INSY 7310 Reference: Chapter 10 of Montgomery (7e) Maghsoodloo

Fitting Regression Models

Multiple linear regression (MLR, or MLREG) is the generalization of SLR (Simple Linear
Regression) where the response, Y, is modeled as a function of 2 or more regressor (or
independent) variables. Further, polynomial regression (PREG) is also a special case of MLR as
will be illustrated later, and therefore, PREG will not be discussed specifically herein. Consider
the Example 13.16 on page 601 of Jay L. Devore’s 6" edition, taken from the article “Applying
Stepwise Multiple Regression Analysis to the Reaction of Formaldehyde with Cotton Cellulose”
(Textile Research J., 1984: 157-165), where there are k = 4 regressor (or predictor) variables
and the dependent variable y represents durable press rating (a quantitative measure of
wrinkle resistance). The data matrix, X having 30 factor level combinations FLCs, is provided in

Table 1 atop the next page. The MLR model for this example is
yi = BoXio + Baxi1 + PaXiz + Paxiz + Paxia + €i, (1)

where x1 = HCHO (Formaldehyde Concentration), x; = Catalyst Ratio, x3 = Curing Temperature,
and x4 = Curing Time, B’s (j=0, 1, 2, 3, k =4) are parameters (i.e., unknown constants), and xo
is a 30x1 vector whose value is always equal to 1 for allrowsi=1, 2, ..., n=30. For example,

the value of ys is modeled as ys = o+ 7P1 + 4P2 + 180B3 + 5B4 + €5, where €/s (i=1, 2,3, .., n =

30) are assumed NID(O, Gi ). Henceforth, for convenience we will use the symbol c? for the

error variance Gé,’ further, the index i runs over different FLCs from 1 to n, while the index j
over the regressors. The reader must be cognizant of the fact that in classical regression
theory, it is assumed that the regressor variables x; (j = 1, 2, ..., k) are fixed, i.e., the levels of all
independent variables are selected without error (not at random) by the experimenter and
hence V(xj) =0forallj=1, 2, ..., k. Only the classical regression is covered in this course, i.e.,
only yi's and €i’s in model (1) are random variables (rvs), while Bj’s and x;’s are not rvs.
Further, regression analysis can analyze data from both planned and unplanned experiments,

while ANOVA of factorials pertains to planned experiments.

Exercise 1. Show that in the case of classical regression, E(yi) = Wi = Bo + P1xi1 + Baxi2 +



Table 1 (The Data from Textile Research J., 1984:157-165; k = 4 df = 4 degrees of freedom)

X is a 30x5 Design Matrix Y is a 30x1 Vector Response Each FLC is a 5x1 Vector

FLC |xo X1 X2 X3 Xa | Response yi | FLC | X0 X1 X2 X3 Xa Vi
1 1 8 4 100 1 1.4 16 1 4 10 160 5 | 46
2 1 2 4 180 7 2.2 17 1 4 13 100 7 | 43
3 1 7 4 180 1 4.6 18 |1 10 10 120 7 | 49
4 1 10 7 120 5 4.9 19 1 5 4 100 1 | 1.7
5 1 7 4 180 5 4.6 20 1 8 13 140 1 | 46
6 1 7 7 180 1 4.7 21 1 10 1 180 1 | 2.6
7 1 7 13 140 1 4.6 22 1 2 13 140 1 | 31
8 1 5 4 160 7 4.5 23 1 6 13 180 7 | 4.7
9 1 4 7 140 3 4.8 24 1 7 1 120 7 | 25
10 /1 5 1 100 7 1.4 25 1 5 13 140 1 | 45
11 |1 8 10 140 3 4.7 26 1 8 1 160 7 | 21
12 |1 2 4 100 3 1.6 27 1 4 1 180 7 | 1.8
13 |1 4 10 180 3 4.5 28 1 6 1 160 1 | 15
14 |1 6 7 120 7 4.7 29 1 4 1 100 1 | 1.3
15 |1 10 13 180 3 4.8 30 1 7 10 100 7 | 46

Bsxiz + ... + Bixik, and V(yi) =ci =c? foralli=1ton.

Our objective, just like in SLREG, is to estimate the k + 1 (= 5) parameters Bo, B1, B2, .-

’

2

Bk, where for our present example k =4 independent variables (i.e., the regression model has

4 degrees of freedom = df ), in such a manner that the least squares function (LSF)

L(B;) Zieiz = i (¥i =Bo = Bixin =BaXiz —B3xi3 —Baxis)’?

i=1

i=1

(2)



is minimized. In order to minimize L(Bo, B1, B2, B3, Pa) = L(B;) wrt (with respect to ) the

parameters 3j(j=0, 1, 2, 3, ..., k = 4), the partial derivatives of the LSF, 0L/0pj, must be

required to be zero for all j. Further, 82L/GBJ2 must exceed zero for all j. The 1% partial

derivatives when set to zero generally lead to a system of (k + 1) least squares normal

equations (LSNEs) which must be solved simultaneously for the k + 1 unknowns ﬁj (=0,1,2,

3, ..., k). The k+ 1 (=5) partial derivatives are provided below (note that the index i always

runs over rows of the design matrix X and j over the regressors):

n
oL/ dBo =2 (vi—Bo—Bixi1 —Baxiz —B3xi3 —Baxig) (-1) (3a)
i=1
n
0oL /0By =2 )" (v; —Bo —Bixi1 —B2xiz — B3xi3 —Baxia) (—x) (3b)
i=1
0L/ 0By =2 (yvi —Bo —B1 xi1 —B2 xi2 — B3 Xi3 — B4 Xj4) (- X{2) (3¢c)
i=1
0L /3By =2 (yvi —Bo —Bixi1 —Baxiz —B3xi3 —Baxia) (- xi3) (3d)
i=1
0L/ 3By =2 (yi —Bo —Bixi1 —Baxin — B3xi3 —Baxig ) (- Xig) (3e)

i=1
Note that Egs. (3) show that 62L/6|3]2 > 0 for all j and hence the 5x1 solution vector

A

A A A A A n
B=[B, B, B, B, B4]T minimizes L(B;) =Y & . The RHS (Right Hand Side) of
i=1

Eq. (3a) when set equal to zero leads to the 1% LS (least squares) normal equation as

A A D ~ n .~ n 30
nPo+B; DX +Pr XXy +P3 X X3+ By XXy =D Y5
i=1

i=l i=1

Or: Bo+BiX;+BX, +B3X3 + PyXy =Y (4a)
3



The RHS’s of Egs. (3 b, ¢, d, & e) when set equal to zero give rise to the other 4 normal

equations, respectively.

BoZx, + B X xT + By Xx %, B Txixs + By X xxy =X (x,y) (4b)
Bo Xxs By X xyx; + By X3 +By Dxoxs + By X xox =X %0y (4c)
Booxs + B X x5 By Dxoxs + By X k2 B, Y xax, =D x5y (4d)
Box, + B 2xx, + By Zxox,+ By X xax, B, TxZ =Y x,y (4e)

In Egs. (4) we have removed the index i from all summations only for convenience, i.e., all
summations range from i =1 to i = n, where n = 30 FLCs for this Example. Using the data in

Table 1, we obtain the summary statistics:

n=30, Y x,;=182, 3 x,=204, ¥ x;=4280, 3 x, =118, , X, =6.06667, X,=6.80

X, =142.66667, X,=3.93333, 3. x7 =1266, 3 x,x,=1253, 3 x,x; =26160

D x x4 =706, Zx% =1998, > x,x3=29180, > x,x, =766, Zx§ =639200,

Y x3x,=16720, Y x2 =670, Yy, =106.80, Y x,y=678.50, 3 x,y=860.1

Zx3y =15594.00, §:X14Yi = 430.20, USS= %y? = 437.080,and y = 3.56.

i=1 i=1
Substituting the 20 pertinent of the above 26 statistics into Egs. (4) yields the following

set of 5 normal equations with 5 unknowns for the data of Table 1.

30 o+ 182+ 204B,+ 4280f;+ 118B,= 106.8
182B,+ 1266f, + 1253B, + 26160p;+ 706p, = 678.5
2043+ 1253+ 1998, + 29180B;+ 7660, = 860.1 (5)
4280B, +26160B, +29180B, + 639200B; +16720p, =15594
1188, + 706 B+ 766 f,+ 16720p;+ 670p,=430.2

One way to solve the above system of 5 equations with 5 unknowns is to use Cramer’s Rule

(see my website for further details). Accordingly, we define the 6 matrices Aand Aj(j=0, 1, 2,

3, 4) as follows:



30 182 204 4280 118
182 1266 1253 26160 706
A=(X'X)=(XTX)=| 204 1253 1998 29180 766 |, and the matrix A;
4280 26160 29180 639200 16720
| 118 706 766 16720 670 |
[106.8 |
678.5
is identical to the above matrix A = (X'X) except for its j" column, which is COL;j= | 860.1 |=
15594
| 430.2 |
DY
2. (%)

Z(xzw forj=0, 1, 2, 3, 4, and the nx(k+1) = 30x5 design matrix X is given in Table 1.

Z(Xg.Y)
_Z(X4Y) i

Then by Cramer’s Rule ﬁj = det(Aj)/det(A) forj=0,1, 2,3, 4. Forexample, the matrix A,

n 2 Xg Xy XX3 XXy

Ty Ixf o Txpy o Ixpxg o Iy

Sxy Txx3 EXgy  Ix3  Ixgxy

LXy XX|X4 2X4Y  2X3Xy =

30 182 1068 4280 118

182 1266 678.5 26160 706

= | 204 1253 860.1 29180 766
4280 26160 15594 639200 16720
118 706 4302 16720 670 |

The (information) matrix X"™X = X’X is always symmetrical while the matrices A; (j=0, 1, 2,..., k
= 4) are not in general symmetric. Excel (or Matlab) computations give det(A) =‘A‘ =

17.014701x10%2, det(Ao) = |Ao| = —15.521016533x10%2, det(A;) = 2.734711393x10%2, det(A,)
=3.73954437984x10%2, det(As) = 0.1909996304x10%2, and det(As) = 1.73506460544x10%2.



Hence, By = det(Ag)/ det(A) = —0.9122121, §; = det(A)/ det(A)=0.1607264,
B, = 0.2197831, B3 = 0.0112256, and (3, =|A4|/|A|=0.1019744. The above 5 estimates

of By’s give rise to the following fitted MLR (Multiple LINEAR Regression) model:

9, = —0.9122121x, +0.1607264x;, + 0.2197831x;, + 0.0112256x,; +0.1019744x;,

(6)

Note that, at 1%t glance, the regressor variable x; in Eq. (6) seems to have the largest
impact on the response variable Y because its coefficient 0.2197831 is the largest in absolute

value. The true (or net, or partial) statistical influence of the 4 independent variables x; (j = 1,

2, 3, 4) ony will be determined by tn -1 = f%j /se(f}j), j=L 2, 3, 4=k.

We now develop a general matrix algebra approach for obtaining the coefficient
estimates in a MLR model. The symbols’ and T will denote matrix transpose and the bolded
font capital letter is used to represent a matrix. The necessary matrices, including the design

matrix X that is composed of n planned or unplanned FLCs, are defined below:

¥ I X Xpp Xk Bo S
\p) 1 X1 Xy Xok B S
Y= , B , and € (7a)
_YII i _1 Xn1 Xn2 Xk _Bk_ _en_

For the data of Table 1, the dimension of the vector Y is 30x1, that of matrix X is 30x5, that

of vector (B is 5x1, and € is a 30x1 vector; clearly, (X'X) = A. First, we rewrite the MLR (1),

which is valid only for the it observation y;, for all the n FLCs in matrix form using Eq. (7a).

Y=XB+€

(7b)



In order to obtain the least-squares estimate of the vector 3, we first use the fact that the

LSF in matrix form is given by

n=30

LUB)= Y € = €'e =(Y-XBY(Y-XB) = Y'Y - Y'XB— B'X'Y + B/(X'X)p
i=1

=Y'Y - 2B'(X'Y) + B'(X'X)B = Y'Y - 2BT(XTY) + BT(X"X)B.

(8)

Second, we take the partial derivative of L(B) wrt the vector 3 and will require that the

6L(B)/8B equals the zero vector in order to minimize the LSF with respect to all the

parameters Bo, B1, B2, .., Pk (k =4 for our example). In the following matrix development bear

n=30

in mind that Y'Y = YTY (= z yi2 = the USS) is independent of the column vector 3 = [Bo

B1 B2 B3z Pa], where USS stands for Uncorrected Sum of Squares.

[OL/ By |
oL/ oB,

oL(PB)/oP =

0L/ 3By

i=1

=0-2(X"Y) + 2(X'X)3

setequalto

rd

0
0

(9a)

n n n
Further, Eq. (9a) shows that OL%(B)/oP? = diag(X"™X) = 2[n inzl >, Xi22 . Xizk IT,
i=1 i=1 i=1

which exceed the zero vector and hence the solution B minimizes L(B). Eq. (8) now yields the

heterogeneous system — 0 = (X'Y) - (X'X)ﬁ =(X'Y) - Aﬁ of 5 (= k+1) equations with 5

unknowns whose solutions can now easily be obtained by transposing (X'X)B to the LHS and

multiplying both sides by the inverse (or reciprocal) of the symmetric (k+1)x(k+1) = 5x5 matrix

A=X'X. Thatis, XX)B =(X'Y) > (XX)2X'X)B = (X'X)"(X"Y)



8
or: B = (X'X)L(X'Y) = ALX'Y) = C(X"Y), (9b)

where the (k+1)x(k+1) = 5x5 matrix C = (X'X)™1 = the inverse or reciprocal of A = A, Further,

like (X’X), the matrix C must also be square and symmetrical. Applying Eq. (9b) to the data of

Table 1, we obtain

B = CIX'Y) = (X'X)L(X'Y) = AL(XTY)

[1.09527 —0.03213 —0.01123  —0.004844 ~0.02533 ] _ ]
0.006256 —0.000138 —4.1223x10™>  0.000253 16076550

- 0.001658 —2.3269x10°°  0.000285 |x| 860.1
3.53376x107°>  1.73x107> | |15594.0

430.20 |

0.00493

A

[-0.91221] | B,
0.16073 | |By |
=| 0.21978 | = fi2 =[3 , Which is identical to the previous LS estimates of Eq. (6) on page

0.01123| | Bs
| 010197 |By

6 of my notes using Cramer’s Rule.

Exercise 2. Use Excel to verify that X'X = X"™X = A, which is given atop page 5 for this
Example, and on the same spreadsheet verify the elements of the above 5x1 vector estimator

A

ﬁ in the 2 different methods outlined so far.

Residuals in MLREG

Recall that by definition a model residual is defined as ei = yi — ¥,, where for the data of



Table 1, y; is given by the model (6) on page 6 of my notes. Eq. (7b) shows that 3’\(= Xﬁ

A

(because the best predictor of the vector € is the 0 vector), and therefore, the fitted vector Y
_91 _
b

for all the n = 30 observations is given by Y= |= XP = X(C)X'Y = X(X'X)~1(X"Y)

A

Yn |

= [X(X'X)"2X']Y = (XCXT)Y = HY.

The nxn (30x30 for Table 1) matrix H = X(X'X)™ 1X’= XCX’ = XCX" is called the Hat matrix
because it projects the vector Y onto the vector Y (or Y-Hat) through the matrix equation Y =

A

HY. The nx1 residual vector, therefore, is givenby e =Y —-Y, and as a result
n A A A A A
SSResiduaIs = 2612 = e'e = (Y _Y)’(Y _Y) = Y’Y - 2Y’ Y +Y’ Y. (10)
i=1
However, Y'y- (Xﬁ)'Y = ﬁ' (X'Y) = |§' (X'X) ﬁ = (Xﬁ )'(Xﬁ) =Y \A(, where we have made

use of Eq. (9b) which shows that (X'X)B = (X'Y). Notethat Y'Y=Y'Y implies that

n n
Z9i Vi =Z§/12 . Substituting Y'Y= Y’ Y into the Eq. (10) results in SSgesiduals =
i=1 i=1

Y'Y — Y' Y:Zy2 — 23112 = (Z ylz —CF)— (Z 5\712 —CF) , which shows that SSResiduals =

i=1 i=1 i=1 i=1

SS(Error) = SS(Unexplained) = SS(Total) — SS(Regression) = SSt— SS(Model), where

n n
SSt=CSS = Zylz —CF, and SS (Model) = SS(Regression) = SS(Explained)= ) }712 — CF. Note

i=l i=1
that this last equation is similar to ANOVA where SS(Total) = SS(Model) + SS(Error) =

SS(Explained) + SS(Unexplained) for all statistical models.
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Definition. A matrix, B, is said to be idempotent iff B2 = B. For example, the
identity matrix is idempotent.

Exercise 3. Show that the three nxn matrices, H, I, , and I, — H are all symmetrical and
idempotent, where I, is an nxn identity matrix. Further, show that except for the identity
matrix I, an idempotent matrix cannot have an inverse.

Exercise 4. Use Eq. (4a) to show that ¥, = Bo +[§1 X+ ﬁz Xip +[§3 Xi3 +f54 X;4 isalso
given by ¥, =Y +B; (X =X, )+ By (X =X ) +B5 (Xi3 =X3) +B4 (X14=X,), which

represents the corrected form of the fitted model. As a result, prove that

n n n
ZGi = Z(yi —¥;) =0, which implies that 291 = Zyi . Therefore, the CF for
i=1 =1 i=1

n n
SS(Regression), which is (291 )2 /n ,is also equal to (3 yi)2 /n. Then, show that
i=l1 i=1

n n
SS(Regression) = SS(Model) = SS(Explained) = 2912 —CF= Z (¥; —?)2 .
i=1 i=l1

We now develop matrix formulas for SSt = SS(Total) = Sy, SS(Model) = SS(Reg), and
SS(Residuals) = SS(Unexplained). This will be helpful if one wishes to use Matlab in order to
obtain different SS’s in regression. To this end, let I» be the nxn identity matrix and the vector

1 be an nx1 column vector every element of which is equalto 1,i.e., 1=[1 1 .. 1], where

1’ is an 1xn row vector, and the matrix J = (1x1')/n is an nxn matrix all of whose elements

are equal to 1/n. From these matrix definitions we deduce that

CF=(Y'1)*/n =(Y1)1'Y)/n=Y'[(11")/n]1Y =Y'DY. (11a)

$S1=CSS=Y'Y-CF=YY-YIY=Y(l,—J)Y (11b)
SS(Reg) = SSwodel = Y Y= Y'JY = (HY)'(HY) — Y'JY = Y/(H'H)Y - Y'JY

=Y'HY-YJY=Y'(H-))Y, (11c)
where we have made use of the fact that the nxn hat matrix H is idempotent. Thus,

10
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SS(RES) = SS(Total) — SS(Reg) = Y'(I, — H)Y.

(11d)

k ~
Exercise 5. Prove that SS(Regression) =Y'(H -J)Y = ZBJ Sjy , where Sj, =
j=1
n _ _ n n n
2 X=X =) = D Ix4(yi— = 2 x4y~ (2 xi) Qo yi)/n = 2 [(x4 — Xyl
i=1 i=1 =1 i=1

i=1

A

Hint: SS(Reg) = Y'HY — CF = Y/[X( X'X)"*X’]Y — cF = B’ (XY ) — CF. Further, show that for

our example given in Table 1, S;y = 30.58, Sy, =133.86, S3y =357.20, and Say =10.12.

Example 1. We now use the Egs. (11), which were developed above, to obtain SSt =
SS(Total) = USS — CF = 437.08 —(106.80%)/30 = 56.8720 (with 30 — 1 =29 df). The Minitab

output posted on my website verifies this value of this Total SS. Next we compute SSgreg =

4
Y(H-J)Y= Y B;S;, =(0.1607264)(30.58) +0.2197831 (133.86) + 0.0112256 (357.20) +
=1

0.1019774 x(10.12) = 39.37694 = SS(Model) with 4 df because there are 4 regressors (or

n n 30
independent variables), where S1, =Y (X1 —X,)y; = D_X;y1¥i — X; D,V = 678.50

i=1 i=1 i=
6.066667(106.80) = 30.580, etc. Therefore, SSges = SS(Total) — SS(Model) = 56.8720 — 39.3769 =
17.4951; these SS’s are also consistent with the Minitab output. You should review the ANOVA
Table provided by Minitab, which does not provide more than 3 decimals for P-values. The
exact P-value for Fo(Model) = 14.0672 is p = 0.00000385. The other statistics provided by

Minitab will be derived and discussed later in these notes.

In order to develop Cls (confidence intervals) and conduct tests of hypotheses on

the vector parameter B, we need to show that if B is any pxn constant matrix and Y is an nx1
random vector response, then the COV(BY) =BCOV(Y)B’, and E(Y)=p=[u1  p2 .. ]’ is

an nx1 parameter vector of the n population means, where n stands for the number of FLCs in

11
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the design matrix X. Proof. By definition, COV(BY) = E[(BY — Bu)(BY — B )'] = E[(BY —

BL)(Y'B' — W'B')] = E[B(Y — p)(Y’ — )B")] = BE[(Y — p)(Y’ — p)]B'= BCOV(Y)B' .

Exercise 6. Use the above covariance property, and the fact that under a regression
model similar to Eq. (1) the COV(Y) = o2, to show that (a) COV(Y)=Ho?>, (b) COV(e) =
(I.—H) Gi, where e is the nx1 residual vector, and (c) COV(B) = (X'X)? Gi = Co?, where the

diagonal elements of the symmetric (k+1)x(k+1) matrix COV(B) give the V( ﬁj ),i=0,1,2,.,k

and its off-diagonal elements give the COV(Bj, Br )Jforr=0,1,2,.., k#j.

From part (a) of the above exercise se(y; ) = \/hii x MS(RES) , and part (b) shows that

the V(ei) =(1 — hi) Gi, resulting in the Studentized residuals given by

ri=ei/J(1=hi)MSggs , i=1,2, ..., n. (12)

Any FLC with large hi and consequently with large r; (say with absolute value,

I;|, greater than

2) is highly influential on the least squares fit. Minitab provides an option that lists the 3

vectors Y, , e, and Studentized Residuals r. Note that Minitab uses the designation

Standardized Residuals instead of Studentized residuals, which is not precise, and Montgomery
uses the designation r; for the it" Studentized residual. Further, most authors (and SAS) refer to
ri in Eg. (12) also as the Student(ized) residuals. For our Example 2, the largest ri in absolute
value is ro = 2.04, which implies that the FLC number 9, [1 4 7 140 3]", has the

highest influence on the regression coefficients, while r.s = 0.01 implies thatthe FLC [1 7

1 120 71" has almost no impact on ﬁj (j=0,1, 2, 3, 4). As a matter of fact, | removed

FLC 24 from the design matrix X of Table 1 and used Minitab to obtain the following fitted
model: 9(24) =-0.9130xo + 0.16066x1 + 0.21985x, + 0.01123x3 + 0.10187x4, which is almost

identical to the full regression model SIi givenin Eq. (6). However, ifthe FLCo=[1 4 7

140  3]" is removed from the design matrix X, the resulting regression model 9(9) =

12
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—1.14930x0 + 0.18387x1 + 0.21915x, + 0.01127x3 + 0.11102x4, is clearly different from the

model (6) on page 6 of my notes.

Definition. The trace of a (square) matrix is simply the sum of its diagonal elements.

5 9 7 9 12
For example, the Trace (In ) = n, the Tr =0, theTr(12) =12, the Tr{15 -5 -8 | =
4 -5
13 2 9
16 3 2 13
. . 5 10 11 8 | . .
11, and the trace of the magic(4) matrix 0 6 ; 0 is 34. Note that the det(magic)

4 15 14 1

for an even integer n > 2 seems to be zero and the entries in the magic(n) matrix range from 1,

2, 3, 4, ...ton% Further, it can be shown that the trace of magic(n) = Tr(magic(n)) = (n3+n)/2.

Bonus HW1. (a)Let A and B be 2 compatible matrices (not necessarily square) such
that AB and BA are square matrices; show that Tr(AB) = Tr(BA); further, Tr(A + B )=Tr(A) +
Tr(B), Tr(bA) = bTr(A) for any scalar constant b, and Tr (B"XAB) = Tr(A). (b) Use these

properties of the trace of a matrix to prove that E(SSges) = (n — k —1) Gi and hence an unbiased

estimator of Gi is Gi = MSges = (SSresiduals )/( n —k —1) for all classical regression models.

CONFIDENCE INTERVALS FOR B;(j=0,1, 2,3, .., k)
The main assumption in MLR is that ys (i=1, 2, ..., n) are NID(p;, Gi ), where p; =

Boxio + Pixi1 + PaXi2 +...+ Prxik. Because ﬁ = (X'X)7Y(X'Y) = (CX')Y, every Bj is a linear

combination of yi's (i =1, 2, ..., n) resulting in the normality of each Bj with E(fﬁj) = f3;. Further,
from Exercise 6 above the se( ﬁj) = (CjMSgesiquais )/2, where Cj; is the (j+1)th diagonal element
of the matrix C = (X'X)™, j=0, 1, 2, ..., k. Therefore, a 95% Cl for the parameter f; is given by

Bj ito.ozs;n—k—lxse(Bj)- (13)

13
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If the interval in Eq. (13) excludes 0, then the null hypothesis Ho: 3 = 0 must be rejected at
the nominal 5% LOS (Level of Significance) foranyj=0, 1, 2, ..., k. This, in turn, will imply that
the regressor variable x;, j =1, 2, ..., k, has a statistically significant impact on the (mean of)

response variable Y at the 5% level. Further, under the null hypothesis Ho : j = 0, the statistic

Bj/se( Bj) has the (Gosset) Student’s t-distribution with n —1 — k = n — p df, where p = k+1.

Example 1 Continued. (c) We now use Eq. (13) in order to obtain the 95% Cl for ;.

From COV(B) = (X'X)*c2 = Co2, we deduce that the se( B1) = (C1aMSges )2 =
(0.006256x0.6998)Y/2 = 0.066166 —> HCIL = toozs;25xse( ;) = 2.05954x0.06617 = 0.136272 —>

the Cl for B1is : 0.16073 £ 0.136272 — 0.024455 <31 £0.29700; since this 95% Cl excludes
zero, the null hypothesis Ho : B1 = 0 must be rejected at the 5% LOS. Note that this result is
consistent with that of the Minitab’s output because the P-value that Minitab lists for the
regressor x1is & =p =0.023 <a =0.05. Thus, the effect (or impact) of x; on Y is significant at
the 5% level. Further, if we wish to directly test Ho: B1=0 W/O obtaining a Cl, we may

compute the statistic to= (Bl —0)/se( ﬁl ) =0.16073 / 0.066166 = 2.4291 and compare against

the threshold value of to.025,25 = 2.05954, which agrees with Minitab’s output to 2 decimals.

Exercise 7. Obtain the 95% Cl’s for 32, B3 and s of Example 2 and use them to test

the null hypotheses Ho : f2=10, Ho: f3=0 and Ho: B4a=0 at a =0.05. Further, compute all
the three t statistics and compare your results against the Minitab output.

CONFIDENCE INTERVAL FOR THE MEAN RESPONSE E(Y|xo)=|.to

Let xo=[1 Xxo1 Xo2 ... Xok]' =[1 Xo1 Xo2 .. Xok]" be a specified FLC (within the range of
the X factor space) so that 90 = f%0+ [_3)1 Xo1 +[§2 X02 +... +[_3>k Xok = B"‘O =xo'B is an unbiased
estimator of o =Xo'B = Bo + Pixo1 + Baxoz +...+ Pixok = B'Xo. In order to obtain the se( ¥(), we

must 15 compute the V() as shown below.

V(§0) =V(X} B) = ELX) B-X, B)(Xh B-X) B =Elx, (B - B)(B - Brxol
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= X, E(B —B)B —BrIxe = X} cOV(B )Xo = X} (€O Xo = (X} Cxo) O

(14a)

Eqg. (14a) clearly shows that the

se( )= [( Xy CXo)MSges] 2 . (14b)

Therefore the 95% Cl for the E(Y ‘ Xo )= My\xo , the mean of y at Xy, is given by

X:) B — t0.025;n - k— 1x5€( 3’0) < Mo SX:] B + 10.025;n - k- 1x5€( 3’0) (14c)

Example 1 Continued. Estimate the mean of responsey atXo=FLCs=[1 7 4 180 5]

and obtain the 95% Cl for us =Po+ 7P1+ 4B2 + 180B3 + 5B4. Note that this specified X is

actually the FLC number 5 in our design matrix X. y(= X:} B=[1 7 4 180 5]x

[-0.91221 |
0.16073
0.21978 | = 3.62248; thus the 5 residual is es = 4.6—3.62248 = 0.97752. Further, X; Cxo=

0.011226
| 0.10197 |

0.1051521 and from (14b), se( $) = [0.1051521x0.6998]2 = 0.271267 — HCIL = 0.558685 —>

A

X:) B —0.558685 < us < 3.622479 + 0.558685 — 3.063794 < s < 4.181164 — CIL =

4.1811635 - 3.0637945 =1.117369.

THE PREDICTION INTERVAL (Pl) FOR THE AVERAGE OF N FUTURE

OBSERVATIONS AT Xo

Let yo be the average of N > 1 future observations at an Xp (that was not necessarily used in

N
design matrix X), where y,= Z yro /N . The default value of N is always 1. Since a point
r=l1

15
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forecast of y is X:, B, then the forecast error yo—x(, B is normally distributed with
- " Q — ' QR — ' A 1 ' 2
E(Yo—X, B )=0and V(yp—X, f} ) =V(yg) + X, COV(B )Xo = (E +X, C Xo) 5. Therefore, the

95% PI for the future Yy is
X:) B + t0.025;n - k- 1%5€( yO—X:) B ), or

' A _ ' A _ ' A _ ' A
Xy B —toosn-k-1xse(Yo—Xy B) < Vo< X B — toosin-pxse(Yo—Xq B), (15a)

where se(?O—X;) B)= \/(1 /N + X:] Cx,)xMS,, andp=k+1. (15b)
The Plin Eq. (15a) has a 95% probability to actually contain the future rv y.

Example 1 Continued (e).

Suppose we intend to make N = 3 future observationsatXo=[1 6 8 150 4]

Note that this Xg is not a FLC from the design matrix X, but this specified Xg is within the range of

our factor space. We wish to obtain an interval that has a Pr of 0.95 to contain the average of the
N = 3 future observations, y(, made at Xo. From Eq. (15b), the se(?o—Xg ﬁ ) =0.509595 — HPIL
=1.04953 — PI1=3.902144 +1.04953 — 2.852614 <y < 4.951674; this last prediction
interval has 95% Pr of containing the future rv y based on N = 3 observations made atXo=[1 6
8 150 4], i.e., the Pr[2.852614 < y;< 4.951674] = 0.95. Note that the length of a PI for the

rv yo is always wider than the corresponding Cl for the parameter po because a Pl always has two

sources of error (one from the fitted model and the other from future observations).

Exercise 8. Obtain a 95% PI for a single future observation to be made at X = FLCs = [1

7 4 180 5] and compare the length of your Pl against the corresponding CIL=1.117369
atop page 16.

16
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THE NET (OR PARTIAL) CONTRIBUTION OF ONE OR MORE REGRESSOR
VARIABLE(S)
For the sake of illustration, suppose the following MLR model has been fitted to a

data of size n.

A

V=8, +f31x1+ ﬁzxz+[§3X3+ﬁ4x4+[§5x5 (16a)

Then, the explained variation (with 5 df) due to model (16a) is given by

5. noo N
SSreg(due to x1, X2, X3, X4, Xs) = ZBj S, = (3, -v)*. (16b)
i=1

J=1

W/O loss of generality we consider the net (or partial) contributions of both variables x, and xs
to the total explained SS in the model (16a). In order to compute this net contribution SSgreg(
X2, X5 ‘ X1, X3, X4), we must 1% regress the response y on the variables x1, X3 , X4 using the same n

data points, which leads to a new regression model such as:
? = bo + b1X1 + b3X3 + b4X4 (17)

The coefficients bj (j=1, 3, 4) in Eq. (17) are, in general, different from ﬁj (j=1,3,4)of Eq.

(16a) unless the (information) matrix A = X'X is diagonal in which case the FLCs [1 xi1 X2 ...

xik],i=1, 2,..., n, form an orthogonal design. The net contribution of x; and xs is defined as

SSreg(X2, Xs | X1, X3, X4) = SSreg(X1, X2, X3, X4, X5 ) — SSreg(X1, X3, X4)

n n 5
A —\2 ~ —\2 3
=Z(y1_Y) - Z(yl_Y) = BJSJy_ z bJS_]y_)
i=1 i=1 j=1 j=13,4
A2 a2
SSreg(X2, Xs ‘ X1, X3, X4) = Z N z Yi (18)
i=1 i=1

17
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n n n
This last relationship in (18) follows from the fact that Zyi = 291 = z gli . The F

statistic for testing Ho : B2 =5 =0 is given by Fo = MSgeg(X2, X5 | X1, X3, Xa)/MSges =
SSgeg (x5, X5 | Xy, X5,X,)/2

MSRES

, Where MSges is computed under the model (16a).

Finally, it can be proven, using the Gram-Schmidt orthogonalization procedure, that for
any MLR model the coefficient of the last variable, namely Bk [for the model 16 (a) the value
of k = 5], is the same for both the original non-orthogonal (or oblique) model and its
orthogonal representation; the proof is very long and tedious. Since it is arbitrary as to which

of the x’s we would designate as xi, this leads to the net (or partial) contribution of any single

regressor X, as

k k
2 A A
81- BIZ'/CI"I' = ZB_] S_]y_zb_] SJY ’ r= 1, 2,..., k. (19)
j=1

J#T

In fact it can be shown that the value of Ci is the same for the (X'X) matrix and its

corresponding orthogonal representation, where Cy is the last diagonal element of C.

Therefore, from Eq. (19) the statistic for testing Ho : Br =0 is Fo = 53 /MSges, which has an F

distribution with v1 =1 and v, =n —k —1 df. This last Fo statistic is generally referred to as the
partial F because it tests the significance of the net contribution of x to the overall regression.

Note that Cy is the (r+1)" diagonal element of the matrix C= A= (X'X)%,r=0,1, 2, ..., k

where Coo pertains to ﬁo , i.e., C11 is actually the element in the 2" row and 2" column of the

matrix C = (XTX)™X. Further, Fo = (to)? = [Br /Se(Br)]z-

Example 1 Continued (f). In order to obtain the net contribution of x; to the overall

regression SS of the Eq. (6) model on page 6, we regress y on the independent variables x, x3,

and xs, which results in the following model: § =— 0.086743 + 0.22332x, + 0.012285x3 +

18
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0.095486x4 —> SSreg(X2, X3, X4) = 35.247613; thus, 612= 39.37694 — 35.247613 = 4.129324.

On the other hand, we can also compute 512 from ﬁ‘lz /C11 = (0.160726)%/0.006256 = 4.12930;
the discrepancy in the 5™ decimal place is strictly due to rounding error. Note that if we form
the partial F statistic for testing 1= 0, we obtain Fo = 812/ MSges = 4.1293 / 0.6998 = 5.901, which

is consistent with the Minitab’s output because the value of t(z) =(2.429)? for the variable x; of

Minitabis the same as the value of the partial F statistic Fp = 5.901.

Exercise 9. (a) For the regression model of Example 1 test the null hypothesis Ho : B1

=B4=0. (b) Conduct the partial F test for the variable x..

SEQUENTIAL SUM OF SQUARES
Minitab provides Seq SS each with 1 df. In order to obtain these SS’s, 1% the total

regression of y on x1 must be obtained. For Table 1 this leads to ’}71 =2.41388 +0.18892xi1

whose SS(Reg) = 0.18892 x30.580 = 5.7772, which agrees with Minitab’s output.

Second, in order to obtain the Seq SS due to x,, we must regress y on x1 and x; resulting in

~

Y; =1.07655 + 0.168475xi1 + 0.21491x;

whose SSgreg(X1, X2) = 0.168475 x30.58 + 0.21491x133.86 = 33.91982. Therefore, the Seq SS(x2)
=33.91982 —5.7772 = 28.1426, which also agrees with the Minitab’s output. In order to
obtain the Seq SS(xs), 1% the regression of y on x1, X2 and x3 must be obtained and second the
corresponding SSgeg(X1, X2, X3) must computed. Then, Seq SS(x3) = SSreg(X1, X2, X3) —33.91982.
Exercise 10. Verify that Seq SS(x3) = 3.348 and Seq SS(xa) = 2.1094. Further, show that
k

z Seq SS(XJ')E SSmodel and hence 612<= Seq SS(xk), where x is last regressor.
j=1

19
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PRESS RESIDUALS

For all statistical models, an ordinary residual is defined as the difference between the
actual observation y; and the value of y predicted from the model, i.e., ei=y; — y;. Asan

example, for the data of Table 1, the actual observed value of y at the first FLCis y1 = 1.4 and

the fitted y value is given (from Eq. 6) by

¥1=-0.91221x1 + 0.16073x8+ 0.21978x4+ 0.011226x100+ 0.10197x1 = 2.4773 -

e1= 1.4-2.4773 =—1.0773. The prediction residual (or PRESS residual), e, is a measure of
how well the model will predict the it observation y; if the it" observation is removed from the
model and a new regression model is obtained with the remaining (n —1) data points. For

example, recall that if we remove the 9™ FLC from the model for Table 1, we will obtain the

following regression model: 37(9) =—-1.14930x0 + 0.18387x1 + 0.21915x; + 0.01127x3 +

0.11102x4, whose SS(Total) now has 28 df. Inserting FLCo=[1 4 7 140 3]"into
the above model yields 9(9) =3.0311 > e =Yys— 9(9) =4.8—-3.0311=1.76891.

Since the value e is large, then the regression model W/O the FLC number 9 is inadequate in
predicting yo. Because FLGCq is a veryinfluential point, the full model (with all n = 30 points)

should do better in predicting ys. In fact, you may verify that eg = y9 — y9=4.8 -3.147 =

1.65332 < g(g).

Clearly, it is not practical to obtain n different regression models in order to compute
the PRESS residuals ey, i=1, 2, 3, ..., n. Fortunately, it turns out that each e can be

computed, W/O resorting to further regression modeling, from

i
20
b (20)

1

e(i) =

where hi is the it" diagonal element of the hat matrix H = XCX’ = XCX" . To verify Eq. (20), |

used Minitab to obtain hog = 0.065281, which also agrees with my Excel file Example13.16.
Substitution into (20) yields e() = e9/(1 — heg ) = 1.65332/0.93472 = 1.76879, which except for

rounding error, is identical to the value of e(9) obtained atop this page.

20
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It can easily be argued that 0 < hii<1and hence e;) > e; foralli=1,2, ..., n. Infact,
n
the Trace(H) = ) hj; = TrX(X'X)™*X'] = Tr[X'X(X'X)™"] = Tr(lisa ) = k + 1 = Rank (X) <n. Note
i=1

that although this development does not guarantee that each hj < 1 even if we have shown

n
that their sum zhii <n, but the fact that V(e;) = (1 — h; )Gé > 0 guarantees that each h; must
=1

be less than 1 and the value of any hj cannot equal to 1 because the variance of no rvin the

universe can equal to zero. The Rank(X) = k+1 because the design matrix X has exactly k+1

columns which, in general, should be independent; otherwise, Rank(X) < k+1 when some the

regressors are significantly correlated. The prediction residual sum of squares (PRESS) is

defined below.

PRESS = Ze() Z(l h11

n
Note that PRESS > Z eiz = SS(Residuals). Clearly, the smaller the value of PRESS is, the better
i=1

the predictability of the model for the FLCs already in the model. Therefore, as a measure of

overall model predictability we define

R%’red =1 — (PRESS/SSt) < R%/[odel- (see Eg. 10.51 on p. 411 of Montgomery)

MODEL BUILDING PROBLEMS IN MLR

Let g be the maximum possible number of regressor variables (g > k) that are

candidates for inclusion in the MLR model
y = PBo+ Bixs + Paxa + ... + PiXk+ ...+ PaXqt €. (21)

It is generally inefficient to include all the q independent variables in the model (21), rather the
objective should be to identify a subset of size k from the q (> k) candidate regressors that
satisfies the following 3 conditions:
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(1) The value of the multiple determination coefficient Ri = SSreg(X1, X2, ... , Xk)/SS(Total)

exceeds at least, say 70%, i.e., the explained variation in the mean of response y by the k

< g regressors (if at all possible) is at least 70%. The explained percent of 70% is
somewhat arbitrarily selected by me; if it is possible to obtain a model with Rlz( > 80%

(similar to Pareto Principle of 80/20), the regression modeler should attempt to do so
only by adding regressors that contribute significantly to SSgeg.

(2) Since SSreg always increases (albeit perhaps very slightly) as more regressor variables are

added to the model, it is best to adjust the value of Ri in the above condition (1) to account

for this arbitrary increase by measuring the % explained variation using the adjusted Rlz( as
defined below:
2 =2 _(n-DR} -k
AdjRy = Rj = B
The value of above l_li, unlike Ri , may actually decrease as k increases toward q because in
general n > k. The set of k regressors out of the g independent variables should be selected in
such a manner that has the maximum (or close to maximum) 1_112( among the 4Ck = ¢(Choose)x =
q!/[k!Y(q — k)!] possible sets.
(3) The value of the C, statistic
Co = [SSK(RES)/MS4(RES)] — n + 2(k+1)

must not exceed k but should be fairly close to but less than k. This is due to the fact that C; is

2
and

e’

an estimator of the total standardized Mean Square Error, given by EZ(}A/i -, )2 /o
i=l1

hence the regressors x1, X2, ..., Xk (k < g) must be selected in such a manner that minimize Cp
relative to k. Note that we could easily refer to the above C;, statistic as Cx because it refers to
a model containing k regressors, but statistical software’s generally refer to it as the C, or C-p

statistic. Further, E(C, ) =E(Ck) = k.
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There are several model building procedures in regression that generally lead to the
same “most parsimonious” ( i.e., the least number of regressors) regression model having the
same set of k predictors. These are Stepwise Regression, Forward Selection, and Backward

Elimination.

The significance level (o ) used to judge the contribution of the it regressor to the
overall regression varies from software to software. SAS sometimes uses o, = 0.50 and
sometimes ain = 0.15. Minitab recommends ain = dlour = 0.15, and personally | believe a should
not exceed the range 0.20-0.25 significance level. Further, the experimenter must use his/her

judgment to distinguish between statistical and practical significance.

The most 4 common model building procedures are FORWARD Selection, Stepwise
Regression, Backward Elimination, and Best Subsets (or MAXR) procedures. FORWARD
Selection starts with the best regressor, i.e., the one with the largest R?, then finds the next
best one to add to what exists, the next best, etc. Stepwise Regression is similar to FORWARD
except that there is an extra step in which all variables in the new model are checked to see if
they remain significant at the ain level. Backward Elimination starts with all g regressors in the
model, then drops the least significant one, then the next, and the next, etc. Minitab’s Best
Subsets (or SAS’s MAXR) procedure is a rather long and tedious procedure, but it basically finds
the best (i.e., with the largest R? ) one-variable regression model, then the best 2-regressor
model, then the best 3-regressor model, and so on through the best k-variable model. The
user must decide, from the output, which model is the best and most parsimonious. Minitab
has only two of the above four procedures (Stepwise Regression and Best Subset Regression,
BSR). | recommend the following 3 criteria for selecting one out of the k regression models of
MAXR or Minitab’s BSR. (i) The Fo(Model) should be nearly largest (or the P-value for testing
the model significance should be nearly the smallest) amongst all the k regression models. (ii)

Both Rﬁ and specially the value of I_{i must be the largest or nearly so. (iii) The value of C,

statistic should be less than k and its value relative to k should be minimum. Regression
models for which C, > k exhibit too much bias. Further, the selected model with k or less

regressors should have all coefficients significant at most, say, at the 20% level, and Lack-of-Fit
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(in case of repeat observations at a FLC) should not be significant at the 5% level. Finally,

the experimenter must leave sufficient df (v2 > 6) for MSges = MS(Error) so that the F-test will
have sufficient power to reject Ho: Bj = 0 at the aiin LOS. Note that the sampling distribution of
Fo is not stable when v, <5. By now you should deduce that all ANOVA models are special
cases of regression models, where ANOVA models pertain to planned experiments, while

regression procedures can analyze data from all experiments.

Testing for Lack of Fit (Section 10.8 of Montgomery)

The regression model given in Eq. (6) cannot be tested for LOF (Lack of Fit) because
there are no repeat (or replications) at any of the 30 FLCs. In experiments where some FLCs
are repeated, then the corresponding regression model can be tested for LOF. | have discussed
this subject-matter extensively in my SLREG document (pp.156-161 from my STAT3610 notes)
and is listed on my website. It is required that you download this document and review it

ASAP.

CORRELATION

Regression is generally applicable if the regressor (or independent) variable on the RHS
of the model can be controlled by the experimenter so that V(X) = 0. In studies where both
variables X and Y have to be measured from the same sampling unit, i.e., the (x, y) pair form a
bivariate random vector, then it is best to conduct a correlation analysis than regressing y on x.
To this end, let [X1 X2]" be a 2x1 bivariate vector; then the population total correlation

coefficient (or partial correlation of order zero) between X; and X; is defined as

_ COV(X1,Xp) _ op

01 X0) G|0»)

P12 =p,
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where o612 = E[(X1 — pt1)x(X2 — p2)] = E(X1X2) — E(X1)xE(X2) is the covariance between the
random variable pair X1 and X,. It can be proventhat —1<p <1, or|p|<1, which you will be

asked to do in the following Bonus Exercise.

Bonus 2. Prove that | p | <1 by expanding the V(aX; + bXz), where a and b are

arbitrary real constants of your choice.

When p ==+ 1, the two random variables X1 and X; are said to be perfectly correlated. If
X1 and X; are independent rvs, then p = 0, but p = 0 does not always imply that X; and X; are
independent. However, if X; and Xz have the joint bivariate normal density function, then p =0

does guarantee that X; and X; are independent.

In practice, the value of the population correlation coefficient, p1, is unknown and has

to be estimated from a random sample of size n pairs. The sample point estimate of p is

given by p=r= 512 512 /(n-1) , (22a)

S5 S1S;

where the numerator of r is the sample covariance 6, = S12/(n—1) =

1 n
—— Y [(xj; —X))(xj2 —X2)]; equation (22a) can also be written as

T hi=l

S Z[(Xil -X(Xpp - X, )]
r=p=—=2_ = Ll (22b)

S S n n
\/ 122 \/[Z(Xn'il)z]x[z(xiz'iz)z]
i=1 i=1

Example 2. The following data give the final averages of 15 randomly selected ISE

students in Engineering Statistics (X1) and Operations Research (X2 = OR).
X1:86% 75 63 64 92 58 78 90 85 77 69 82 84 94 76%

X2:77% 85 70 57 83 69 76 82 95 87 62 86 83 85 88%

15 15
The sample statistics are: »_ xj; = 1173, X; =78.20, Y xj,= 1185, X,=
i=1 i=1
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15 15 15
79.00, Y Xij= 93405, ¥ X{,= =95145, Y X;X;, = 93755, S11 = 1676.40,
i=1 i=1 i=1
S = 1530, S12 = 1088, S1 = 10.9427, S, = 10.4540, &, = 77.7143, r = &, /(S1S2) = 0.67935. Note

that if x is regressed on x; and the resulting model R? is computed, then r = \/RIZ\/Iodel .

TEST OF HYPOTHESIS ABOUT p

There are two different tests that can be conducted on the population parameter p: (1)

Ho: p=0, (2) Ho: p = po, where po # 0.
(1) Testing Ho: p = 0 versus one of the 3 alternatives Hi: p#0, or Hi: p< 0, or Hi:p>0.
Recall that statistical inference on a parameter is conducted using the sampling distribution

(SMD) of the point estimator. The point estimator of p is the sample correlation coefficient r.

It can be shown that the null SMD of the statistic

to= —/— (23)

follows a Student’s t-distribution with (n — 2) df. For the example 2 above, the most
appropriate alternative is Hi: p > 0. Therefore, the critical region for testing Ho: p = 0 at the
LOS o =0.05is (1.771, «). The value of our test statistic from (23) is to = (0.67935 \/E )/
v1-0.46152 =3.3379, which easily exceeds to0513 = 1.771, leading to the rejection of zero
correlation between Xi= Engr Stat and X2 = OR. The P-value (or the Pr level) of the testis a =
P(T13 > 3.33794) = 0.002672, which is less than 0.05 as expected because Ho was rejected at
the 5% level of significance. If the assumption of joint bivariate normal density for the 2x1

vector [X1  X2]" is indeed tenable, then the rejection of Ho: p = 0 implies that X; and X are

not independent; otherwise, the rejection of Hp implies that X1 and X; are linearly related.
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Exercise 11(a). Use results from regression to show that the statistic ——— has
1-r

a Student’s t sampling distribution. Hint: First refer to an ANOVA table for the regression of X

2

on Xi and then use the fact that |, =t _.

(2) Testing Ho: p = 0.50 versus the alternative Hi: p # 0.50 at the LOS o = 0.05.

The to given in equation (23) cannot be used to test Ho: p = 0.50 because the expression for to is

free of p. However, Sir R. A. Fisher (1921, Metron 1, No.4, 1) found the remarkable logarithmic

1 1+
transformation g =— ln(l—r) = arctanh(r) = tanh ~1(r)
-r

2

whose sampling distribution (SMD) approaches normality very much faster (perhaps as much

1 I+r, .
as 10 times faster) than that of r. Thatis, Z= 5 In (1—) is approximately normal with

1 1+
E(Z|p) = E ln(l—p)= tanh~(p) and V(2) = 1/(n —3). For the Example 2 above, the
-pP

approximate SMD of £ is depicted in Figure 1, where under the null hypothesis E(Z | p= 0.50) =

1 1+0.50
— In(
2 1-0.50

) =0.54931 = uz and V(&) = 1/(15-3) = 0.083333 . The acceptance interval for

testing the 2-sided Ho: p = 0.50 consists of values of £ given by (A, Ay) = (&1, Su) = (—0.0165,

1 1+ 1+0.67935
1.1151). The value of the test statisticis & = 5 In (_r) =—In(————) =

1
-1 2 1-0.67935
arctanh(0.67935) = 0.82791, which is well inside the Al = (—0.0165, 1.1151) and hence we
cannot reject Ho: p = 0.50. The P-value of the test is given by a = 2xPr(5>0.82791) =
2xPr[Z~N(0, 1) > 0.9651) = 0.33450. Therefore, we cannot deduce that the data provide
sufficient evidence for p # 0.50 but they do provide sufficient evidence that p > 0. Note that

Kendall and Stuart (Vol. 1, 2" edition, p. 391) give a better approximation for
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se(Z)=1/+n-3 =0.2887

0.025

0.025
I s
AL 0.54931 Ay o1
Figure 1. The Approximate SMD of Z under Hy
1. 1+ 1 4-p*
V[.Z =—In( r) ] as + P Forsmall p and n > 11, this last approximation is
21—t n-1  2(n-1)>

almost equal to 1/(n—3).

OBTAINING a 95% CI FOR p

1+
Again, we have to make use of the fact that & = E In (l—r) = arctanh(r) = tanh=(r) ~
—r

1 1+
N[E In (l—p), 1/(n =3)] = N[tanh ~(p), 1/(n —3)], as depicted in Figure 2, which clearly shows
-p

that
1, 1+r
Prluz— 1.96xse(2) < Eln(l_) <uz+ 1.96xse(2)] = 0.95 (24)
-r

After several algebraic steps, Eq. (24) will show that in general p. = tanh[arctanh(r) —
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se(2) =1//n—-3 =0.288675

_

.025

/ Me \ <

+1.96
pz — 1.96xse(Z) H xse(<)

Figure 2. The Approximate SMD of 2

Zyyp/~Nn— 3]= tanh(_lnH_r ~Zyn/~Nn— 3), where tanh(r) =

— and Z s =
e +e

1.959964 (= 1.96). For our example, the 95% lower confidence limit is p. = tanh(0.26210) =
0.25626. Further, pu = tanh[arctanh(r) + Z; 1,s/~/n —3] so that the 95% upper confidence

limit for our example is pu = tanh(1.39371) = 0.88398, i.e., 0.25626 < p <0.88398. As
expected, this last Cl does include the hypothesized value of po = 0.50 because the null

hypothesis Ho : p = 0.50 could not be rejected at the 5% level.

A closer look at the above correlation analysis between X; = Engr Stat & X; = OR
average grades at semester’s end reveals that the zero-order correlation ri; is not an exact
measure of true linear relationship between Xi; and X; because there are several other
variables that impact student overall avenges in any one course, i.e., the correlation between
Engr Stat and OR may be purely incidental because both variables are highly correlated with
other variables listed below. In our example, both X; = Engr Stat & X, = OR are impacted by X3
= Average study time per week, X4 = Student’s IQ, Xs = Socio-Economic conditions, Xe =

Student’s diet & health, Student’s amount of interest in the course, etc. If we cannot sample
29
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students with identical I1Q, Average study time per week, the same Socio-Economic
conditions, etc, then we have to make use of partial (or net) correlation of order larger than
zero. That s, a true interdependence between X; and X2 must be evaluated while variables X3,
Xa, Xs,... are held constant, or their effects X3, Xa, Xs,... are removed from both X; and X;. This

leads us to the following definition.

Partial CORRELATION (PC)

The sample PC coefficient (SPCC) of order (or rank) 1 between X; and Xz, removing the

impact of a 3" variable X3 on both X; and X3, is defined as

—C
r23= 12 73 (25a)
(C11Cy)
where Cjj is the cofactor of the (i, j)th element in the correlation matrix
Iy 13
r= 1‘21 1 1‘23 , (25b)
I3p Iy g

which is always square and symmetrical so that rij = rj for all i # j, and for obvious reason rij=1

for all diagonal elements. In Eq. (25a), subscripts 1 & 2 are primary and subscript 3 is said to be
secondary. The cofactor Cjj of a matrix is given by Cj; = (—1)"xMj;, where M is called the

minor of submatrix with both the ith row and jth column removed from the original square

matrix. A minor, M, is the determinant of the resulting square submatrix with both the ith

row and jth column removed from the original matrix. For the correlation matrix, r in (25a),

. I ooy |1 13 )
the minors and cofactors are as follows. C11 = M1; = det L IF =1- 155 (due to
32

5, 1

L, I3 1P I3
symmetry); C21 = —M1=—det { =— = —1j5 + r13rs2 = — Iy  + rair3 = Ci2 (due to

3

I, 1
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fo T3 | |he T3
symmetry); C31 = M3;1= det ) = = Ip) r23—r13 = I 32— r31= Mi3 (due to

I3

1 I3
symmetry), etc. Note that the Laplace expansion of the det(r), in terms of its column 1, gives
the det(r) = | r| = 1xCi1 + r21xCa1 + r31xC31.  For the 3x3 matrix r in (25b) there are 5 other
Laplace expansions of the |r|. Substituting the above cofactors into Eq. (25a) results in

1) — L3003
26
(-3 -135)]" 26)

r123=

The sample PCC of order 2 between X1 and X;, conditioned on X3 and X4 held fixed
(or held constant, i.e., removing the impacts of both X3 and X4 on X1 and X3), is given by

_C12

—, (27a)
(C1Cyp)"?

r234=

where Cjj now is the cofactor in the symmetric correlation matrix
I 1y 153 14
1 13 1y

r= . (27b)

3y I3 1 I3y

| Ta1 T2 g 1

Again, note that ri2.34 gives the net (or partial) correlation between X1 and Xz, while removing

the impacts of X3 and X4 on both X1 & X,. For the correlation matrix in Eq. (27b), we have Ci, =

Ly T3 Tpy Hy Tz Ipg
2
—Maz=—det|ry; 1 1y |=—|15; 1 134 | =—Ty(1—133)+ raa(ras —raarsa) — raa(rasrss — raa) .
41 1y 1 41 1y 1

In the case of multivariate normal underlying population, Kendall & Stuart (1972) give the

variance of ri.34s.. as

|
V(ri23ss.) = 0 (1=Pir345.) (28a)
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Thus, under the null hypothesis Ho: p122‘345._' =0, when n is moderately large, say n > 15,

the approximate sample variance reduces to 1/n with se = 1/<n . i 9122.345..‘ is not specified

under Ho, then the variance in (28a) reduces approximately to
1 2 2
V(rases. )= —(1=1345 ) (28b)
n

It has been shown in statistical literature that the SMD of (1,;, Vvn—2—nsv)/(1- r122.345.__)1/2
is that of Student’s t with df = n-2-nsv, where nsv is the number of secondary variables. This
last statistic can be used to test only p122‘345._' =0, and no other values of p122‘345._'.

Before providing an example of SPCC computation, it should be noted that there is
another interesting way to compute the sample PCC riz34s... First, regress the primary
variable X; on all the secondary variables X3, X4, Xs, ... and obtain the residuals ei1, e21, ..., €n1.

Second, regress X; on all secondarys X3, X4, Xs, ... and obtain the residuals ey, €22, ..., €n2. Then,

n

Z (e x€,)
i=1
JSe2)x(Xed)

Example 3. The following data give the overall averages in Engr Stat & OR of 15 ISE

(29)

r12.345..=

students with their corresponding average number of hours spent per week on both courses,
while we are assuming that each student roughly apportioned his/her time almost equal

amount to each course.

X1: 86% 75 63 64 92 58 78 90 85 77 69 82 84 94 76%

X2: 77% 85 70 57 83 69 76 82 95 87 62 86 83 85 88%

X3: 9.5 87 7.2 7.2 103 41 7.7 11.8 109 7.0 3.8 9.3 85 10.9 7.6 hrs/week

Our objective is to compute the value of ri23 and test its statistical significance at the 5% level.

As in Example 2 on page 26 of these notes, r1; =0.679351, and similar calculations show that
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ri3 = 0.851637, and ry3 = 0.6518645. Inserting these zero-order correlation coefficients into

Ed. (26), we obtain riz3= (1, —Tj35,5) /[(1 —1‘123)(1—r223)]1/2 =0.31247642. Thus, when we

remove the impact of average study-time, X3, from both the Engr Stat and OR average grades,

the net correlation has been reduced to 0.31248 from the total correlation of 0.679351. Using
the fact that the SMD of (1j5 34 Vn—2-nsv)/(1— r122.345...)l/2 is that of a Student’s t with

12 df, we obtain t,= 1.1395105. Therefore, the P-value of the test is equal to & = 2Pr(t12> to)

=0.276726, which is not at all significant at the 5% level, so that we cannot reject Ho : p123=0

at significant levels as high as 25%. This implies that the correlation between Engr STAT

averages with that of OR may have been incidental from a statistical standpoint. Furthermore,
15

| used MS Excel and regressed X1 on X3 and found that Zeizl =460.531677; then, regressed X»
i=1

15 15
on Xs and obtained Y (e; x€;,)=198.9088493 and > ¢, =879.861281. The use of Eq. (29)
i=1 i=1

now yields ri;3= 198.9088493/ \/(460.53 16769)x (879.8612809) = 0.31247642, as before.

Note that the secondary variable X3 somewhat masks another variable, namely the student’s
amount of interest in any one course; e.g., student number 1 has X3= 9.5 hours, which may
equal to 5.5 hrs/week on Engr Stat and only 4 hrs/week on OR. However, in the middle of
page 33 | made the assumption that each student had almost equal-interest (another
secondary variable) in Engr Stat & OR, notwithstanding the fact that both courses are highly

quantitative.

Exercise 11(b). The IQ’s of the 15 students of Example 3, in the same order as the data

atop page 33, are

X4:120 118 115 114 123 119 117 126 121 118 115 120 121 119 120
Compute the value of 2"%-order SPCC, ri2.34, using both formulas (27 a &b) and (29). (c) Test its

statistical significance at the nominal level of 5%.
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