.98 = 6.56 with 9 df, which checks exactly with SStotal — SSmodel = 134.8560 —
128.2960.

To obtain the ANOVA table, we need to examine the break-down of the Model SS into
separate orthogonal components. However, due to the constraint x; + x2 + x3 = 1 and the fact
that the X’'X is not a diagonal matrix, it will be impossible to obtain five 1-df SS’s that will sum
to SSmodel, i.€., an orthogonal breakdown of SSmodel as given in Eq. (57) into 5 additive
components does not exist. Therefore, in mixture designs the appropriate procedure is to
obtain sequential SS’s due to linear, quadratic, and cubic effects. The sequential SS| = SS(x1, X2,
x3) is obtained by fitting the regression model y=ao+ a1 x1 + a2 X2 = 15.794545 — 0.80 x1 —
5.963636 x, which results in SS = — 0.80xS1y — 5.963636xS,y = 57.6291. Thus, the extra SS due
to adding the quadratic effects xi1x2 , x1x3 and xaxs is given by SSq = SSmodel — SSL= 128.296
—57.6291 = 70.66691. The ANOVA Table is summarized below. As discussed earlier, the

ANOVA Table for the Example 11.5 of Montgomery on his page 470

Source df SS MS Fo P-Value
Total 14 134.856
X1, X2, X3 2 57.62909 28.81455 39.53215 0.0%34873
Quadratic 3 70.66691 23.55564 32.31718 0.0%37865
Pure Error 9 6.56 0.728889

eventual objective in mixture designs is to optimize the response y in the feasible region of the

factorspace0<x;<1,j=1, 2, ..., p. You must bear in mind that an x; can never be negative
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nor can it ever exceed 1. We may optimize either model (57) or (58). | will attempt to obtain
the exceptional point X, for the mixture model (58) again listed below.
y=11.70x; + 9.40x; + 16.4x3 + 19.0x1x2 + 11.40x1x3 — 9.60x2X3 (58)

and in an assignment you will be asked to follow suite for the model (57). Recall that the
objective is to maximize the elongation of the fiber formulation under the constraint x1 + x; +
x3 = 1. Before invoking this constraint into our model, we must observe that the coefficients of
both x1x; and xi1x3 are positive (i.e., these 2 combinations produce synergistic blending and will
increase elongation), while the coefficient of x,xs is negative so that this combination will
produce antagonistic blending, i.e., the interaction x,xs will decrease the response y.

To start the optimization procedure, we 1%t invoke the constraint x, =1 — x3 — X3 into

model (58). This will yield the model
§'=9.40 + 21.30x1 — 2.6x3 + 2x1x3 — 19x7 +9.60 X3 . (59)

Partial differentiations will yield

A 62/\
N 213 42w —38% —» —Zz—ss.oo
0X, OX]
% 0%y
- 26+2x +192% 5 2 =19.20
0X4 X3

We may as well stop this maximization procedure right here because X, is a point of maximum

response only if

A 24 2 2 2

0 0 0 0 0
L1 e R PrYCe § e B I 2 )
axl XO 8X3 XO 8X1 XO 8X3 XO 8X18X3 XO

But the above required 2"¥ and 3™ conditions do not hold for the model (59), and the solution
x1 = 0.56456, x» = 0.35883, x3 = 0.07661 yielding y=15.31296 is simply a saddle point (or a
local optimum) and not necessarily a global maximum. This implies that our response function,
¥ in (59), is not strictly concave over the entire range of factor space {x;| 0<x<1,j=1, 2, 3}.

This fact can be verified by the 3 eigenvalues of the matrix
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0 95 57
B=|195 0 -438
57 —4.8 0

which are 7\,1 =-13.5681, 7\,2 = 9.5607, and 7\,1 = 4.0074 and hence the surface is not
concave or convex. Therefore, resort has to be made to other means. Below | will provide the
step-by-step procedure as to how | would proceed in order to obtain the global optimum
solution for a response surface such as

§=11.70x1 + 9.40x, +16.4x3 + 19.0x1x2 +11.40x1x3 — 9.60X2X3 (58)
subject to the 7 constraints 0<x;<1,j=1,2,3,4,5,6and x1 +x2 + x3=1.

Stepl. Equation (58) clearly shows that the interaction (— 9.60xxx3) is indeed
antagonistic, i.e., unless either x2 = 0, or x3 = 0, the term (— 9.60x2x3) always decreases the
response value y forall0<xj<1, j=2,3. Therefore, the global optimum must occur either at
x2 =0, or at x3 = 0, but we do not know which one and have to try both possibilities.

Step 2. First, try x, = 0. Then the problem reduces to maximizing the objective
functiony = 11.7x1 + 16.4x3 + 11.4x1x3 subject to the 4 constraints0<x; <1, j=1,3,5and x:
+x3=1.

Step 3. Invoke this last constraint into the objective function, which reducesitto y =

16.4+6.7x1—11.4 xlz. Then set dy/dx: to zero and determine the sign of d%y/d X12: dy/dx; =

6.7 —22.8 x1, d?y/d X12 =—22.8 <0, which is the necessary condition for x, to be the point of
maximum response. Setting dy/dx; = 0 and solving the resulting equation yields x, = [0.29386
0 0.70614] and the corresponding ¥, = 17.38443. The text by R. H. Myers and D. C.
Montgomery (Wiley, ISBN: 0-471-58100-3) reports the stationary point [0.20 0  0.80]' with
the corresponding 90 = 17.28400. Thus my solution is just a bit better than the one that they
guesstimated by simply observing the contours of the response surface. The question now
arises “how do we know for certain that xo =[0.29386 0 0.70614]’ does yield the global
maximum? To answer this question, we must also try x3 = 0, as in step 4.

Step 4. Putting x3 = 0 in the model (58) results in the objective functiony = 11.7x;1 +

9.4x; + 19x1x2 subject to 4 more constraints 0<x;<1, j=1,2,4 and x1 + x2 = 1. Proceeding as
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in Step 3 above, we obtain x, = [0.56053  0.43947 0]" with ¥, =15.36961, which is

much less than the optimum result of 17.38443 obtained in step 3. Therefore, there is no

point (x1, X2, X3) in the region of the factor space that will yield a response larger than SIO =

17.38443 Kg, and hence x, =[0.29386 O 0.70614]’ is the global optimum solution.

Before | close this section, the reader must be cognizant of the fact that the simplex
lattice MD in the Example 11.5 of Montgomery (Example 11-3 of 6e) is a saturated design for
the fitted model (58). This is due to the fact that the design matrix of the {3, 2} lattice provides
6 FLCs and hence only 5 df for studying effects and the model already contains 5 independent
effects. Hence, there are no df left to test the model for the LOF. The need for testing of LOF
leads to the augmentation of simplex MDs.

Exercise 27. Repeat the above procedure to obtain the optimal solution for the model

(58).

Augmenting Simplex Designs with Axial (or Interior ) Runs In Order to Study

Higher-Order Effects

Both the simplex-lattice and simplex-centroid designs have nearly all their points on the
boundaries of the simplex, except for the centroid which is in the interior of the simplex when
the design includes the point (1/p, 1/p, ..., 1/p). All centroid simplexes have a centroid by their
definition, but only the {p, p} simplex lattice has the centroid as an interior point. As R. H.
Myers and D. C. Montgomery (1995, pp. 551-560, Wiley Publications, ISBN: 0-471-58100-3)
report on the {3, 3} simplex lattice which has sC3 = 10 design points, 3 of which are pure blends,
6 are binary blends of the type (1/3, 2/3, 0), and only one interior point namely the centroid
(1/3, 1/3, 1/3). Therefore, as they suggest, the distribution of information occurs in the ratio
of 3:6:1. To improve on this ratio, i.e., we need to augment this design with additional interior
points. Further, they recommend that these interior points should be halfway between a
vertex such as (1, 0, 0) and the centroid (1/3, 1/3, 1/3). Since the point (2/3, 1/6, 1/6) is
exactly a distance of d = (1/6)"/2 from both (1, 0, 0) and (1/3, 1/3, 1/3), then the 3 augmented
interior points for the {3, 3} simplex lattice are (2/3, 1/6, 1/6), (1/6, 2/3, 1/6) and (1/6, 1/6,

2/3). This augmented design will enhance the amount of information in the interior to the
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ratio of 3:6:4. Further, if the lattice does not have a centroid, such as {4, 3}, then the centroid
(1/4, 1/4, 1/4, 1/4) must be added before augmenting the design with further interior points of
equal distance to a vertex and the center. Below | am providing an example of an augmented
MD borrowed from the Example 11.2 on pages 553-558 of Myers and Montgomery (1995).
Their experiment is a chemical etching process on the backs of silicon wafers in the
semiconductor industry. The etching solution is a mixture of 3 acids A, B, and C. The
experimenters objective was to study how the composition of the 3 acids in the mixture would
affect the etching rate y. The final objective was to determine the mixture composition of the
3 acids that yielded an etching rate of at least 750. The MD used was a {3, 2} lattice
augmented with 4 interior points (2/3, 1/6, 1/6), (1/6, 2/3, 1/6), (1/6, 1/6, 2/3) and (1/3, 1/3,
1/3). The design layout is provided in Table 2, where the value of N = 14. At first glance, it
seems that the design matrix in Table 2 provides 9 df for studying the full cubic model (11.27)
given in the middle of page 469 of Montgomery (p. 447 of 6! edition). Unfortunately, it is not

Table 2 [The {3, 2} augmented lattice MD]

Run X1 (Acid A) X2 (Acid B) x3 (Acid C) Etch Ratey
1 1 0 0 540, 560
2 0 1 0 330, 350
3 0 0 1 295, 260
4 1/2 1/2 0 610
5 0 1/2 1/2 330
6 1/2 0 1/2 425
7 2/3 1/6 1/6 710
8 1/6 2/3 1/6 640
9 1/6 1/6 2/3 460
10 1/3 1/3 1/3 800, 850

possible to obtain a regression model with the regressors xi, X2, X3, Xa = X1X2 , X5 = X1X3, X6 = X2X3 ,
X7 = X1X2X3, X8 = X1X2(X1 —X2), X9 = X1X3(X1 — X3), and X10 = X2X3(Xx2 —x3). This is due to the fact that

there are 2 constraints: X1 + X2 +x3 =1 and xiXa(X1 —X2) + X2X3(X2 —X3) = X1X3(X1 — X3). Note that
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the 2" constraint is valid only for this case, i.e., in general x1xa(x1 —X2) + X2X3(X2 —X3) # X1X3(X1 —
x3). Further, Minitab will not even allow the inclusion of all 3 regressors x1, X2, X3
simultaneously and will notify you that x3 is 100% correlated with x; and x. Therefore, |
obtained the following model from Minitab

y =276.0725 + 272.5x1 + 62.5x, + 642.8704x4 + 27.8704xs +

67.8704xs + 9243.3333x7 — 775.0xs + 980.0xs. (60)
| proceeded to write a Matlab program to obtain the regression function and the
corresponding ANOVA table, which are listed on below.

y=548.573x1 + 338.573x, + 276.073x3 + 642.870x4 + 27.870xs +

67.870xs + 9243.333x7 — 775xg + 980xo. (61)
Note that model (61) indeed reduces exactly to (60) if we replace the 3™ term xs with 1 — x; —
X2. Model (61) clearly shows that the entire model will carry 8 df, and residuals will have 5 df
because the SStotal has 13 df. My ANOVA Table from the Matlab program is summarized in
Table 3.
ANOVA Table 3

Source df SS MS Fo P-Values
Total 13 478821.42857

X1, X2, X3 2 133755.00 66877.50 93.3285 0.000110

Quadratic 3 229364.8548 | 76454.9516 106.694 0.0°5944

Special Cubic 1 107877.7918 | 107877.7918 150.5450 0.0°6364

Full Cubic 2 4240.87302 2120.43651 2.9591 0.146024
Residuals 5 3582.90895 716.5818
Pure Error 4 2262.5000 565.625

LOF 1 1320.40895 1320.40895 2.33442 0.201262

| used the software Lingo6 to obtain the optimal solution for the model (61) with the results x,

=[0.39816 0.35963 0.24221]" with y = 838.7422 > 750. Therefore, if the

etching solution is made with roughly 40% acid A, 36% acid B, and 24% acid C, then more

than75% etching rate will be attained. The Lingo codes are also available on my website.
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Exercise 28. Three different motor fuels x1, x2 and x3 can blended to form gasoline.
The objective was to identify the blend that maximized MPG performance. An augmented
simplex design was used to study the blending properties of the 3 fuels, and the results are

shown in Table 4.

Table 4

Run X1 X2 X3 MPG, y
1 1 0 0 235, 24.8
2 0 1 0 24.1, 243
3 0 0 1 22.8, 23.1
4 1/2 1/2 0 25.1

5 0 1/2 1/2 27.8

6 1/2 0 1/2 27.6

7 2/3 1/6 1/6 26.8

8 1/6 2/3 1/6 25.9

9 1/6 1/6 2/3 24.5
10 1/3 1/3 1/3 24.8, 23.9, 24.5

(a) Fit only a linear model and test it for LOF. By hand calculations, verify the value of SS(REG).
Show all your work! (b) Next, fit a quadratic model and test it for LOF. (c) Finally fit a full

cubic model and determine if this model improves the one in (b) to be used for optimization.
Identify the regressor(s) that account for the LOF. (d) Determine the optimal condition xo

and the corresponding value of ¥, .

The student version of Lingo6 can be downloaded from www.lindo.com/

Evolutionary Operation (Section 11.7 of Montgomery; Section 11-6 of 6e)

RSM (response surface methodology) is an optimization technique for research
laboratory on a small scale, while EVOP’s (Evolutionary Operation’s) objective is exactly the

same but on a large scale, i.e., on a manufacturing floor. Therefore, the objective of EVOP is to
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identify the optimal conditions of an unknown RS (Response Surface) in a real-plant
operations.

For the sake of illustration, consider the Example 11.7 on pp. 477-480 (pp. 454-458 of
Montgomery’s 6™ edition). Here, the objective of EVOP is to attain the maximum process yield,
y, by running the process at optimum levels of x1 = operating temperature (factor A), and x; =
operating pressure (factor B).

The EVOP procedure generally uses a 2 factorial design with a center point that is run
exactly once. For our example, k = 2 factors, and therefore, there are 5 design points as shown
in Figure 11.48 and Table 11.22 on page 477 (p. 455 of Montgomery’s 6% edition). Thus, our
response variable, y, is % process yield with current operating design center (DC) at x; = 250 °F,
and xz = 145 psi, where the design spacing for both process variables is 10 units.

The primary objective of EVOP is to determine if the current operating conditions no
longer optimize the response vy, i.e., the current DC is no longer near optimum conditions. This
determination is made ASA an effect becomes statistically significant at the 5% level,
suggesting a change in process operating conditions is needed. It is then said that one phase
has been completed. Each phase of EVOP consists of several cycles n, where n, denotes the
cycle at which a phase is completed (and the subscript p stands for phase). On the average,
each phase consists of n, = 3 to 6 cycles. If the process is actually being run near the optimum
conditions and optimum process conditions do not change much with time, then the value of
np can be very large.

I now provide you with notations that will be used throughout these notes, which is
mostly consistent with the literature. Let yi(n) be the observation at the i design point and nt"
cycle, where n =1, 2, 3, 4, ..., np and only for two regressors the valueofi=1, 2, 3, 4, 5.
Accordingly, a reference to page 477 (p. 455 of Montgomery’s 6) will reveal that y1(1) =
84.5%, y2(1) = 84.2%, y3(1) = 84.9%, ya(1) = 84.5%, and ys(1) = 84.3%. Similarly, the
observations for the 2" cycle, given in Table 11.23 on page 478 (p. 456 of Montgomery 6%
edition), are y1(2) = 84.9%, y2(2) = 84.6%, y3(2) = 85.9%, ya(2) = 83.5%, and ys(2) = 84.0%. |
have made and provided an EVOP Calculation Sheet for k = 2 process parameters on my

website, which you may download for future use.
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We now proceed to compute the average effects of A, B, and AxB. Figure 11-48 on
page 477 (p. 455 of Montgomery’s 6% edition) clearly shows that the total temperature (x1)

effect is given by the sum of the two contrasts (y, —y,) + (Y3 —¥s) , and thus the average

effect of A is given by

= 1 _  _ _ 1 _ _ _ _

x1=A=5[(y4—y2)+(y3—y5)]=5(y3+y4—y2—y5),
where the divisor 2 pertains to two contrasts. Similarly,

- 1 _ _ _ _ 1 _ _ _ _

B =3 (Y3+¥s —¥2—V4), and AxB =7 (Y3+Y2 —¥4—Ys).

Since the variance of all the above 3 average effects are the same, we proceed first to compute

— 14 —
the V(A ) = Zz V(y;) =V(y)= Gf,/ n. We may further conclude that the se(B) = se(A xB)
=1

= SE(K )= o, /\/H, except for the change-in-the-mean (CIM) effect.

We have to be a bit more cautious about how to define the change in the mean
response from the 22 peripheral points (2, 3, 4, and 5) to the DC, which is point (1). Note that
the CIM determines the quadratic effect of x; and x, on y. It seems that at 1 glance the total
effect from the design peripherals to the DC (design center) should be given by

Yo+ Y3t YatYs -4y (62)
and because there are 4 comparisons (or contrasts) in the expression (62), then the average

CIM effect should be computed from (y, +y; +y,+¥5 )/4 — Yy, . It should be intuitively

apparent that the CIM effect must have a smaller variance than the X, E_B, and A x B effects

simply because (i) there are 5 means involved in the CIM effect versus 4 for the other 3 effects,

(i) the distance of the peripheral average (y, +Y;+Y;+Ys )/4 to the center Yy, for this

example, is \/(1/2)2+(l/2)2 =4/0.5. Thatis, the distance of (y, +y;+y,+¥s )/4 to y; is
V0.5, as opposed to the average distance of y; +Yy, to ¥, +Vs, which is one units for our

example. Note thatthe V[(y, +y; +y;+Y¥s )/4—Yy,]= 1.25c5§/n > V(K) =V(]_3) =

V(A xB). Thus, we have to find a divisor larger than 4 for the expression given in (62). Since
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there are 5 means in the expression (62), George E. P. Box proposed a divisor of 5, i.e., the

average CIM effectis definedas CIM =0.2(y,+¥y; +y,+Y5) —0.8Yy,=

4 —
(Vy+ V3 +Y,+Ys —4Y,)/5= [Z?i(n)]—gyl(n). Note that the CIM is also a measure

1 5
S iz
of curvature in the RS and thus if the process is operating near optimum conditions, we should

expect a higher yield at the DC than the peripherals. Therefore, this last definition by George

E. P. Box is what we will be using as CIM . The variance of the CIM effect is computed from
_ o _ — 1 _ _
VI(Y,+ Y3 +y,4+Ys —4Y,)/5]= 2—5[4V(y)+16V(y)] = 0.800§/n. Perhaps, it is more

essential to detect a CIM more rapidly than other effects when the contrast for the CIM is
positive. Note that for cycle n = 1, SSmodel = 0.2880 = SSa + SSg + SS(AXB) + SS(CIM), where the
contrast(CIM)=—0.02.

. ) 2
Estimation of ()'y

The question now arises as to how we estimate G,? Clearly, we need at least n =2
cycles in order to estimate oy. One possible solution is, after n = 1 cycle, to obtain the values

of S at the 5 design points, and average the 5 sample standard deviations. For the Example

11.7 of Montgomery, this leads to S; = 0.282843 = \/(—0.4)2 /2,0.282843,0.70711, 0.70711,

0.212132 and S =0.43841. Or we could use the pooled standard deviation from the 5 design

2 2 2 2 2
points for 2 cycles which is equal to Sp, = \/0'4 +047+1 2+§__1) (03 1/0.241000 =
X

0.49092. However, the above estimation procedure is not used in EVOP because variability
at the 5 FLCs may well be quite different, and as a result, G. E. P. Box suggested to use results
from the field of Quality Control in order to estimate oy. To this end, let W = R/c be the
relative range of a sample of size N drawn from a normal universe, where G is the process
standard deviation (i.e., a parameter) and R is the sample range (i.e., a random variable).
Then, R =6 W, and applying the expected-value operator to R = cW results in

E(R) = oE(W) = od; (63)
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In Eq. (63), the values of d, = E(W) = E(Relative Range) have already been obtained in

statistical literature for a normal universe using the SMD (sampling distribution) of R from a
N(u, o?) for different sample sizes N > 2 (see Table 5 below). The values of d; = E(W) are also
tabulated in every QC text book. | would recommend against the use of R in estimating oy
when N > 15 because the SMD of R is very unstable for large sample sizes, i.e., one mild-
outlier in the sample will unusually increase the data spread. Further, in the field of QC if the

sampling design is unbalanced, then variation cannot be monitored with an R-chart.

Table 5 (The values of d2=E(W) forN =2, 3, ..., 15)

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d> | 1.128 | 1.693 | 2.059 | 2.326 | 2.534 | 2.704 | 2.847 | 2.970 | 3.078 | 3.173 | 3.258 | 3.336 | 3.407 | 3.472

To obtain the point estimate of oy, replace all 3 parameters in equation (63) with the

corresponding point estimators, i.e.,

R = &1pdividuals X2 = 6 =R/d2, or & =R /d; (64)

unit tounit
In order to get the estimation procedure started for the EVOP, we 1% define Di(n) = y;(n—1) —

yi(n), n=2, 3, 4,... np cycles; note that n must be at least 2 in order to compute the differences
Di, i=1,2,3, ..., Nand np stands for the cycle at which a phase has been completed. Recall
that a phase is completed ASA at least one effect becomes statistically significant, i.e., np
denotes the 1%t cycle at which at least one effect exceeds its allowable Error Limits. For the
Example 11.7 (11.5 on pp. 454-458 of Montgomery’s 6e), the values of Di(n) are given below.
Di(2): -0.40,-0.40, -1, 1, 0.30; Di(3):—0.30, 0.40, —1.20, —0.90, —1.05.

Second, we apply the operator Variance, V, to the Di(n) = y;(n—1) —yi(n).

2
o 2 n -
V[Di(n)]= —+065 =——o0 (65)
n-— y n-1 "7

Eqg. (63) also implies that an estimate of V[Di(n)] can be obtained from
VIDin)l = Rj/d; (66)

Combining equations (66) and (65) yields
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VD) = —— &7 = Rp/d; (67)

Eqg. (67) now provides an estimate of oy, provided below.

n-1

6y= ( - JRo/da,n = (fn,n) R (68)

/ -1
where fyn = ( - )/dan. For a 22 design, N =5 points, while for a 23 design, N = 9 points (8
n

factorial plus one center point), and | am not certain what is exactly applicable to N = 10, but |
will guess below. Perhaps, N = 10 pertains to a 23 factorial run in two blocks of 4 factorial
points [(1), ab, ac, bc], [a, b, ¢, abc], and each block with one center point. Note that in this

last block design g = ABC is confounded with blocks and

. n-1
Oy = [.[—— /d210]Rb = (f10,n)RD
\ n

and Rp pertains to the range of all 10 differences. In such a block design it can be shown that

V(Effect) = G; / (2n) and V(CIM) = 0.40 0}2/ /n. The values of fy, are listed in Table 11.26 p.

480 (Table 11.21 atop page 458 of Montgomery’s 6 edition) forn =2, 3, ..., 10 cycles and N =

n-—1
5,9, and 10 total design points. My preference is to use the designation fy, for (, /— )/danN
n

rather than fi, used in the literature, which may be somewhat confusing.

In order to better understand how to apply the above procedure to obtain a point
estimate of oy, | will go thru the estimation procedure for both cycles n =2 and 3 of
Montgomery’s Example 11.7. The data for cycle n = 2 is given in Table 11.23 of Montgomery
on p. 478 (Table 11.18 on page 456 of 6e). This Table shows that the range of the differences
Di(2) is equal to 1 — (—1) = 2.0. Eq. (68) shows that 6y = (fn,n)Rp and Table 11.26 on p. 480

(Table 11.21 atop page 458 of Montgomery’s 6e) shows that fs; = 0.30, and hence
A 1
Oy = 0.30%x2.0=0.60 = S;. The value of f5; can also be obtained from fs; = (\/; )/2.326 =

0.304 (See Table 5 on p. 87 of my notes), or 6y = 0.608. For cycle n = 3, the data is given on

page 478 (Table 11.19 on p. 456 of Montgomery’s 6™ edition), where Di(3) = 0.30, —0.40, 1.20,
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2
0.90, 1.05, and Rp=1.60. The value of fs3 = (\/; )/2.326 =0.35103 and hence 6y = 0.56165 =

Ss. Therefore, at the end of cycle 3, we must use S=(0.608 + 0.56165)/2 = 0.585, in lieu of S,

as an estimate of oy in computing the 95% error (or critical) limits for all the effects and CIM.

yS, .

Ilp —ln:2

The general formula for S is given by S =

Since the Pressure effect (Factor B) is significant at the 5% level at the end of cycle 3,

then one EVOP phase has been completed and the DC (Design Center) must be moved by
examining the overall averages at the end of the nLh (3") cycle. Since point 3, (x1 = 255°F, x, =

150 psi) has the highest average yield of 85.80%, then a 2"¢ EVOP phase will have to
commence with the DC at (x1 = 255°F, x, = 150 psi) and a spacing of 10 units. There is a typo in
Montgomery’s (7e) near the bottom of p. 479 about the DC of the next phase, where x; =
255°F not 225 as printed.

Exercise 29. The yield during the first 4 cycles of a chemical process is shown in the
following table. The process parameters are x1 = percent concentration at levels 30, 31, and
32, and process temperature, x; at 140, 142, and 144 Fahrenheit . Analyze the data by the
EVOP Method; you must complete calculations for all 4 cycles even if a phase is completed

prior to cycle 4.

DP (1) (2) (3) (4) (5)
Cycle
1 60.7% 59.8 60.2 64.2 57.5
2 59.1 62.8 62.5 64.6 58.3
3 56.6 59.1 59.0 62.3 61.1
4 60.5 59.8 64.5 61.0 60.1
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