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INSY 7300-6 Reference: Chapter 3 of Montgomery(8e) Maghsoodloo

Single Factor Experiments

The objective is to determine if a single factor (or input, or the abscissa) has a significant effect
on a response variable Y (the output, or the ordinate). If the input is found to have a significant
impact on the output Y, then the 2" objective is to identify which level of the factor (or input)
will optimize the response Y. For an example see Table 3.1 p. 67 of Montgomery’s 8™ edition,

where the factor is the radio frequency power (RFP) setting (in watts) and the output is Y = Etch

rate of a tool measured in A /min (Angstrom/minute).

In this example (the same as Example 3.1 of Montgomery p. 75), the experimenter
knows that the range of the input is from 160-220W and uses 4 equispaced levels of this factor,
namely 160, 180, 200, and 220W. The experimental layout in Table 3.1 and the randomization
order are given on page 75 of Montgomery(8e), where n = 5 replications per treatment and the
N = 20 total observations are taken completely at random order. Such an experiment is called a

Completely Randomized Design (CRD). See also pp. 75-79 of Montgomery’s 8t edition.

A procedure called Analysis of Variance (ANOVA) is used to test the equality of 3 or
more process means simultaneously W/O affecting the pre-assigned LOS, a, of the test. To

develop the ANOVA procedure, we start with the following identity

VispH—pHpi—pityispd(i-p)+lyi— )=+ T+ g (1)

This last identity (1) is called the linear additive model (LAM) for the one-factor CRD (completely
randomized design). A factor is fixed if its levels are purposely designed (or set) by the
experimenter and not selected at random from a population of levels. In such a case, the LAM
(1) is called the fixed-effects model. If the levels of the factor are selected at random from a
population of levels, then each ti=pui—p (i=1, 2, ... a) is a random variable and the LAM (1) is

a
called the random-effects model. For the fixed- effects model, p = Z”i /a, while for the

i=1

random-effects model p = E(L).
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ANOVA ASSUMPTIONS

Fixed-Effects: The parameters u and i are fixed whether the design is balanced (i.e., all n; =

a
n) or not, and as a result we always have Z T; =0. However, the rvs (random variables) €j;
=1

are assumed NID(O, Gé ), where NID stands for normally and independently distributed.

. - 2 . .
Henceforth, we will also use 62 in lieu of G . Inthe case of fixed-effects, conclusions from

ANOVA pertain only to the treatments that have been studied and no other levels.

Random-effects: Only p is a parameter, ti's ~ NID (O, 0% ) and independent of €;; which are

N(0, 62). Conclusions from ANOVA pertain to the entire population of treatments from which

only a random sample of size “a” has been studied.

THE FISHER’S F TEST FOR TESTING Ho: i1 = pi2 = i3 = .= pa = 14, (@ 2 2) versus the

alternative Hi : At least two pi’s are significantly different.

First, we replace each parameter in Eq. (1) by its point least-squares estimator as shown below.

vi=y + (Vi -Y)+(yii—Vi) =Y. +5 e, (2)

where %i = (y; —Y.) iscalled the effect of the i" treatment and e = (y;;—Y; ) is called the

residual of the (ij)" cell.

Exercise 1. Show that for fixed effects the e;;’s ~ N[O, (n —1)c?/n], and for an

a
unbalanced design Y n;T;=0. Further, the V(y;) = 6= Gé , while the V(ej) = (n—1)c?/n.
i=1

We now rewrite the identity (2) by transposing 'y to the LHS (left hand side) of the

equation: vi =Y. =(¥i.-Y.)+ (yij=¥i)=1i+ “ij )
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Next we square both sides of Eqg. (3), then sum both sides over i and j, and use the fact that the

resulting sum of cross-product term vanishes:

DN IR EED I NS AES I eI e

i=1j=1 i=1j=1 i=1j=1
a nj 2 a nj 2
SStotal = Z T + Z z eij = SStreatments + SSResiduals, (4)
i=1j=1 i=1j=1

where SSges = SSresiduats. ldentity (4) is fundamental to ANOVA because it breaks down the total
a n

sum of squares, [SStotal = SSt = Z Z (Yij -y )2 ], on the LHS into 2 additive components: (1)
i=1j=1

the 1°t term on the RHS of Eq. (4) gives the SS (sum of squares) among (or due to) treatments,

and (2) the 2" term on the RHS of Eq. (4) gives the SS within treatments (or experimental error

SS). Further, both SS’s on the RHS have independent (c2)y? distributions under Ho: Ti= pi— =

0. In fact, SSerror/c? has also a 2 distribution under Hi. As a result the null distribution of

(SSTreatment /02)/(8‘_1) _
(SSError /62)/(N _a)

/ MSg,,., is the Fisher’s F with v1 = a — 1 df for the

STreatments

numerator and v2 = N —a df for the denominator. Note that Montgomery uses the notation SS¢

a
for SSerror. Letting N = z n; , then the df (degrees of freedom) for the identity (4) are as
i=1

follows:
df: N-1=(a-1)+Errordf — df of Error=N—a;
a
If the design is balanced, i.e., nj=n for all i, then Error or Residual df=Z(ni —1)=a(n-1).
i=1
Exercise 2. Show that under the LAM (1) and balanced design E(SSerror)= a(n —1)c? —
An unbiased estimator of 62 is given by MSerror = SSerror/[a(n —1)]. Further, E(SS:) = E(SStreatments)
=n2t? + (a0 -1)c?> — E(MStreatments) = 62 + n21i?/(a —1). Thus, if Ho :” zero treatment effects”

is true, i.e., all ti's are 0, then MStreatments = MS: is also an unbiased estimator of c2.
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From Exercise 2 above we deduce that the ratio MS(Treatments)/MS(Error) has the

Fisher F distribution with vi =a—1 and v =N —a df. Since E(MStreatments) = E(MSegrror )
&

+> n;7; /(a—1), this constitutes a right-tailed test for the statistic Fo = MS(Treatments)/
i=1

MS(Error). For example, “Ho : all Ti's = 0” must be rejected at the 5% LOS if Fpexceeds the 5

percentage point of Fg_1,v—q , denoted by Fo.05,6-1,n-a-

Exercise 3. Show that the computational formulas for SSt = SS(Total) and Treatment SS

a n; a
are given by SStota= Y, Y, yi% — CF = SSrand SS(Treatments) = SS:= Y n;(y; —j_)z =
i-1j-1 i=1

a
Z(yf /n;)-CF, where CF=y.2/N.
i=1

RESIDUALS

For all statistical models, a residual “e” is the difference between the actual observed

value and the corresponding value estimated by the model, i.e., ejj=yj; — g’ij- Under the LAM
(1), the fitted value }A’ij = 1+7+&; =Y _+(¥.—¥.)+0=7Y;,and hence e = yjj — ¥;; =i

—Y; - Residuals play an important role in model adequacy checking (study pp. 80-84 of

Montgomery). However, the equation (3.18) of Montgomery’s 8™ edition in the middle of page
82 is not accurate because the estimated V(ejj) # MSeror but is equal to v(ej) =

(n —1)MSg,,,; /0 and hence (3.18) must be revised to

e ..
rj = dj = ) (Revised 3.18, p. 82)
J=1)MSg,o, /1

As a result the largest Studentized residual is r3; = d3>= 25.6/(0.8x333.7)%° = 1.56681, not 1.40
as reported on p. 82 of Montgomery. Further, there seems to exist some discrepancies in Figure

3.6 atop p. 83 of Montgomery’s 8™ edition.
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For testing equality of variances within “a” treatments, Study pp. 80-81 of Montgomery
on Bartlett’s test and verify that indeed q = 0 when all Si2 are equal to the same value S2.

If residual analysis reveals that normality assumption of ej's is violated, then data should
be transformed according to pp. 87-88 of Montgomery. However, the conclusions from the
ANOVA Table pertain only to the transformed data y* =yh

If the factor is found to have a significant impact on the response Y, then regression can
be used to find the best model that describes the relationship between y and the factor within
the range of the factor space. The regression models on pages 89-90 of Montgomery(8e) are

valid only for 160 < x <220 W, where y represents the etch rate of a tool.

POST-ANOVA For The FIXED-EFFECTS MODEL

If the F-test from the ANOVA table rejects Ho : ti = 0 for all i at the 5% level, then the
objective will be to identify which pairs of means are significantly different. If the experimenter
decides prior to data gathering which treatments should be compared, then s/he should use
orthogonal contrasts; otherwise, after experimentation there are several post-ANOVA multiple
comparison procedures that can be applied. Montgomery presents the Scheffe”’s Method (pp.
96-97 for contrasts), Tukey’s procedure (pp. 98-99), and Dunnett’s test for comparison with a
control. All these 3 procedures control the overall type | error rate o.. Emphasis will be only on
Tukey’s Studentized Range Test and Dunnett’s test because most statistical packages (Minitab)
provide these procedures. The explanation in the text (pp. 91-101) is clear, and a short time
will be spent in class to review Tukey’s multiple comparison’s procedure for the data of
Montgomery’s plasma etching experiment of Example 3.1 given in my notes under ANOVA-

Logic.

ORTHOGONAL CONTRASTS (ORCs)

The number of orthogonal contrasts possible is always equal to the df of SS(Treatments),
or treatment SS. For the Problem 3.10 on page 132 of Montgomery’s 8" edition, we can define

a maximum of 4 ORCs prior to data gathering. Say, we wish to compare p1vs [, U3 vs s, (11
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+12)/2 vs pa, and (p1 + w2 +u1a)/3 vs (U3 + ps)/2. Then the 4 corresponding contrasts will be

given as follows:

Ci= yi—-Va =—28, or G=Yy. -V

C= ys. -Yys. = 34, or C= Y3~ Vs.
C3= vy1.+V2 — 2ya, =-90, or C=Yy, +y, — Va4
Ca=2y1+2y2 —3y3+ 2ya—3ys. =42, or Ca= 2y, +2y) —3V; +2V4 —3V;s,

where y1. =49, y2. =77, y3. = 88, ya. = 108 and ys. = 54. Each contrast carries exactly 1 df and

a a
their SS’s is defined as SS(Cx ) = (Ck)2 /Znicizk ,k=1,2,..,a-1, D njcy =0, and to
i=1 i=1

a
guarantee orthogonality it is necessary that ) n;c;Ci,, = 0, for all k= m , and as a result we will
i=1

have >.SS(Ck) = SS(Treatments). Note that Montgomery defines a contrast, C, on page 92 in

terms of y; , while my definition is in terms of y; ; therefore, my above formulas and

Montgomery’s atop page 89 are the same. We now compute the SS’s of the above 4 contrasts.
SS(C1) = (-28)?/[5(1+1)] = 78.4, SS(C2) = 34%/[5(1+1)] = 115.6,
SS(Cs) = (-90)? /[5(1+1+4)] = 270, and SS(C4) = 42%/[5(4+4+9+4+9)] = 11.76.

4
Note that Y SS(C, ) =SS(Treatments) = 475.7600, which is in complete agreement with the
k=1

ANOVA of Table 3.4 at the bottom of page 71 of Montgomery’s 5 edition. It seems that if

contrasts are defined in terms of treatment means, then the orthogonality condition should be

a a
revised to Y C;, Ci,, / N; = 0. Further, the contrast SS is given by SS(Ck ) = (Ck)2 /> (Cizk /n;).
i=1 i=1

Further, as Montgomery points out in his Eq. (3.26, p.92), the variance of a contrast, such as Cs
above, is computed as V(C3) = V(y1. + y2. — 2ya) = V(y1.) + V(y2) + 4V(ys) =5 Gi +5 Gi +5x16 Gi =
& 2., 2, 2% 2 2 2 & 2
(2 njci )ol, e, (Cy)™ /(o Xncy) = Z” and hence, (Cy)” / (MSgyor 2 1iCi) = t,=
i=l1 i=1 i=1

F

1Lv, *
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THE RANDOM-EFFECTS MODEL

This model is valid only when the “a” levels of a factor are randomly selected from a

population of levels (e.g., selecting 6 operators at random from a population of 100 operators
working in a plant). Operators would then form a random qualitative factor and the
conclusions drawn from the ANOVA Table will pertain to the entire population of 100
operators. Note that there will not be any interest whatsoever in determining which 2 of the
actually selected 6 treatments (or operators) are significantly different (i.e., Tukey’s SRT and
ORCs will not be applicable) but rather the objective is to determine if there is significant

variation in the entire population of treatments (or operators). Therefore, our null hypothesis is
Ho: G% =0 versus Hi: cs% >0, which again is clearly a right-tailed test. The ANOVA Table is
obtained exactly as in the case of fixed-effects, but the post-ANOVA procedure is quite
different. In the case of random-effects model, if the F-test rejects the null hypothesis that G% =

0, i.e., Fo exceeds the threshold value of F | |

, then it is essential to estimate the
components of variance in the LAM :y; = u + 1i + €j;, where p = E(y;) foralli=1,2,...,,a,and j =
1,2,..n.

Note that we are considering only the simpler balanced case (i.e., nij=n for all i) for the

a
random-effects model. Further, ti's are assumed NID(O, c% ) so that the constraint Zri =0
i=1

no longer applies to the random-effects model, but E(ti) = O for all i, which implies that E(ui) = .

The experimental errors, €jj's, are as before NID(0, 62) and independent of ti's. This leads to
V(yj) = G% + 62, which shows that there are 2 components of variance.

For an example of obtaining the ANOVA Table for a random-effects model, see the

Example 3.11, pp. 119-122 of Montgomery’s 8t edition. In order to estimate the 2 components

of variance, Gi and G% , we must derive E(MSg) and E(MSrtreatments ). As in the case of fixed-
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effects, it can easily be verified that E(MSg) = 2. Therefore, for the Example 3.11 of

Montgomery, 62 =62 = MS(Error) = MSpe = 1.896 = MSg, where PE stands for pure error.

We now prove that for the random-effects model, under the LAM (1), E(MStreatments) =

a n
E(MST) =n G% + 02. PrOOf. E(MSTreatments) = E.zl .zl (?i. 'y“ )2 / (a - 1)
1= J=

a 2
= nE-zl@i,—y.)z/(a—l) = T EX[(h 45 ) -+ THE ) |
1= -

n

o _q2_ B o
=EEZ[(T1—T)+(81_—8,.)] _ﬁ[EZ(Ti—‘E)2+EZ(gi.—g”)2}

=Ll[(a—l)cs% +(a—1)0%} =nc% + 02 = E(MSy).
a_

As before an unbiased estimator of 62 is clearly MSg, and the above proof shows that

18

E(MStreatments ) — G2 = n 0% . Inserting E(MS¢ ) for o2 in this last equation results in E(MStreatments )

—E(MSg)=n G% , or E[(MStreatments — MSg )/n] =G% . This last equality clearly shows that an

unbiased estimator of G% is indeed (MStreatments — MSg )/n. You should now be in a good

position to understand the point estimates obtained near the bottom of p. 119 of

2

Montgomery(8e) for the data of Example 3.11, where MS(Treatments) = néT

MS 1 catments =M SError - MS 1 catments =M SrEs - 29.72917-1.89583
n n 4

2

O

textile company is estimated to be approximately 78.59%.

Exercise 4. Work problems 3.30 & 3.31 on page 135, coding the data by 23 and 480,

respectively.

18

~ )
+6% > G; =

~6.95833 —> §

+6i =6.95833 + 1.89583= 8.85417. The % of variation attributed to all the looms in the
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GENERAL REGRESSION SIGNIFICANCE TEST APPROACH TO ANOVA (GRST)

If DOX (design of experiment or experiments) involves 2 or more factors and is
unbalanced (ni’s are different at different factor level combinations), then the procedures
presented so far for computing SS’s will no longer be valid. In fact, when there are 2 or more
factors, some SS’s will always become negative, if the standard ANOVA procedure for SS's
computations is used! Thus, in the case of 2 or more factors impacting the response, resort
must be made to the GRST approach which is very complicated and cumbersome at best.
Fortunately, most statistical packages (such as SAS, Minitab and SPSS) have a built-in routine to
obtain the ANOVA table for an unbalanced factorial experiments involving more than one factor

(such as Minitab’s GLM = General Linear Models). Before presenting the GRST approach, for

a n
the readers understanding, we should show that SSgror = Z Z y?j —R(p, 1), where R(u, 1) is
i=1j=1

a n
called the reduction of the USS= Y > y?j due to fitting the LAM “i + 7; + €;” to the yi/’s.
i=1j=1

a
Exercise 5. Show that the R(w, 7) = 1 y.+ >_T; ;. -
=1

a n

a n
Hint: SSeror= ', (¥ —Yi. )2 = 2 2. (yi—%-Y. )%, where we have made use of the fact
i=1j=1 i1l

a n a
that ;= ¥~ ¥_. Thus, SSerer= 3, 2 (Y= ¥.) =) 1" = .. =SStow— L tiy; +
i=1jo1 i1

a a
ny X Z%i» but the D 1, =0 so that the desired result now follows. If the ns are not equal,

a
then the constraint changes to ) _,n;T; = 0. The conclusions that you must draw from this
i=1

a
exercise is that the SS(Total) = SSerror + Z %i yi.» which clearly shows that SS(Treatments)= SS; =
i=1

a a a
D 1, y; . Further, SSeror = USS—CF =Y 1;y; =USS— [1y. — >_1; y; , which shows that R(y, 1)
i=1

19
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THE GRST APPROACH

Our first objective is to estimate the parameters p and the vector T=[t1  12... T4

such that the least squares function (LSF)

a n 5 a n )
LSF=Lip, ) = 2, > €5 = 2 2 (¥~ 1 —T))

i=1j=1 i=1j=1
is minimized wrt the (a +1) unknown parameters pand T. To accomplish this task, we must

require that the partial derivatives of the LSF wrt the (a+1) parameters is zero.

n a
S 23 F mnon)ch S0, o

o j=li=
O(LSF n o a
%= - a—_z (yij—u—ri)z
% FL %=l
n set to
= ‘212(ykj - —Tk)(—l) —— > =0, fork=1,2,..,a.
J:

Each partial derivative above when set equal to 0 leads to exactly one LS (least squares)

normal equation so that we have a system of (a+1) equations with (a+1) unknowns [1 and T (i

=1, 2, .., a), which are listed on pages 125-126 of Montgomery’s 8t edition. As Montgomery

notes, the (a+1) equations are not independent because the sum of the last “a” equations give

rise to the 1st. However, for a balanced design we have the constraint that Z%i= 0, and this

leads to a set of unique solutions [L =y and 1;=y; -V ,i=1,2, .., a. From the Exercise 5 on

the previous page, it now follows that the contribution of the treatment i to SS(Treatments) is

simply the product of 7; by the corresponding subtotal yi. on the RHS of the (i +1)* LS normal

equation.
Before providing an example to illustrate the GRST approach, we should emphasize
that there is generally a simpler method of obtaining the LSNEs for most ANOVA models. For

the balanced LAM (1), to obtain the LSNE for p, simply add both sides of Eq. (1) over alliand j

20



21

unrn

a
and use the assumptions that Zri =0, 22 ;=0 and place a hat
i=1

on the remaining

parameters. This leads to

a n
ZZyij =22 (p+Ti+ €5) - NUu=y.
i=1j=1

which is the 15 LSNE on page 125 of Montgomery. To obtain the LSNE for 7;, keep the index i
fixed and sum both sides of the LAM(1) fromj=1toj=n:
n n .
2yi= 2 +Tte) - nNH+nT; =vi,
j=1 j=1
whichfori=1, 2, .., a, gives the last “a” LSNEs on pages 125-126 of Montgomery. To obtain
an
the F-test, 1° fit the LAM: p + Ti + € to the yy's; then the reduction of the USS = > > y;;
i=1j=1

resulting from fitting this model (as was shown in Exercise 5 of my notes) is given by R(u, 1) =
A a
Ay.+ 23 i -

i=1

Second, hypothesize that Ho : i = 0 for all i, which reduces the LAM to yjj= u + €;;. Now
fit this reduced model p + € to the data. Summing the reduced LAM over both i and j results
. an
in one LSNE: y. = N1. Therefore, the reduction of the USS= > " yjj due to fitting the
i=1j=1
reduced model yjj = n + € is R(n) =[ly. = Y y.=y.?/N=the CF. Consequently, the net

reduction of USS due to adding the 1/’s to the reduced model yj; = u + €;; must be R(y, T) — R()
a a a a a
=Y Ayi= XY )Y =iy Y. yi) = (X yi/n) =¥ y. =(X yi /n) —CF=Ss.
i=1 i=1 i=1 i=1 i=l
As an example of the GRST approach, we work PROBLEM 3.27 on page 135 of
Montgomery, and to make calculations less cumbersome, we change the value of y33 from 55.4
to y33 = 55.6; further, in order to ease computations we code the data by subtracting 50 from all
N = 16 observations. This leads to the coded y. =72.00, y1.=34.5,y2 =23.1,y3.=9.9,ys. = 4.5,
USS = 444.64, and the CF =722 /16 = 324.
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To apply the GRST procedure to this unbalanced one-factor experiment (n1

=5,n2=ns=4and n3 = 3), we 15t sum the LAM: u + 7j + €j; = y;j over the 4 treatments and all the

observations within treatments, leading to the LSNE for
w: 16[1+5%; +47, +31; +4%, =v.
Next, in order to obtain the LSNE for 1,, we puti=1inthe LAM and sum over j=1toj=5, and

5

assume Zélj =0. (Notethat u+ 11+ €1j=yy)
j=1

T1: 5+5%, = ya.
To obtain the LSNE for 12, we put i =2 in the LAM and sum
fromj=1toj=4. — T2: AL +4T,=vy,
In a similar manner we obtain the equations for 13 and 14 :
t3: 3[+3T3=vys,  Ta: 4 1+4%,4=vya
The above system of 5 equations with 5 unknowns are summarized below:

50+57 =34.5
4 +47, =23.1
30 +31, = 9.9
4l + 41, = 45

But the above heterogeneous system has a determinant of 0 because the sum of the last 4
equations give rise to the 1%t and hence there is no unique solution. In order to obtain a unique

4 4
solution, we can impose either the constraint D T; = 0, or the constraint Y n;T; = 0. Both

constraints lead to the same exact value of R(u, 1) but different parameter estimates! We

4

arbitrarily select the constraint 1, = 0 and in the next exercise you will use the other
i=I

constraint. Therefore, we now have a system of 5 independent equations with 5 unknowns as
listed below:

A

T1+ %2"’ %3"‘%4:0

22



23

50 +5T, =345
4N +471, =23.1
30 +371, =9.90
40 + 41, =4.50

| wrote a simple Matlab program to solve the above system (or you may use MS Excel by
inverting the matrix of the system and multiplying it by the column vector [34.5 23.1 9.90 4.50
0]’). The Matlab codes use Cramer’s Rule to obtain the solution which are }ft= 4.275, 1, =

a
2.625, 1, = 1.50, 13=-0.9750, and 1,=—3.150. Thus, R(y, t) =[Lxy. + Z%i y; =409.185 >

i=1
SS(Error) = USS — R(u, 1) = 444.64 — 409.185 = 35.455, which is in exact agreement with the
SS(Error) of the Minitab program output that | used to verify the above results. Note that if we

first square the identity (2),yj =y +7; +€ given on page 11, and then sum from j=1to n;

a nj a nj
and i =1to a, we obtain USS=)_ >’ yizj => > (¥ +% +eij)2 =
i-1j=1 i-1j=1

a nj a nj a nj
= \2 ~2 2 .
Z Z ¥ )+ Z Z T+ z Z ejj because all 3 cross-product terms vanish. Therefore, the
1=1j=1 1=1j=1 1=1j=1

magnitude of USS is first due to the correction factor CF = N(y_)2 , hext is due to the

nj

A

=

i a n; a
(Vi -Y) =224y z = SStreatments, and the rest is due to SSges
j=1 i=l j=1 i=1

-3

i=1

—.

a nj
= Z Z eizj . Finally, SStreatments can also be obtained by first hypothesizing that Ho: 7y =0 for all i
i=1j=1

and using the model yjj=p + € to obtain the LS estimate of p. This yieldsy..= N[, or [i =
y =4.50, resulting in R(n) =y.. Y =72x4.50 = 324.00. Thus, SStr = R(u, t)— R(p) = 409.185—

324 =85.1850, as before.

4

Exercise 6. Repeat the above analysis using the 2" constraint Zni%i =0.
i=1
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Errata for Chapter 3 of Montgomery’s 8" edition
1. Page 77, in the middle the page change the Eq. (3.18) to djj =
eij
J@-1MS /n

and change d; to d3; and e to es;.

2. Page 83, in Figure 3.6 the abscissa value 500.15 should be 587.40, and 629.10 should
be 625.4.

3. Page 86, in Table 3.7, change S, to 1.192, S; to 1.6471, and S4 to 2.801.

4. Page 94, If contrasts are defined in terms of treatment means instead of subtotals

(vi's), then the orthogonality condition near the bottom of page 94 of Montgomery’s

a
8" edition must be changed to Z(Cidi /n)=0.
i=1
5. Page 125, line 4 from the bottom of the page change the least squares
n n
normal equation —ZZ(yij +0-1,)=0 to — ZZ(yij -0—-1,)=0,i=1,2,
j=1 j=1

e, Q.
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