Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

DOE (or DOX) FOR BASE-2 BALANCED FACTORIALS

The notation 2¥ is used to denote a factorial experiment involving k factors (A, B, C, D,
..., K) each at 2 levels. For example, the notation 2* implies that we have 4 factors (A, B, C, D)
each at 2 levels (low =0 or —1, and high =1 or +1). Since 2* = 16, then we have 16 FLCs, the
corresponding OA will have 16 rows, and the exponent 4 implies we can write 4 columns
arbitrarily, one column per factor. Further, there is also a specific notation that is applicable
only and only to FLCs of base-2 designs. For the case of 2* factorial, the symbol "ac"
represents the FLC where factors A and C are at their high levels while factors B and D are at
their low levels. In other words, the presence of a small letter indicates the corresponding
factor is at high level while the absence of a small letter indicates the factor is at its low level.
When all factors are at their low levels, then the symbol (1) is used to represent the FLC (0, O,
...,0)=(-1,-1,-1, -1, ..., —-1). Further, the notation “b” implies that factors A, C, and D are at
their low levels while B is at its high level, etc. Table 6.10 of Example 6.2, on page 257 of
Montgomery(8e), illustrates this concept very well. In Table 6.11 at the bottom of page 258,
the 4 columns pertaining to the 4 main factors (A, B, C, & D) were written completely
arbitrarily as illustrated atop the next page, while the interaction columns were obtained by
simple multiplication of the factors involved in the interaction. Table 6.10 of Montgomery(8e),
reproduced atop the next page, shows that the total effect (or contrast) of the 2nd-order (or 3-
way) interaction ACD is computed as follows: Contrast (ACD)= —(1)+a—b+ab+c—ac+ bc—
abc+d—-ad +bd—- abd—cd +acd — bcd + abcd. For the data of the Example 6.2 on page 257
of Montgomery’s 8t edition, we obtain the Contrast (ACD) = — 45 + 71 — 48 + 65 + 68 — 60 + 80
—65+43-100+45-104—-75+86—-70+96 =—13.0. Since there are 8 pair-wise
comparisons (with n = 1 observations per FLC in this example), then the average effect of ACD

Contrast (ACD)  Contrast

interaction is computed from ACD = =-13.00/8 =-1.625,

which agrees with Table 6.12 atop page 258 of Montgomery’s 8t edition. For practice, you

should write the contrasts for BD and ABCD interaction effects using Table 6.10 of
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One full replicate of a 2% factorial (Table 6.10 of Montgomery(8e) on his page 257)

D C B | A | FLC | AC=AxC BD = ACD Yijkt
BxD AxBxCxD
- - - - (1) + + + - 45
- - - + a - + - + 71
- - + - b + - - - 48
- - + |+ ab - - + + 65
- + - - C - + - + 68
- + - + ac + + + - 60
- + + - bc - - + + 80
- + | + | + | abc + — - - 65
+ - - - d + - - + 43
+ - -+ ad - - + - 100
+ - + - bd + + + + 45
+ - + + abd - + - - 104
+ + | - | - cd - - + - 75
+ + | - | + | acd + - - + 86
+ + + - bcd - + - - 70
+ + | + | + | abcd + + + + 96

Montgomery and try to determine if a pattern develops for writing any contrast in base-2
designs. Some of you are probably familiar with the pattern that | am referring to, namely

0Odd and Even Rules.

The Odd and Even Rules. If the effect has an odd number of letters, such as ACD 2"-

order interaction, then we must use the Odd Rule to determine the signs in its contrast, i.e.,
odd number of letters in common with ACD must be assigned a “+” sign and even number of

o

letters a sign, and vice a versa for the Even Rule.
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As an example we use the Even Rule to obtain the contrast for the AC effect (i.e., even
number of letters in common with AC will receive a positive sign, where 0 is even).
Contrast (AC)=(1)—a+b —ab —c+ac —bc+abc+d —ad +bd —abd —cd +acd —bcd +
abcd=45-71+48 -65—-68+60—80+65+43—-100+45—-104—-75+86—-70+96=—145
— AC =-145/8 = —18.125, which is in agreement with Montgomery’s Table 6.12 on page
258 of the 8™ edition.

N
As before, the SS of any contrast is given by SS(contrast) = (Contrast Value)2 /z nici2 ,
i=1

where N = 2¢, which is N = 16 for the Example 6.2 of Montgomery on pp. 257-262. For Table
6.10 of Montgomery presented above, SS(ACD) = (—13)%/16 = 10.5625 and SS(AC)= (—145)%/16
=1314.0625, which agree to 2 decimals with the ANOVA Table 6.13 on page 260 of
Montgomery(8e). It can be shown that for base-2 designs, the SS of a contrast can also be
obtained from SS(Contrast) = nx (Average Effect)2 x 2572 since in Montgomery’s Example 6.2
there is only 1 observation per cell and in general the residual ejjxm = Yijkm — Vm = YiikL — YijkL =
0 for all 16 observations, then we must develop a regression model for the data in order to
obtain the 16 residuals. Further, because there is no estimate of pure error, no exact statistical
test of significance can be conducted. However, there are procedures that identify relatively
large effects, the most important of which is the Normal Pr Plot (NPrPL) of average effects as
shown in Figure 6.11 on page 259 of Montgomery. In order to draw the NPrPL of average
effects, go to Minitab’s Stat - DOE — Factorial — Define Custom factorial — Input factors —
Click on High/Low — Select coded; then go to Analyze Factorial Design — click on Yes to info
that Minitab requires for factors, providing the factor names (A B C D) — click on High/Low
— click on coded — ok — Response: y — Graphs — click on normal for Effects Plots — ok —
ok. Minitab’s NPrPL is provided atop the next page. In order to ascertain which average
effects are important, first one must put a fat pencil on the Pr plot line and conclude that the
covered effects under the fat pencil are relatively unimportant. The above figure from Minitab
clearly shows that the only important effects are A, AC, AD, D, and C because they will not be
covered by a fat pencil. Another conservative rule-of-thumb observed by me in the past 30

years is to obtain the range of absolute average effects, denoted by Rg, and divide this range by
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4 and 3; then declare any effect below Re/4 relatively insignificant. For the Example 6-2 on p.
257 of Montgomery Re /4= (21.625 —0.125)/4 = 5.375 and Re¢/3 = 7.1667 — This implies that
any average effect in Table 6.12 on page 257 of Montgomery(8e) whose absolute
value is less than 5.375 is relatively unessential and should be ignored and all effects above
7.1667 are relatively influential. Average effects whose value lie between Re/4 and Re/3 are at
best moderately influential. In order to understand how Minitab computes Lenth’s pseudo
standard error PSE = 2.625, the reader must refer to page 262-264 of Montgomery’s 8t"
edition.
We will include only the relatively large effects in the model (see Figure

6.11 on page 259 of Montgomery), namely A = x1, C = x3, D = X4, AXC = X1X3 = X13, AXD = X1Xa =
X14, Where x1, X3 and x4 = — 1 or +1 just like given in Table 6.10 on page 257 of Montgomery.
Thus our regression model is:

Yiikt = Bo + Pix1 + Bax3 + Paxa + P13X1X3 + P1aXiXa + Eijkt. (15)
Note that x1 is simply the 16x1 vector of —1 and +1 listed in column A of Table 6.10 on page

257 of Montgomery, x3 represents the column C in the same table, and so on; further x1, x3 xa,
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X1X3, and xixs are orthogonal (i.e., their pair-wise dot product is zero). To obtain the point LSQ

estimate of Bo, we sum both sides of (15) overi, j, k, L=1, 2 and assume that 2 €iju~0. >vy..
=16 ﬁ0—> ﬁ0= Y ..=1121/16 = 70.0625. To obtain a point estimate of B1, multiply both sides
of (15) by x1 and then sum both sides overi, j, k,L=1,2. - -45+71-48 +65+... —70+96 =
Bl [(-1)2 + 12 +(-1)? +... +17] —> ﬁ1= 173/16 = 10.8125. Note that [T’)l is simply (1/2) of the
average effect of A given in Table 6.12 of page 258. Similarly, — 521 + 600 = [AS3(16) - [33=

4.9375 which is again equal to C/2=9.875/2, and [34 = (619 —502)/16 = 7.3125. To obtain a
point estimate of 13, multiply both sides of Eq. (15) by x1 and x3 (or by the AC column in Table

6.11 at the bottom of page 258 Montgomery) and sum overi, j, k,L=1,2. — B13= (488 —

633)/16 = —9.0625 =AxC /2 =AC/2 = —18.125/2. Similarly, B,, = (627 — 494)/16 =

8.3125. The corresponding regression model is given on page 261 of Montgomery(8e) and you

may verify the residuals given atop page 261 of Montgomery(8e) by Minitab.

OBTAINING AN INDEPENDENT ESTIMATE OF Gi BY ADDING CENTER

POINTS TO A 2 DESIGN

For the sake of illustration, consider Example 6-6 on pages 271-275 of Montgomery’s 5t
edition (ISBN: 0-471-31649-0), where we have one replicate of a 22 design with nc =5
observations at the design center (35 minutes, 155 °C). Because you do not have the 5™ edition
of this text, | will exactly quote the details below as given in Montgomery’s 57 edition on his

page 273.

EXAMPLE 6-6 on Page 273 of Montgomery’s 5" Edition Quoted Below:

“A chemical engineer is studying the yield of a process. There are two variables of interest,
reaction time and reaction temperature. Because she is uncertain about the assumption of
linearity over the region of exploration, the engineer decides to conduct a 22 design (with a
single replicate of each factorial run) augmented with five center points.” The design and yield

data are shown in Figure 6-35 of Montgomery’s 5 edition, and also shown on the next page.
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Figure 6-35 on page 273 of Montgomery’s 5" Edition

The general 22 design with nc center points is depicted in Figure 6.38 on page 286 of
Montgomery’s 8™ edition. My explanation now follows.

The Total SS is computed in the usual manner as SSt = USS — CF = 14724.78 — 364?%/9 =
3.002222 (8 df). The pure Error SS is computed from the 5 replicates at the center, i.e., SS(Pure
Error) = SSpe = 8185.23 — 202.32/5 = 0.1720 (with 4 df), which yields SS(Model) = SSt — SS(Error)
=2.830222 (4 df); this SS(Model) can also be computed from the 5 cell subtotals (402 + 41.5% +
39.3%+ 40.92+202.32/5 — CF). Clearly, effects A, B and AxB each carry 1 df but the model has 4
df and hence there remains 1 df for the joint quadratic effects of A and B as illustrated by the
OA in Table 8 below. Table 8 clearly indicates that the columns A? and B? are identical, and
therefore, the quadratic effects of A and B are hopelessly confounded (i.e., aliased, inseparable,
or indistinguishable from each other). Hence the 2 columns A% and B? together carry 1 df. To

compute the SS that explains the average quadratic effects of A and B, we note that there are n¢

= 4 factorial points but nc = 5 center points so that in defining the contrast for A21B? we

must bear in mind this imbalance. Further, the quadratic effect of factors A or B is simply

56

56



Table 8. Note that the 4/9 is simply the average of A = B2 columns.

A=x1 | B=x, AxB= x1x2 A? = x4? B2= x;? x12 —4/9 Yiik
-1 -1 +1 +1 +1 5/9 39.3=(1)
-1 +1 -1 +1 +1 5/9 40.0=b
+1 -1 -1 +1 +1 5/9 409=2a
+1 +1 +1 +1 +1 5/9 41.5=ab
0 0 0 0 0 —4/9 40.3 = (0,0)
0 0 0 0 0 —4/9 40.5 = (0,0)
0 0 0 0 0 —4/9 40.7
0 0 0 0 0 -4/9 40.2
0 0 0 0 0 —4/9 40.6 = (0, 0)

the contrast between the factorial and center points. To this end, we define the SS of this

(5x161.7—-4x202.3)°
4(5%) +5(-4)°

contrast as SS( A%4B? )= = 0.00272222, which is identical to the

value provided in the ANOVA Table 6-20 on page 274 of Montgomery’s 5" edition to 4 decimals
as his ANOVA Table provides only 4 decimal accuracy.

The design matrix in Table 8 above is said to be orthogonal because the dot product of
any 2 columns is identically zero. Using statistical regression theory, it can be shown that
adding center points to an orthogonal design, not only does not alter orthogonality, but also
does not alter the SS of different effects already in the design matrix, which in this case are A,
B and the AB interaction effect. Hence, SS(A)= (— 79.3 + 82.4)%/4 = 2.4025, SS(B) =
(81.5-80.2)%/4 = 0.4225, SS(AxB) = (80.8 — 80.9)?/4 = 0.0025, which are in agreement with
those in Table 6-20 on page 274 of Montgomery’s 5t edition. In order to obtain the
coefficients of the 2"%-order model

Vik = Bo + Bixa + Paxa + Praxaxz + Prixa? (or Paax2?) + €ijk (16)
we observe that neither x;2 or x,? columns of Table 8 are contrasts, i.e., they are not
orthogonaltoa9xlvector[1 1 1.. 1], and hence we make a slight change in model (16)

so that we have complete orthogonality in our regression model. The 4/9 is simply the average
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of x12 and x,2 columns so that the x12 —4/9 column in Table 8 is now a contrast. Our modified
regression model now becomes

Yik = Bo + Paxa + Baxa + Braxaxz + Pra(x12 — 4/9) + €ijk (17)
As always, in order to solve for any of the coefficients in an orthogonal model, simply multiply

both sides of Eq. (17) by that variable and sum over all i, j, and k.
For example, to solve for [%11, multiply both sides of (17) by the column
x12 — 4/9 and sum over all the 9 rows of Table 8. This yields (5/9)161.7 — (4/9)202.3
=[T’)11 [4(5/9)% +5(— 4/9)’] — B11= —0.035, which would be the same as the regression output
from Minitab. You should try to similarly obtain the other 4 coefficients in the model (17) and

check against )A/ijk = 40.4600 + 0.775x1 + 0.325x, — 0.025x1x2 — 0.035x:2. Note that in order to

use Minitab to obtain the ANOVA for a design with center points, you must first set up
Factorial by going to Stat — DOE — Factorial — Define custom factorial design; insert factor
names, click on Low/High and then set up center points by clicking on Designs to tell Minitab
that the design has center points, and then go to Analyze Factorial Design. Further, a column
equal-length to the design matrix has to be created to represent the center points, where 1 is

used for factorial and O for center.

OPTIMIZING PROCESS CONDITIONS USING STRONG EFFECTS AND
REDUCING PROCESS VARIABILITY USING WEAK EFFECTS IN UNREPLICATED
FACTORIALS (when there are at least two weak factors impacting the mean

response and n = 1 per FLC)

Montgomery provides an excellent Example 6.4 on pages 271-274 (of 8t edition) of a
2% un-replicated factorial, where only the effects of factors A and C have a vital impact in
reducing the mean of response y, where y is the number of defects per panel. | have put the
data in the OA format in Table 9 below for your better understanding of the analysis that
follows. On my website | have provided the Response Table (RT) and the corresponding
Residual analysis from Minitab. The RT on my website will clearly verify the author’s

conclusion that only factors A and C have a vital impact on the mean response and their
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Table 9. The OA Format of Montgomery’s Example 6.4 (p. 245)

D C B A FLC Yijki
- - - - (1) 5
- - - + a 11
- - + - b 3.5
- - + + ab 9
- + - - o 0.5
- + - + ac 8
- + + - bc 1.5
- + + + abc 9.5
+ - - - d 6
+ - - + ad 12.5
+ - + - bd 8
+ - + + abd 15.5
+ + - - cd 1
+ + - + acd 6
+ + + - bcd 5
+ + + + abcd 5%

optimal levels are A= Ag and C* = C;1. Factors B and D are weak in impacting the mean
response, and therefore, their levels should be set in order to minimize the variability of the
response. Both the Montgomery’s and my analyses confirm that the low levels of B and D
induce less variability in y. Hence, the final optimal condition is Xo = AgBoC1Do = c.

Exercise 20. Work problem 6.28 on page 298 of Montgomery’s 8™ edition W/O any

plots but provide a RT. Further, identify the optimum process condition Xo.
Errata For Chapter 6 of Montgomery’s 8" Edition

1. Page 260, near the bottom, change 46.22 to 46.25.

2. Page 263, line 9, change contrast variance to contrast standard error (SE).
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