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Reference: CHAPTER 7 of Montgomery(8e) Maghsoodloo

BLOCK CONFOUNDING IN 2% FACTORIALS (k factors each at 2 levels)

It is often impossible to run all the 2% observations in a 2* factorial design (or a single
complete replicate) in one block. For example, consider a 23 design where it may be possible
to run only 4 experiments in one day, and the other 4 FLCs must be run the next day, while one
complete replicate of a 23 design has 8 runs to be run in one day. Yet, as another example two
batches of raw material may be needed for 8 experimental runs. In such situations, days
would form two blocks (or the two batches would form two blocks), and the experimenter has
to be careful not to confound a main factor, or a 1st-order interaction with blocks. If the
experimenter haphazardly runs the 4 FLCs [(1), a, ¢, ac] of a 23 factorial on day one, and the
FLCs [b, ab, bc, abc] on day 2, then in fact s/he has confounded the effect of factor B with
blocks. This is because the block contrast will also be computed as [b + ab + bc + abc] — [(1) —a
— ¢ —ac], which is identical to the contrast for factor B. As a result, Days and factor B will be
indistinguishable from each other or hopelessly confounded with one another. On the other
hand, if the FLCs [(1), a, bc, abc] are runon day 1, and [b, ¢, ab, ac] are run on day 2, then the
BC interaction is confounded with blocks. For other examples, study pages 304-312 of
Montgomery’s 8 edition. In general, our objective will be to confound the highest possible
order interactions with blocks. So, in our example of the 23 experiment which requires to be
completed in 2 days, we must design in such a manner as to confound the AxBxC effect with
days. This leads to running the FLCs [(1), ab, ac, bc] in one day and the FLCs [a, b, ¢, abc] on

another day. Which block of FLCs are run on day 1 must be determined at random and also

randomization is required within each block (because this is a block design with one-half
replicate conducted per day and not a completely randomized design).

To develop a general block confounding scheme for base-2 designs, we must use the
algebra in base-2, i.e., we must learnthat2=4=6=8=... =0 (modulus 2), while3=5=7=9=
... =1 (mod 2). Recall that the algebra in base-2 has only 2 elements, namely 0 and 1, and this
is why 0 is used to represent the low level of a factor, and 1 represents the high level of a

factor for base-2 designs. Further, the base-10 number 2 has no meaning in base 2, and 2 of

60



61
base 10 is represented by 10 in base 2, i.e., 210= 102, 310= 11,, etc. Note that each factor has

only 2 levels (0 = low level, 1 = high level), not 3 in which case the element 2 would be needed
to represent the 3rd level if a factor had 3 equi-spaced quantitative levels, or 3 qualitative
levels.
For the sake of illustration, consider the Example 13-10 of Montgomery & Runger

(1999, 2" Ed., pp. 680-683), where the objective is to investigate the effects of 4 factors on the
terminal miss distance of a shoulder-fired ground-to-air-missile. The 4 factors are target type
(A), seeker type (B), target altitude (C), and target range (D). An optical tracking system will
measure the terminal miss, y, to the nearest 10" of a foot, where | have slightly modified the
responses. In order to conduct the experiments in less time, 2 gunners (or operators) are
used, who may be of different competence levels. Therefore, we have a 2* factorial with 2
operators who act as 2 blocks. Since one full replicate of a 2 factorial provides 16 distinct
FLCs, then such a design would provide a total of 15 df in a CRD for studying the 15 orthogonal
effects A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and the 3rd-order interaction
AxBxCxD, each having 1 df. However, in this example each one of the 2 operators will run 8 of
the FLCs, and we must assign the 8 FLCs to each operator in such a manner that none of the
lower-order effects (such as main factors and 1%t-order interactions) are sacrificed, i.e., it is
best to sacrifice the effect of the 4-way (or 3-order) interaction ABCD. Put differently, the 2
operators absorb one df between them, and ABCD interaction also has one df; thus, the
assignment of the 8 FLCs to each operator must be carried out in such a manner as to
confound the ABCD effect with blocks (or operators). To start our confounding scheme, we
define the contrast function for the generator g = ABCD as

§ =0yXq+ 0pXy + 0gX3 +0ygXy
where x; refers to the levels of factor A, x2 to the levels of B, etc, and aii=0 or 1 in base 2. For
example, the contrast function for the defining contrast (or the Generator) ABCD is

€ (ABCD) = X1+ X2+ X3+ X4,
while the contrast function for confounding the ABD interaction with two blocks is

E(ABD) =x1 +x2 + Xa4.

Observe that for base-2 designs, the value of the contrast function & can be only 0 or 1.

Further, for all confounding schemes and fractional replicates, the block with zero contrast
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function value(s) is called the Principal Block (PB). We now begin the assignment of the 16
FLC's to the 2 blocks, one with (ABCD) = 0 and the other block with §(ABCD) =1.

The FLC (1): E(ABCD)=0+0+0+0=0; theFLC d:£=1+0+0+0=1; theFLCb: &=
0+1+0+0=1; theFLC ab:{=1+1+0+0=2=0(mod 2); the FLCc: {=1; theFLCac: ¢ =
2=0(mod 2); the FLC bc: E=2=0(mod 2); the FLC abc:{=1+1+1+0=3=1(mod 2), and
so on up the FLC abcd for which §(ABCD)=1+1+1+1=4=0(mod 2). The 2 blocks
pertaining to the 2 operators with the corresponding responses, in feet, are shown below.
Thus, in the following 2 blocks the effect ABCD is confounded with blocks. Note that the PB

always contains the FLC: (1) = (0, 0, O, ..., 0) for all base-b designs (b =2, 3,5, 7, ...).

The Principal Block (PB), where ABCD is at +1

The Block with £=0: (1)=3.1,ab=6.8,ac=6.3, bc = 8.5,
ad =10.3, bd =3.7, cd =8.1, abcd = 9.2 feet

The & = 1 Block, where ABCD is at —1

The Block with§=1: a=7.1,b=4.9,c=6.3,d=4.2,
abc=6.2,abd =12.7, acd =9.4, bcd = 7.2 feet

Exercise 21. (a) For the above example, sacrifice the effect g = ACD to generate the 2
blocks each containing 8 FLCs. First generate the PB and then use it with one element of the &

=1 block to obtain the remaining 7 FLCs of the & = 1 block.

The SS’s for different effects are easily computed by using their contrast values, ignoring
blocking altogether. For example, the contrast for the BD effect is: Contrast(BxD)=+(1)+a—b
—ab+c+ac—bc—abc—d—-ad+bd+abd—-cd—-acd+bcd +abcd=3.1+7.1-49-6.8+6.3+
6.3-85-6.2-4.2-103+3.7+12.7-81-94+7.2+9.2=-2.8 —
SS(BxD)= (—2.8)?/16 = 0.49. The ANOVA table is summarized in Table 11. The ANOVA Table 11
clearly shows that the most influential (or vital) effects in their order of strength are A, AxC, D,

AxD and the other 10 effects are all amongst the trivial many! In fact, the above 4
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Table 11 (Confounding an Unreplicated 2 Factorial in Two Blocks)

Source | Total Blocks A B C D AB AC AD
= ABCD

df 15 1 1 1 1 1 1 1 1

SS 97.25 0.25 30.25 | 1.21 | 441 | 15.21 | 0.04 | 25.0 | 13.69

Source BC BD CcD ABC ABD ACD BCD

df 1 1 1 1 1 1 1

SS 0.36 0.49 0.36 | 0.36 4.0 0.81 | 0381

vital effects account for 86.53% of total variation in the mean of response y. Before we

identify the optimal condition Xo, we note that factor B and all its interactions are relatively
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weak, and in order to obtain a measure of residuals we may collapse this 2% confounded block

design with n = 1 into a 23 CRD factorial design (ignoring blocking) with n = 2 observations per

cell as depicted in the OA below.

The OA for a collapsed 2* confounded Factorial

D C A FLCs Yijkr
- - - (1), b 3.1, 49
- - + a, ab 7.1, 6.8
- + - ¢, bc 6.3, 8.5
- + + ac, abc 6.3, 6.2
+ - - d, bd 4.2, 3.7
+ - + ad, abd 10.3, 12.7
+ + - cd, bed 8.1, 7.2
+ + + acd, abcd 9.4, 9.2
y..= 114

The Minitab output listed below gives the ANOVA table for the above OA, which clearly

confirms our aforementioned conclusions about the strong effects of A, AC, D and AD on the

mean of response y (note that the impact of factor C on the mean of y is almost significant at
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the 5%

level).

ANOVA Table 11: y versus A, C, D

Factor Type Levels

A fixed
C fixed
D fixed

Analysis of Variance fory

Source
A

C

D

A*C
A*D
Cc*D
A*C*D
Error
Total

1
1
1
1
1
1
1
8

15

SS
30.250
4.410
15.210
25.000
13.690
0.360
0.810
7.520
97.250

Values
2 -1, 1
2 -1, 1
2 -1, 1

MS
30.250
4.410
15.210
25.000
13.690
0.360
0.810
0.940

Fo P
32.18 0.000**
4.69 0.062
16.18 0.004**
26.60 0.001**
14.56 0.005**
0.38 0.553
0.86 0.380

S=0.969536 R-Sq=92.27% R-Sq(adj)=85.50%

of the factors A, C and D.

10/4/2005 11:01:21 AM
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Next we cross factor A with C and then A with D in order to obtain the optimal settings

AxD
0 1
22.8* 23.2%*
26.4 41.6

AxC
A C 0 1
0 15.9* 30.1
1 36.9 31.1

Assuming that the miss-distance is an

STB type QCH, the above

interaction tables clearly show that Xo =

AoCoDo or AoCoDl

However, the choice Xo = AoCoDo would be better than Xo = AoCoD; if we examine the impact of

factor D in isolation (Do = 49.2, D1 =64.8). Note that if the weak factor B is used to reduce

variation (assuming that it impacts o), the above 2* factorial should be collapsed in terms of
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factors A, Band D. It turns out R(B,) =2.20 and R(B;) = 2.80 so that factor B (seeker type) has

minimal impact on oy.

COMPLETE CONFOUNDING THE 2¥ UNREPLICATED FACTORIAL IN 2 P
BLOCKS (0<p<k-2,k=2)

As an example, suppose in the miss-distance experiment above we had 4 gunners to
conduct the 16 experiments, each being assigned 4 different FLCs. How do we make the FLC
assignments to the 4 gunners so that we will not sacrifice the main factors and also protect
some of the two-way interactions of our choice? Since the 4 blocks carry 3 df, then we must
sacrifice 3 effects each with 1 df to blocks, i.e., we will have to have 2 generators such as g1 =
ABD, g = ACD, and their generalized interaction g3 = gi1xg, = BC, all 3 effects confounded with
blocks. Therefore, the best we can do in this design is to protect our 4 main factors and 5 out
of the six 1%'-order interactions. Since only two out of the three generators g1 = ABD, g = ACD
and gz = BC are independent, then we need only 2 contrast functions (cfs) to allocate the 16
FLCs to the 4 blocks with (§1=&2,=0), (§1=0,&=1),(§1=1, & =0),and (&1 = &, =1), where
€1 =x1+X2+xs and & =x1+x3+xs. Notethat &1+ & =x2 +x3 = {(BC). We first obtain the
principal block (PB), i.e., the block for which &1 = €, = 0 and use it to generate the other 3
blocks. Note that in this design the experimenter has prior knowledge that the BC interaction

is either nonexistent or unessential and or both.

The Principal Block (the PB for which&:=&,=0): (1), abc, ad, bcd

The (§1=0, & =1) block: ab, ¢, bd, acd

The (§1=1, &, =0) block: ac, b, cd, abd

The (§1=1, & =1) block: d, abcd, a, bc
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For another example of confounding in a 2* factorial in 4 blocks, study the section 7.6 on pp.
313-316 of Montgomery(8e). Again, the reader must observe that the PB always contains the

FLC (1), where all factors are at their low levels.

COMPLETE CONFOUNDING THE 2¥ REPLICATED FACTORIAL IN 2P BLOCKS
(p <k)

Exercise 21 (Continued). (b) Suppose that the miss-distance experiment is conducted

in 2 blocks with the generator g = ABCD but replicated 3 times, and in all 3 replicates ABCD is
sacrificed as the design generator. Thus, the effect of ABCD will be completely confounded
with blocks because ABCD is the design generator in all 3 replicates. Provide the outline of the
ANOVA table and show why the error term for the ABCD effect is the interaction effect:
RepxBlocks. Hint: Carefully study the example by Montgomery(8e) on his pp. 309-310, where
blocking of ABC has been used to reduce the value of error SS because 6 df is absorbed by
Replicates and ReplicatesxBlocks.

Note that in general if at least 2 replicates of a 2% (k > 2) factorial are run with complete
confounding, then always error SS is reduced by the amount of SS(Replicates) &
SS(BLKSxReplicates). Therefore, blocking in general is used as an error variance-reduction

technique.

PARTIAL CONFOUNDING A REPLICATED 2% FACTORIAL DESIGN

Suppose in part (b) of the above Exercise 21 the experimenter decides to confound ACD
with blocks in replicate 1, confound ABD with blocks in replicate 2, and confound ABCD with
blocks in replicate 3. Therefore, after all the 48 experiments are conducted, 2/3 relative
information can be obtained on the confounded effects ACD, ABD and ABCD. Such a design is
said to be partially confounded. The layout of the experiment is given atop the next page.

(The Block 1 in each replicate is the PB for which & = 0 for all generators).
The ANOVA outline for this partially confounded design is provided in Table 12. Note that

the Residual df, which is 27, is actually obtained from the interaction of Replicates with all
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Replicate 1 Replicate 2, where ABD is Replicate 3
ACD confounded confounded with blocks ABCD confounded
Block 1 Block 2 Block1(&=0) | Block2(§=1) Block 1 Block 2
(1), b, ac, a, ab, c, (1), ab, c, abc a, b, ac, bc, (1), ab, ac, a b,c
ad, cd, abc, be, d, bd ad, bd, acd d, abd, cd bc, ad, bd, abc, d, abd,
abd, bcd, acd, abcd bcd abcd cd, abcd, acd, bcd

the other effects excluding blocks, i.e., 27 = 2x4 + 2x6 + 1x1 + 2x2 + 1x1 + 1x1 . Thisis why |
would prefer not to refer to this 27-df effect as the pure error (PE) term, because there were no
exact repetitions at the same FLC. Thus, in essence the Residual SS in this partially confounded
design is the unexplained (or unaccounted for) SS. However, | am not exactly accurate in my
assessment of no pure experimental error because each FLC was replicated 3 times in the 48
experiments. This implies that the pure error df for the above design should be 2x16 = 32, but
out of these 32 df, two were absorbed by replicates and 3 by blocks so that the left-over (or
residual) df is equal to 32 — 2 — 3 = 27 as before. Therefore, blocking in this experiment has
reduced the SS(Error). However, if SS(PE) were to be computed as though the above were a CRD,

then SS(Residual Error) in general would not equal to SS(PE) — SS(Rep) — SS(BLKS within Reps)

Table 12
Source Total Replicates Blocks Main AB, AC, ABCD
(within Factors AD, BC, (From
Replicates) A B,CD BD, CD Rep.1 & 2)
df 47 2 3 4 6 1

Source | ABC, ACD (only ABD (From Residuals
BCD from 2 & 3) Rep. 1 & 3)

df 2 1 1 27

because SS(ABCD), SS(ACD) & SS(ABD) of the CRD and the partially blocked design would
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not be equal to each other. Thus, SSges(PCFD) = SSpe(from the corresponding CRD) —SS(Rep) —
SS(BLKs) +[SScrp — SSpcrp], where SScrp represents the SS’s of all the partially confounded effects
computed as though the design were completely randomized and SSecro stands for SS’s of all
partially Confounded effects.

For a numerical example, study the Example 7.3 on page 318 of Montgomery(8e).
Further, you should bear in mind that the PB for all designs, regardless of the base, is always
the block containing the FLC (0, 0, O, ..., 0) for which all contrast function values are zero. Itis
always most convenient 1t to generate the PB and then use it to generate the other blocks

using the group property of the PB.

Exercise 22. Work problems 7.1, 7.5, 7.6, 7.15, and 7.16 on page 319.

Errata for Chapter 7 of Montgomery’s 8" Edition
Page 318, in Table 7.11, change SSc to 374850.0625, SSac to 94402.5625, and SSeror to
SSres =122754.8125.
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