INSY 7300-6 Reference : Chapter 5 of Montgomery(8e) Maghsoodloo

FACTORIAL DESIGNS

An experiment involving 2 or more factors is said to be a (full) factorial design iff at least
one observation is taken at every possible factor level combination (FLC) of all the factors
involved. A factorial experiment is balanced iff the size of the sample at each FLC (OR CELL) is
the same, namely n. If sample sizes for different cells differ, the design is said to be
unbalanced. As an example, consider an injection molding process where the output y is the
strength of the molded piece measured in psi, and the 2 factors that may have an effect on
strength are Temperature (A) and Pressure (B). Factor A has 2 fixed levels (100 °F, and 150 °F),
and factor B is at 3 fixed levels (50, 75, 100 psi). This is called a 2x3 fixed factorial design and
clearly has 6 FLCs as illustrated in Tables 4(a) & 4(b). In Table 4(a), the cell subtotals are y11.=
79, y12.= 55, y13.= 133, y21.= 82, y22.= 113, y23.= 132, y1.. = 267, y.1. = 161, and y.». = 168.

Table 4(a). An Unbalanced 2x3 Factorial

B | 50 psi 75 100
A Yi..

100 °F 34, 45 55 48, 40, 267
45

150 42,40 | 55,58 | 50,42, 327
40

Y. 161 168 265 y. =

594

An Unbalanced 2x3 Factorial Experiment, where
N1 = 2, N1 = 1, ni3 = 3, wee, N23 = 3, N=13
Note that there are 6 = 2x3 cells or FLCs.

The design in Table 4(a), clearly unbalanced, is CR, i.e., the order of obtaining the 13
observations was completely randomized. Table 4(b) below provides a balanced factorial with
n = 3 observations per cell. Again the experiment in Table 4(b) is a 2x3 CR factorial, where
both factors are quantitative. Equi-spaced and fixed. The values in () of Table 4(b) are cell

subtotals yij.. To analyze the data in Table 4(b), as in the case of one-factor experiment, the
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Table 4(b) A Balanced 2x3 CRD Factorial with 3 Replicates per FLC

A B 50 psi 75 100 Vi..
100 °F 36, 28, 33 55, 60, 59 47, 39, 38 395
(y11.=97) (174) (124)
150 38, 41, 43 54, 46, 38 52, 53, 50 415
(122) (138) (y23.=155)
Vi 219 312 279 y..= 810

value of USS is 36%+ 282 +...+ 502= 37,912 (with 18 df); CF = 810%/18 = 36,450 (with 1 df) —
SSt = SS(Total) = USS — CF = 1462.00 (with 17 df). SS(Error) = SS11+ SS12+ ... + SSz3 =
(362+282+332 — 972 /3) + (552+60%+59% —1742 /3) + ... + (522+532+50? — 155%/3) = 32.66667+14.0
+48.6 + 12.66667+128.0+4.66667 = 240.66667 (with 2x6 =12 df) — SS(Model) = SS7—
SS(Pure Error) = 1221.33333 (with 5 df). Itis paramount to understand that all the calculations
that we have performed thus far apply to every factorial design whether balanced or not. As
shown above, the model does have 5 df, 1 of which is absorbed by factor A, 2 df is carried by
factor B, and there remains 2 df for what is called the interaction effect between factors A and
B denoted by AxB, i.e.,

SS(Model) = SS(A) + SS(B) + SS(AxB) (8)
5df =1 + 2 + 2 df

Note that the df on the LHS of equation (8) must "jive" with those on the RHS of Eq. (8),i.e., 5 =
1+ 2+ 2. Because the design is balanced we have an orthogonal decomposition of SS(Model)

into 3 components. Clearly,

395° +415” 8107 219° +312° +279° 810°

SS(A) =
(A) 6 18

=22.22222, SS(B) = =741.00

and as a result from Eq. (8), SS(AxB) = SS(Model) — SS(A) — SS(B) = 458.111111 (with 2 df).
Again, it is paramount to be cognizant of the fact that the above procedure for computing SS of
different effects (except for Total, Error, and Model) is valid only for Balanced Factorial
Experimental Designs. If the design is unbalanced, then the General Linear Model (GLM, or
GRST) procedure must be applied in order to compute SS of different effects in the Model.

Unfortunately, GLM procedure is well outside the scope of this course. SAS has the Proc GLM

39



40
that gives the Type Il SS’s in the model, but as expected these adjusted SS’s of the model do
not add to SS(Model) because of non-orthogonality (or obliquity). Both Minitab and SAS
provide Type | SS for model components that are additive.

Before we define the interaction between 2 factors in affecting an output Y, we present
the balanced design of Table 4(b) in an orthogonal (OA) array format.

OA
A B Yiik Yii.
Note that the array on the LHS is orthogonal
because every FLC (A;, Bj)) i=1, 2, j=1, 2, 3 occurs
exactly once in the design matrix and is repeated
n =3 times.

100 50 | 36,28,33 97
100 75 |55,60,59 174 Hence, SSres = SSpe.
100 100 | 47,39,38 124
150 50 |38,41,43 122
150 75 | 54,46,38 138
150 100 | 52,53,50 155

y. = 810

Because the above factorial design has 6 FLCs, then the orthogonal array (OA) has
exactly 6 rows. These 6 rows (or FLCs) with cell subtotals yj;. carry exactly 5 df amongst them;

since the model also has 5 df, then we can also obtain SS(Model) as follows

97° +174% +124° +122° +138° +155°  810°

SS(Model)= 3

=1221.33333, as before!

Exercise 14. For the unbalanced design of Table 4(a), compute the SS(Model) in 2
different ways to determine if both methods generally yield the same value of SS(Model)! (b)
Then compute SS(A), SS(B), and SS(AxB) as you would compute them for a balanced factorial
experiment. (c) Use Minitab’s GLM to also verify that the SS of different effects in the model

cannot be computed in the same manner that are computed for a balanced design.

Definition. Two factors, A & B, interact as they impact the output Y iff the effect of B
at the i" level of A is significantly different from the effect of B at the k™ (k = i) level of A for at
least one k. As an example, consider the balanced CRD of Table 4(b), where the effect of factor

B at A1 is negatively quadratic (i.e., concave downward), and the effect of B at A; is almost
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completely linear as illustrated in Figures 6. Therefore, the factors A and B interact in affecting
the response variable Y. The ANOVA is provided in Table 5. Note that when all factors in the
experiment are fixed, then all hypotheses are tested against MS(Error). We will learn later that
this will not be the case when some factors in the experiment are random! Before developing
the identities for breaking down the Total SS of a 2-factor experiment for a balanced design in
equations (9) below, you must study section 5.2 on pp. 186-187 of Montgomery(8e) for the 2

advantages of factorials over one-factor-at-a-time experiments!

Vi A
200 174
The Total effect of B at A;
150
124
100 x 97
50 75 100 B
Yij.
A
The Total effect of B at A
150
155
122X 138 X
100
50 75 100 B
Figures 6. Depicting AxB
Vil = p+ [(pi, —p) + (g — p) + (i - o — g+ ]+ (yik —pi) (9a)
yk=p+[ A+ B + (AxB); ] + s
=u + [ Model effects] + Sk (9b)

Using Montgomery’s(8e) notation at the bottom of page 198, the terms on the RHS of

equation (9a), respectively, are pi.—p = 7, (Wi — p) = 4, (Wi - pi. — . + p) = (78)i; however, |
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Table 5 (* = Significant at the 5% level; **= significant at the 1% level)

Source df SS MS Fo P-value

Total 17 1462.00

Model 5 1221.3333 244.26667 12.1795" 0.00023
A 1 22.22222 22.22222 1.1080 0.31324
B 2 741.00000 370.50000 18.4737" 0.00022

AxB 2 |458.11111 229.05556 11.4211™ 0.00167

Pure Error 12 | 240.66667 20.05556

42

prefer the notation of (AxB)jjto Montgomery’s (70);j to represent the interaction between the
inputs A and B because it is more self-explanatory. Unless all the factors in the experiment are
at 2 levels (i.e., a 2-level design), the notation SSag for interaction SS is not exactly appropriate,
although most DOX texts use the notation AB over AxB. Therefore, only for a 2-level design
(i.e., all factors at 2 levels), you may use SS(AB) = SSas = SS(AXB) to represent interaction SS;
otherwise, only the notation AxB is most descriptive.
The 4™ term on the RHS of Eq. (9) represents the interaction effect between A and B,

and the last on the RHS gives the error term; further, for fixed-effects every term in (9), except
for yijk and €ijk, is a population parameter. As in the case of single-factor, we replace every

parameter in (9a) with its point sample unbiased (LS) estimator to obtain the identity:

Yik =Y.+ Vi =Y )+ -V )+ Vi Y-V + Y + ik i) (10)

Vik=i + A + By

i + (AX B)hatu + eijk

We now transpose Y , the 1st term on the RHS of (10), to the LHS .
Yik=Y..= Vi =Y. )+ -V.)+ Vi —Yi. -V +Y.) + Vi~ Vij)
Next, we square both sides of (11) and use the fact that the triple sum of all cross-

product terms are zero in order to obtain the orthogonal decomposition of Total SS given in Eq.

(12).
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a b n b
>33 (Y- )= an(y. —y )+ nad (v, -y.) +
i=1j=1k=1 =1
nZZ(Vij.—Vi..—yj.+7...)2 + ZZZ(Yijk—Vij.)z (12)
i—1j-1

In Eqg. (12), the 1st term on the RHS represents the SS(A), the 2nd term is equal to SS(B), the
3rd term gives SS(AxB), and the last term on the RHS represents SS(Residuals). Further, "a"
represents the number of levels of factor A and "b" represents the no. of factor B levels. Eq.
(12) clearly shows that SS(Total) = SS(Model) + SS(Residuals), where the model terms now are
A, B, and AxB, and only when the design is balanced do we have an orthogonal partition of

SS(Model) as
SS(Model) = SS(A) + SS(B) + SS(AxB).

Exercise 15. Show that for a balanced design
SS(AxB)=n z > Ui =%, -9 +9.)%=( z 3 Vi /) ~CF-SS(A)-S5(B).
i=1 j— i=1 J_
Exercise 16. Work problems 5.4 and 5.5 on page 225 of Montgomery (as part (b) of

5.4, simply compute the Studentized residuals ri11 and r3;3). Recall that V(ejjk) = (n —1) Gé /n.

Present the data of Problem 5.4 in an OA format.

DOE INVOLVING MORE THAN TWO FIXED FACTORS

Consider the Example 5.3 on pages 208-211 of Montgomery’s 8t edition. There are 3
fixed factors: A (Percent Carbonation) at 3 levels 10, 12, 14%, factor B (Operating Pressure at
25 & 30 psi), and C (Line Speed) at 2 fixed levels 200 & 250. Therefore, the experiment is called
a 3x2x2 factorial CRD (completely randomized design) with n = 2 observations per cell. Note
that 3x2x2 = 12 give rise to 12 FLCs (or cells) each of which corresponds to exactly one row of
the OA in Table 6 atop the next page, which has 12 = 3x2x2 rows. Further, because the OA has
12 rows (or FLCs), then the Model will have 11 df.
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Table 6 (Example 5.3, p. 208 of Montgomery, in OA Format)

A B C Yijkr Yijk.
10 25 200 -3, -1 -4
10 25 250 -1, O -1
10 30 200 -1, O -1
10 30 250 1, 1 2
12 25 200 o 1 1
12 25 250 2, 1 3
12 30 200 2, 3 5
12 30 250 6, 5 11
14 25 200 5 4 9
14 25 250 7, 6 13
14 30 200 7, 9 16
14 30 250 10, 11 21

y.. = 75

As always, the USS = (— 3)2+ (-=1)2 +(—1)? +... +(11)2 =571 (with N = 24 df ) and the
CF = 752/24 = 234.375 (with 1 df ); thus SS(Total) = SSt = USS — CF = 336.625 (with 23 df). Next,
we use the observations within each cell to compute the Error SS’s: SS111 = (—=3)2 + (=1)? — (
—4)2/2 = 2 (with 1 df ), SS112 = (~1)2 +02 = (=1)/2 = 0.5 (with 1 df ), ..., SS322=112 +102— 212/2 =

2 2 2
{Z(yijkr _yijk_)z} = z > D eh, =2+05+

3 2
r=1 i=1l j=1k=1r=1

2
0.5 (with 1 df ) — SS(Pure Error) =ZZZ

3 2

i=1 j=1 k=1
0.5+0+0.5+0.5+0.5+0.5+ 0.5+ 0.5+2 + 0.5 =38.5 (with 12 df ). Hence, SS(Model) = SS(Total)
— SS(Error) = 336.625 — 8.5 = 328.125 (with 23 — 12 = 11 df ).

Again, this last equality shows that Model df = 23 — 12 = 11, which, as stated earlier,
corresponds to the 12 rows of the above Table 6. Sinceyi. =—4,vy2..=20,and y3_=59, and
because the design is balanced (and orthogonal), then SS(A) = (16 + 400 + 59%)/8 — CF =
252.750 (with 2 df) ; similarly, SS(B)= (212 + 542)/12 — CF = 45.375 (with 1 df ) and SS(C) =
22.041667. To compute SS(AxB), we cross factors A and B, ignoring factor C and within cell
variation altogether, as depicted in the interaction Table 7 atop the next page. The AxB Table
7 has 3x2 =6 cells (or FLCs) that carry 5 df: 2 df belongs to A, 1 df belongs to B, and the

remaining 2 df are assigned to AxB. This implies that
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Table 7. (Depicting AxB for the Example 5.3 of Montgomery 8e, p.208 )

" B 25 psi 30
A Yi...

10% -5 1 -4

12 4 16 20

14 22 37 59
Y. 21 54 y..=75

(-5)% +1% + 42 +162 + 222 + 372

7 —CF= SS(A) +SS(B) + SS(AxB)

6 df -1= 2 + 1 + 2df
Therefore, SS(AxB) = 2151/4 — 234.375 — 252.750 — 45.375 = 5.25. Note that the
df of AxB is always dfaxdfs.
Exercisel7. Use the procedures illustrated above to compute the SS(C), SS(AxC) and

SS(BxC) of Montgomery’s Example 5.3 on p. 208.

The only SS left to be computed is SS(AxBxC). To obtain this 3-way (or 2" order)
interaction SS, we ignore only the within cell variability, i.e., we must use the cell values of i,
which are provided in column 5 of Table 6 on the previous page. Again, we emphasize that the
OA in Table 6 above has 12 rows and hence the twelve yij. values account for 11 df. That s,
(-8)2 (-2 +(-1)2 +2%+..+162 4212 752

5 —
Since SS(Error) = SS(Total) — SS(Model) has 23 —11 = 12 df, then it follows that SS(Pure Error)

=328.125

SS(Model) =

can also be computed as SS(Error) = 336.625 — 328.125 = 8.50. Finally,
SS(Model) = SS(A) + SS(B) + SS(AxB) + SS(C) + SS(AxC) + SS( BxC) + SS(AxBxC) (13)

11df =2+4+1+2+1+2+1+2df. > SS(AxBxC) must have 2 df.
Again note that the df of AxBxC is the product of the 3 degrees of freedom of factors A, B, and

C. Further, equation (13) shows that
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SS(AxBxC) = SS(Model) — [SS(A) + SS(B) + SS(AxB) + SS(C) + SS(AxC) + SS( BxC)]
=328.125-327.041666 = 1.08333.

The ANOVA Table is given atop page 210 of Montgomery(8e), which shows that only the 3
main factors are significant at the 5% level (the AxB effect is significant at the 5.60% level).
The first four P-values confirm the statistical significance of these 4 effects.

For blocking in factorial experiments, study section 5.6 on pp. 219-223 of
Montgomery(8e), and work problem 5.21 on page 228 of Montgomery, coding the data by 85.

Exercise 18. Work problem 5.18 on page 227 of Montgomery(8e), coding the data by
subtracting 195 from every observation. For part (b), only compute the Studentized residual
ro121, Where i and j =1, 2, 3 represent the 3 respective levels of % Hardwood (factor A) and
Pressure (factor B), and k = 1, 2 extends over the levels of Cooking Time (factor C). You should

try to verify your answers by means of some software such as Minitab or SAS, etc.

FITTING RESPONSE CURVES TO REGRESS Y ON THE SIGNIFICANT
QUANTITATIVE INPUTS IDENTIFIED BY ANOVA

Consider the Example 5.5 on pp. 214-219 of Montgomery(8e), where the ANOVA
Table 5.17 for this 32 CRD (with 2 replicates per cell) is given on p. 215, and the breakdown of
SS’s into linear and quadratic components are shown in Table 5.19 on p. 219. Our objective is
to obtain a regression model that describes the relationship between the response variable y,
the effective tool-life, and the linear and quadratic effects of Tool-angle (factor A = x1), Cutting-
speed (factor B = x;), and their interactions all of which are significant at the 16.2% level or
higher. Note that Table 5.19 atop p. 219 of Montgomery has misprints that | am correcting in
my errata at the end of this chapter. The ANOVA Table 5.17 in the middle of page 215 of
Montgomery(8e) clearly shows that SSmodel = 111.0000, while Table 5.19 atop p. 219 shows
that SSmodel =49 + 16 + 8 +...4+ 8 = 127.6666666667, which is impossible.

Following the notation of orthogonal polynomials in Table IX on page 705 of
Montgomery(8e), because both factors are at 3 equi-spaced quantitative levels, then the

proper quadratic regression model is

Vijk = BoPo+ B1P1(x1) + PB2P1(x2) + P11P2(x1) + B22P2(x2) + P12P1(x1)xP1(x2) + P122P1(x1)xP2(x2) +
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B112P2(x1)xP1(x2) + P1122P2(x1)xP2(x2), (14)

— v 2 _
X) , Pa(x) = Ao (X 5 X)2 — a12 1] is a polynomial of order 2, and P3(x) =

where P1(x) = A1 (X —

-X ~X. 3a%-7
A3l (X 3 X)3 —(X r X)( 20 ) 1is a polynomial of order 3, and the letter d stands for the design

spacing. Please note that only for the sake of convenience | have not put “hats” on the
regression coefficients f’s. To solve for 35, we triple sum both sides of Eq. (14) fromi=1to 3,

j=1to3,and k=1to 2. Note that the design is a balanced 3 factorial with n = 2 observations

per FLC (see Table 5.16 on p. 214 of Montgomery). Since, Pois orthogonal to all Pi(x) fori =0,

then the only non-vanishing term on the RHS of (14) is Nfo. Thus, [A%O= y./N=24/18 =

1.33333. To solve for [Ail, we multiply both sides of (14) by the 1°t-order polynomial P1(x1) and

triple sum over the 9 FLCs and the n = 2 observations per cell. Again, since all the polynomials

on the RHS of Eq. (14) are orthogonal, then the only term that does not vanish is
B2 P12 (X1) , where the 1%t sum extends from i = 1 to 3, the 2" extends from j = 1 to 3, and
the 3™ sum extends from k=1to k=n=2. Thus,

3 3 2 3 3 )

ZZZYijkpl(Xl) = D Vi Pi(x)= BEZX D PE () —

i=1 j=1k=1 i=1 i=1

“1x(=1) + 0 x16 + 1x9 = B1(3)(2)(1+0+1) — P;=5/6=0.83333
To solve forﬁlzz, we multiply both sides of (14) by P1(x1)xP2(x2) and triple sum over i,

j, and k. In order to understand the development of the following calculations, you should
cross the polynomial coefficients in Table IX on p. 705, which will pave the way for crossing A,

with Bq, as shown below.
~ 3 3
-1(-3)+2(-3)-1(5)+0+0+0+1(-1)-2(11)+1(-1) = Pyop x2x _Z Z 1] P2] .
|: :

—32=2x(1+4+1+0+0+0+1+4+1)Bryy — Prop=—4/3 = ~133333.

Exercise 19. Obtain the other coefficients in Eq. (14) and simplify the following
regression model to verify the requisite regression model given in the middle of my following

page.
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Yij=4/3+ (5/6)(x1 = 20)/5 + (4/3)(x2 ~ 150)/25 + (- 2/3 )7”2[()(1;20)2 . 91_21} '

(- 1/3)><Xz[( 25150) 91_21} = [(x1 = 20)/5]x[(x2 = 150)/25] -

(4/3)[(x1 = 20)/5]x2[(x2 = 150)%/25% —2/3] —(1/3) )Aal (X1 20)2 —2/3 Ix(x2—150)/25 -

X1_20)2—2/3]X7\,2|:( 150) B _}

where Ai (i =1, 2 ) is computed in such a manner that the polynomials listed in brackets above

(1/3)Aa[ (

are the smallest integers as listed in Table IX on page 705, where n should be replaced with a.

Thus, for a 3-level factor, A1 =1 and A, = 3. | simplified the above equation for yijk and

obtained the following regression model.

9ijk = —1068 + 136.30x; + 14.48x, — 4.080 X — 0.04960 X5 —1.8640x1X; + 0.006400x1 X5 +

0.05600 X; X2 — 0.00019200 X;X5.
Note that the above regression function is identical to that of Montgomery’s Table 5.19 in the
middle of page 197 of his 7t" edition, but differs from Table 5.19 at the bottom of p. 218 of his
8t edition. Further, In order to obtain the same regression model using Minitab, | am
providing the following Minitab spreadsheet, where A2 represents the quadratic component of
factor A, denoted by Aq, AB represents the interaction A xB, A’B represents AqxB. and

similarly for other terms.

Minitab Spreadsheet for the data of Example 5.5 on pp. 214-219 of Montgomery(8e)

A B A2 B2 AB A2B AB2 A2B2 y
15 125 225 15625 1875 28125 234375 3515625 -2
15 125 225 15625 1875 28125 234375 3515625 -1
15 150 225 22500 2250 33750 337500 5062500 -3
15 150 225 22500 2250 33750 337500 5062500 0
15 175 225 30625 2625 39375 459375 6890625 2
15 175 225 30625 2625 39375 459375 6890625 3
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20 125 400 15625 2500 50000 312500 6250000 0
20 125 400 15625 2500 50000 312500 6250000 2
20 150 400 22500 3000 60000 450000 9000000 1
20 150 400 22500 3000 60000 450000 9000000 3
20 175 400 30625 3500 70000 612500 12250000 4
20 175 400 30625 3500 70000 612500 12250000 6
25 125 625 15625 3125 78125 390625 9765625 -1
25 125 625 15625 3125 78125 390625 9765625 0
25 150 625 22500 3750 93750 562500 14062500 5
25 150 625 22500 3750 93750 562500 14062500 6
25 175 625 30625 4375 109375 765625 19140625 0
25 175 625 30625 4375 109375 765625 19140625 -1

| then used Minitab’s General Regression to obtain the following model:
Results for: The Example5.5.MTW on pages 214-219 of Montgomery's 8th edition.
Regression Analysis: y versus A, B, A2, B2, AB, A2B, AB2, A2B2

The regression equation is
y =—1068 + 136A + 14.5B — 4.08A2 —0.0496B2 —1.86AB + 0.006400AB2 + 0.0560A2B
—0.000192A2B2

Predictor Coef se Coef T P-value

Constant  -1068.0 702.2 -1.52 0.163

A 136.30 72.61 1.88 0.093
B 14.480 9.503 1.52 0.162
A2 -4.080 1.810 -2.25 0.051
B2 -0.0496 0.03164 -1.57 0.151
AB -1.8640 0.9827 -1.90 0.090
AB2 0.006400 0.003272 1.96 0.082
A2B 0.0560 0.02450  2.29* 0.048

A2B2 -0.000192 0.00008158 -2.35* 0.043

49
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S$=1.20185 R-Sq=289.5% R-Sq(adj)=280.2%
Analysis of Variance
Source DF  SS MS Fo P
Regression 8 111.000 13.875 9.61*** 0.001
Residual Error 9  13.000 1.444
Total 17 124.000
*** = Significance at the 1% level.

Source DF SeqSS

A 1 8.333
B 1 21.333
A2 1 16.000
B2 1 4.000
AB 1 8.000
A2B 1 2.667
AB2 1 42.667
A2B2 1 8.000

The above Minitab model is identical to that of Montgomery’s given on page 197 of his 7t
edition but differs from Table 5.19 atop p. 219 of his 8" edition. Below | illustrate how to
compute the SS(AqxBq) = SS(A2B2) with the aid of Table IX on p. 705 of Montgomery, where
Pa(x) =[1 -2 1]'.
Contrast(AqxBq) = 1x1(-3) + 1x(-2)(-3) +1x1(5) + -2x1(2) + -2x(-2)(4) + -2x1(10) +

1x1(-1) + 1x(-2)(11) +1x1(-1) = -24 —
(-24)°
2(36)

SS(AqxBq) = SS(A2B2) = = 8, which is consistent with that given in Table 5.19 on p. 219.

Errata for Chapter 5 of Montgomery’s 8" edition
1. Page 214, in the 1°t column heading of Table 5.16, change Total Angle to
Tool Angle.
2. Pages 218 & 219, replace the entire Table 5.19 on pp. 218-219 with the above Minitab’s
Output.
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