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ABSTRACT
Process capability indices such as Cp are used extensively in manufacturing industries to assess pro-
cesses inorder todecide aboutpurchasing. Inpractice, theparameter for calculatingCp is rarely known
and is frequently replacedwith estimates froman in-control reference sample. This article explores the
optimal sample size required to achieve a desired error of estimation using absolute percentage error
of different Cp estimates. Moreover, some practical tools are created to allow practitioners to find sam-
ple size in different situations.

Introduction and literature review

Evaluating the capability of a manufacturing process is
an important concept that has received much interest
in six sigma, lean manufacturing and statistical pro-
cess control (see Kotz and Johnson 1993; Kumar et al.
2006; Chen et al. 2010). In general, process capability
compares the output of an in-control and steady process
to the preset engineering specification limits by using
capability indices. For example, the most popular capa-
bility index (Cp) forms the “ratio of the spread between
the process specifications (the specification “width”)
to the spread of the process values, as measured by 6
process standard deviation units (the process “width”)”
(see NIST/SEMATECH e-Handbook of Statistical
Methods 2012). Mathematically, Cp is defined as:

Cp = (USL − LSL) /6σ, [1]

where USL, LSL, and σ are the upper specification
limit, lower specification limit, the process standard
deviation, respectively. Based on Eq. [1] and under the
assumptions that the process is centered,Cp can be used
to easily quantify the% rejects of a process (see Table 1).

The calculations presented in Table 1 assume that
the process standard deviation is known. In prac-
tice, however, process parameters such as σ are rarely
known, and they are estimated based on a suitable base-
line sample. There are two possibilities for getting such

CONTACT Fadel M. Megahed fmegahed@auburn.edu Department of Industrial and Systems Engineering, Auburn University, Auburn, AL .
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lqen.

estimates: (1) based on a Phase I control chart; or (2)
from a dedicated baseline sample. For our purposes,
these two scenarios are identical since the effect of
estimation error on Cp is solely based on sample size.
When σ is to be estimated, process capability would be
defined as:

Ĉp = (USL − LSL) /6σ̂ , [2]

where σ̂ represents any appropriate estimator for σ .
Note that any error in estimating σ would result in
an incorrect estimator of the true process capability.
The problem of estimating σ can be divided into two
parts: (a) what is the best (robust, unbiased, and/or
min variance) estimator for σ ? (b) What sample size
is needed such that the effect of estimation error can be
neglected? The selection of the best estimator for sigma
in part a was considered by several researchers includ-
ing Kirmani, Kocherlakota, and Kocherlakota (1991),
Derman and Ross (1995), Ravindra Khattree (1999),
and Mahmoud et al. (2010). In the context of the con-
trol charting literature, the effect of parameter estima-
tion on a control chart’s properties has been reviewed
by Jensen et al. (2006) and Jones-Farmer et al. (2014).
These articles show that estimated parameters can have
a significant effect on both the in-control and out-of-
control performance of control charts, especially with
small to moderate sample sizes.

©  Taylor & Francis
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2 Z. SEDIGHI MAMAN ET AL.

Table . Practical use of process capability indices.

USL−LSL σ σ σ σ

Cp . . . 
Defect Rates .%  parts per

million
. parts
per
million

 parts per
billion

% of spec
used

   

For part b, Franklin (1999), Zimmer, Hubele, and
Zimmer (2001), Pearn and Ming-Hung (2003), and
Wua and Kuo (2004) have investigated the sample
sizes needed by considering a lower confidence interval
approach as a basis for the decision. They have assumed
that the process is in-control (or steady) and its out-
put is normally distributed (or an appropriate trans-
formation can be applied to not violate the normal-
ity assumption). It should be noted that these articles
use the ratio of actual process capability over the esti-
mated one (Cp

Ĉp
) and offer sample size recommendation

based on the associated confidence interval. Unfortu-
nately, this approach is somewhat limiting in practice.
We highlight three potential issues in using the ratio
(Cp

Ĉp
) as a basis for decision-making.
(a) The selection of a suitable value for this ratio is

not clear. For example, Franklin (1999) and Wu
and Kuo (2004) have used arbitrary ratios such
as 0.8, 0.85, and/or 0.9 to determine the sample
size. There are no justifications for how a practi-
tioner should select such a ratio for determining
the sample size (with the exception that ratios
closer to 1 are preferred).

(b) The use of this ratio might lead practitioners to
believe that the difference from 1 is a measure
of the estimation error. For example, one might
think that using a ratio of 0.8 would imply that
the error is 0.2. However, the associated absolute
percentage error (APE) in this case is 0.25 which
is larger than the 0.2 (incorrect interpretation
of error). While this might seem intuitive to a
statistics-savvy audience, this is not necessarily
the case for practitioners who use process capa-
bility indices (instead of calculating the proba-
bility of being outside the spec. limits).

(c) From a statistical perspective, the ratio of (Cp

Ĉp
)

is a random variable (r.v.), i.e., it has a different
expected value and variance for different sam-
ple sizes (and/or different values of σ̂ ). By pre-
specifying a single value, one would discard the
stochastic nature that is associated with estimat-
ing Cp.

To address these three issues, we consider the use
of APE (see “Methodology” for a mathematical defi-
nition) to determine the sample size needed such that
the effect of estimation on the process capability index
can be neglected (based on thresholds that are set by
the practitioner). In this article, we consider single and
multiple sampling procedures. By using APE in the
decision-making process, we can achieve the follow-
ing.

(a) The interpretation of APE is much simpler than
the aforementioned ratio. Specifically, the use of
APE allows us to consider the estimation error
as a function of sample size.

(b) We consider APE as a random variable as
detailed later in this article. This allows us to
consider both the expected value and the stan-
dard deviation of APE when calculating the
sample size. It is important to note that the abil-
ity to calculate the standard deviation of theAPE
allows us to consider the between samples vari-
ation (each typically considering one baseline
sample) in estimating Cp.

It should be noted that we consider the calculation of
sample size in the case of single and multiple sampling
procedures, as well as through using different estima-
tors ofσ . To ensure the broad reach of this approach,we
provide a toolkit to allow practitioners to find appro-
priate sample size based on simple criteria (see the
Appendix for more details).

In this article, the process is supposed to be in-
control, centered and the quality characteristic follows
a normal distribution. The next section presents def-
initions for the expected value of APE and its stan-
dard deviation, and the procedure for calculating the
sample size based on the different estimators for σ .
In the “Results and discussion” section, we present
numerical results to highlight how our approach can
be used in practice. Finally, in the last section, we offer
some concluding remarks. The mathematical deriva-
tions, codes used, and an overview of the practi-
tioner toolkit are provided in Appendices A, B, and C,
respectively.

Methodology

The single sampling case

In this section, we consider scenarios where practition-
ers attempt to estimate the process standard deviation
based on a single baseline sample. In particular, two
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QUALITY ENGINEERING 3

different estimators for σ are discussed; s and s/c4.
Below, we show how practitioners can use the APE
statistic to determine the sample size needed such
that the effect of any estimation error on Cp can be
neglected.

s as an estimator for σ
The sample standard deviation, s, is widely used to esti-
mate the population/process standard deviation. Let
i = 1, 2, … be an independent sample of size n drawn
from a process that is normally distributed with con-
stant, but unknown parameters (μ, σ 2). Then, s can
be calculated as:

s =
√∑n

i=1 (xi − x̄)2

n − 1
, [3]

where x̄ is the sample mean.When s is used to estimate
σ , Eq. [2] can be re-written as:

Ĉps = (USL − LSL) /6s. [4]

Note that we added the subscript s to denote that the
use of the sample standard deviation. In this case, the
Absolute Percentage Error for Cp can be defined as:

APEs =
∣∣∣∣∣Cp− Ĉps

Cp

∣∣∣∣∣ =
∣∣∣∣∣ USL−LSL

6σ − USL−LSL
6s

USL−LSL
6σ

∣∣∣∣∣
=
∣∣∣1 − σ

s

∣∣∣ . [5]

Since APEs is a r.v., we can define its expected value
and standard deviation based onU = (n−1)S2

σ 2 ∼ χ2
n−1.

Then the expected value and standard deviation of the
APEs can be formulated as:

APEs = f (U) =
∣∣∣∣∣1 −

(
U

n − 1

)− 1
2

∣∣∣∣∣ , [6]

E (APEs) =
∫ ∞

0
f (U) g (U) du, and [7]

SD (APEs) = (
E
(
APEs

2)− E2 (APEs)
) 1

2 . [8]

Note that g(U) is the probability density function
for U based on the χ2

n−1 distribution. Based on the
Eqs. [6]–[8], we can define a function that allows a
practitioner to find an appropriate sample size based
on a pre-specified error criterion as shown in Eq. [9]:

P (APEs < Max APE) > 1 − α, [9]

where 1− α represents a confidence level such that 0 <

α < 1. Note that the choice of α represents the risk
threshold that the practitioner is willing to take. For

example, α = 0.05 wouldmean that in 95% of the sam-
ples APEs will be smaller than theMax APE. In Eq. [9],
for a given Max APE (representing a user’s required
level of accuracy) and a pre-defined α value, n is the
only unknown. Thus, Eq. [9] can be used to obtain the
smallest sample size that meets these two criteria. The
section titled “Results for the single sampling scenar-
ios” provides numerical solutions for different combi-
nations of Max APE and α.

s/c as an estimator for σ
It is well documented that s is a biased estimator for
the population standard deviation, and thus, a correc-
tion factor c4 is often used to eliminate the bias (see,
e.g.,Montgomery Runger, andHubele 2009;Mahmoud
et al. 2010). Note c4 is a function of n:

c4 = c4 (n) =
(

2
n − 1

) 1
2 �

(n
2

)
�
(n−1

2

) . [10]

In this situation, σ̂ = s/c4 and ̂Cp s
c4

= USL−LSL
6 s

c4
. By

substituting s by s/c4 in Eqs. [5]–[9], one could eas-
ily obtain an expressionwhere (APE s

c4
< Max APE) >

1 − α. This expression can then be used to obtain the
smallest sample size that meets Max APE and a pre-
defined α value given that s/c4 is used to estimate the
process standard deviation. For the sake of completion,
we provide the detailed mathematical expressions in
the Appendix.

Usingmultiple samples for estimating the process
standard deviation

Similar to the previous section “The single sampling
case,” we provide details for two commonly used esti-
mators for σ when multiple samples are used. The
details for using these estimators are provided below.

Using the pooled sample standard deviation (Sp)
Let xij (i = 1, 2,…, m and j = 1, 2,…, n) be m inde-
pendent baseline samples of size n drawn from a pro-
cess that is normally distributed with constant, but
unknownparameters (μ, σ 2). The pooled sample stan-
dard deviation, Sp, can be used to estimate the process
standard deviation:

Sp =
(
1
m

m∑
i=1

s2i

) 1
2

=
⎛⎝ 1
m (n − 1)

m∑
i=1

n∑
j=1

(
xi j − x̄i

)2⎞⎠
1
2

.

[11]

D
ow

nl
oa

de
d 

by
 [

Z
ah

ra
 S

ed
ig

hi
] 

at
 1

5:
13

 0
2 

Ju
ly

 2
01

6 



4 Z. SEDIGHI MAMAN ET AL.

Consequently, Cp and the APESp can be calculated
as:

̂CpSp = (USL − LSL) /6Sp , and [12]

APESp =
∣∣∣∣∣Cp− ̂CpSp

Cp

∣∣∣∣∣ =
∣∣∣∣∣
USL−LSL

6σ − USL−LSL
6 Sp

USL−LSL
6σ

∣∣∣∣∣
=
∣∣∣∣1 − σ

Sp

∣∣∣∣ . [13]

Expressions for expected value and standard devi-
ation of APESp can be derived by replacing s by Sp
in Eqs. [6]–[8] and using U = m(n−1)S2p

σ 2 ∼ χ2
m(n−1).

Based on this information, we can now define a func-
tion that allows us to calculate the required sample size
for a given α and Max APE:

P
(
APESp < Max APE

)
> 1 − α. [14]

Using s̄
c4
for estimating the process standard deviation

Another approach for estimating σ when multiple
baseline samples are drawn can be obtained by using
the estimator σ̂ = s̄/c4, which can be seen as the mul-
tiple sample extension for the method highlighted in
the section titled “s/c4 as an estimator for σ”. Similar
to our discussion for Sp, let xij (i = 1, 2,…, m and j =
1, 2,…, n) be m independent samples of size n from a
N ∼ (μ, σ 2) process. s̄ is defined as:

s̄ = 1
m

(s1 + s2 + · · · + sm) , [15]

where si is the standard deviation for sample i, which
can be calculated by Eq. [3]. By replacing s by s̄/c4 in
Eqs. [4] and [5], we can obtain the following:

̂Cp s̄
c4

= USL − LSL
6 s̄

c4

, and [16]

and

APE s̄
c4

=
∣∣∣∣∣∣
Cp− ̂Cp s̄

c4

Cp

∣∣∣∣∣∣ =
∣∣∣∣∣∣
USL−LSL

6σ − USL−LSL
6 s̄

c4
USL−LSL

6σ

∣∣∣∣∣∣
=
∣∣∣1 − c4

σ

s̄

∣∣∣ . [17]

Similar to our discussion in “The single sampling
case,” APE s̄

c4
is a random variable. To calculate its

expected value and standard deviation, let Q = σ̂
σ
such

that the distribution ofQ is independent ofσ . Based on
the derivations in Patnaik (1950) and Chen (1998), Q
is a scaled chi random variable cχν√

ν
, and the probability

density of cχν√
ν
is:

g
(
q, v, c

) = 2
c

(
v
2

) v
2

�
(

v
2

) (q
c

)v−1
exp

(
−v

2

(q
c

)2)
,

[18]
where ν = (−2 + 2

√
1 + 2t )−1 and c = 1 + 1

4ν +
1

32ν2 − 5
128ν3 . To calculate v and c, we follow the

approach of Patnaik (1950) and Chen (1998) who
used r = (−2 + 2

√
1 + 2M1)

−1, t = M1 + 1
16r3 , and

M1 = 1−c4(n)2

mc4(n)2
. Therefore, the APE, expected value and

standard deviation can be obtained as:

APE s̄
c4

= f (Q) =
∣∣∣∣1 − 1

Q

∣∣∣∣ , [19]

E
(
APE s̄

c4

)
=
∫ ∞

0
f (Q) g (Q) dq , and [20]

SD
(
APE s̄

c4

)
=
(
E
(
APE s̄

c4

2
)

− E2
(
APE s̄

c4

)) 1
2
. [21]

Note that g(Q) in Eq. [20] represents the proba-
bility density function for Q. With Eqs. [19]–[21], we
can obtain a function that allows us to calculate the
required sample size for a given α and Max APE. This
function is identical to that in Eq. [14]; however, APESp
is substituted with APE s̄

c4
.

Results and discussion

In this section, we present the results for the scenar-
ios when practitioners use one baseline sample and
multiple baseline samples to estimate the process stan-
dard deviation. In each subsection, we first present the
expected value of APE and its standard deviation based
on different estimators and sample sizes. Those values
are calculated based on the formulas in the “Methodol-
ogy” section and the R codes in theAppendix. Then, we
provide some numerical simulations to highlight the
between samples variation in APE based on the pre-
scribed sampling plan.We then provide our sample size
recommendations based on numerical solutions for the
derived functions for n for a given α and Max APE.

Results for the single sampling scenarios

For a single sampling plan, we provide the E(APE) and
SD(APE) for both s and s

c4
in Table 2 by using the for-

mula provided in the Appendix. The results demon-
strate that as the sample size increases, both E(APE)
and SD(APE) decrease. Moreover, smaller E(APE) and
SD(APE) values are obtained by using s

c4
instead of s.
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QUALITY ENGINEERING 5

Table . The expected value and standard deviation of APE for σ̂ = s and σ̂ = s/c4.

n        

E(APEs) . . . . . . . .
SD(APEs) . . . . . . . .
E(APE s

c4
) . . . . . . . .

. . . . . . . .

In other words, s
c4

can be more efficient than s espe-
cially for small sample sizes. It should be noted that
the use of the often recommended sample sizes of 30
to estimate the process standard deviation (see Mont-
gomery (2014)) or 50 (see SEMATECH e-Handbook of
Statistical Methods (2012)) result in E(APE) of at least
8% with a standard deviation that is greater than 6.5%.
This means that the estimated values for Cp can vary
as much as 25–30% from their true value with these

sample sizes, which can result in practitioners draw-
ing wrong conclusions about the capability of their
process.

To highlight the variation in APE, consider a situa-
tion where a practitioner draws 100 samples of size n to
estimate the process standard deviation (either by using
s or s/c4 ). For the sake of this discussion, let us assume
that the practitioner uses σ̂ = s. Since we are focusing
on the single sample scenario here, each sample would

Figure . The variation in the APEs when different values of n are used.
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6 Z. SEDIGHI MAMAN ET AL.

Table . Smallest n for P(APEs < Max APE) > 0.95 and P(APE s
c4

< Max APE) > 0.95.

P(APEs < Max APE ) . . . . . . . . .
MaxAPEs . . . . . . . . .
n (smallest sample size) 4808 2140 1207 774 540 401 306 243 198
P(APE s

c4
< Max APE ) . . . . . . . . .

Max APE s
c4

. . . . . . . . .

n (smallest sample size) 4803 2137 1205 773 539 398 305 242 197

result in one estimate for Cp. We depict the variation
in the APEs associated with this simulation scenario in
Figure 1. Note that the purpose of this simulation is to
assist readers in visualizing the decrease in APE when
n is larger. As expected from Table 2, the variation is
reduced as the sample size is increased. Additionally,
by setting the value of the Max APE = 0.05, we can
visualize the function P(APEs < Max APE). From the
figures, it is clear that the number of practitioners (i.e.,
points) that are above the Max APE is reduced when
n increases. Additionally, it becomes less likely to get
larger values for APE. This result is one of the contri-
butions of this article since previous work did not con-
sider the variation in their error metric as a function of
n.

Based on Figure 1 and Table 2, we present the small-
est sample size needed for different values of Max APE
and α = 0.05 in Table 3. Note that the sample sizes
needed are much larger than what is used in practice
if one where to use α = 0.05. However, even if different
values ofα were to be used the required sample size will
still be large as shown in Figure 2. Note that the sample
size needed varies from 417 to 545 to 774 for α = 0.15,
α = 0.10, and α = 0.05, respectively.

Figure . P(APEs < Max APE ) vs. sample size.

Results for whenmultiple samples are used

The results for E(APE) and SD(APE) for both Sp and
s̄/c4 used (based on different combinations of m and
n) to estimate σ are presented in Table 4. Similar to
Table 1, the values for E(APE) and SD(APE) decrease
as the number of samples (m) and/or the sample size
(n) increase. Additionally, the use of Sp is more effi-
cient than s̄/c4, especially when N = m × n is small,
since E(APE) and SD(APE) for Sp are smaller than the
corresponding values of s̄/c4. As expected, the values
for E(APE) and SD(APE) are dependent on both m
and n, i.e., the values are different for the following
two scenarios: (a) n = 5, m = 20 and (b) n = 10 and
m = 10.

To highlight the variation in APE, consider a situ-
ation where a practitioner draws 100 samples of size
n to estimate the process standard deviation (either
by using sp or s̄/c4 ). For the sake of this discus-
sion, let us assume that the practitioner uses σ̂ = sp.
Since we are focusing on the multiple sample scenario
here, each sample would result in one estimate for
Cp.

Similar to Figure 1, we depict the variation in the
APEs associated with 100 simulation runs where a
practitioner draws m samples of size n in Figure 3.
From Table 4, the variation is reduced as m and/or n
increases. By setting the value of the Max APE = 0.05,
we can visualize the function P(APEsp < Max APE).
From the figures, it is clear that the number of points
that are above the Max APE is reduced whenm and/or
n increases. These results are consistent with Figure 1
and provide insights intowhy practitioners should con-
sider the variation in the APE.

In Table 5, we provide candidate n and m values
when Sp and s̄

c4
are used to estimate σ . For small val-

ues of n, the total number of samples required is much
smaller when Sp is used. However, m converges for
larger values of n. The code provided in the Appendix
allows the reader to examine solutions for different val-
ues of Max APE and α.
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QUALITY ENGINEERING 7

Figure . The variation in the APEsp when different values of n andm are used.

Table . E(APE) and SD(APE) for different combination of n andm.

N             
m             

Sp E(APE) . . . . . . . . . . . . .
SD(APE) . . . . . . . . . . . . .

s̄
c4

E(APE) . . . . . . . . . . . . .
SD(APE) . . . . . . . . . . . . .

Table . Candidatesm and n values for P(APEsp < 0.05) > 0.95 & P(APE s̄
c4

< 0.05) > 0.95.

P(APEsp
< Max APE ) . . . . . . . . .

Max APEsp
. . . . . . . . .

n 5 10 15 20 25 30 35 40 45
m 194 86 56 41 33 27 23 20 18
P(APE s̄

c4

< Max APE) . . . . . . . . .

Max APE s̄
c4

. . . . . . . . .

n 5 10 15 20 25 30 35 40 45
m 204 88 57 42 33 27 23 20 18
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8 Z. SEDIGHI MAMAN ET AL.

Concluding remarks

In this article, we investigated the effect of estima-
tion error on the process capability index (Cp) using
four different estimators of the process standard devi-
ation. We propose using the expected value and stan-
dard deviation of the absolute percentage error (APE)
to quantify the variation that is seen from one prac-
titioner to another if they were to use a single sample
of size n (or m samples of size n) to estimate the pro-
cess standard deviation. From our calculations, there
are four main conclusions one can obtain from this
article.

(a) The sample sizes required are generally much
larger than the current ones used in indus-
try. For example, the recommendation from
the NIST/SEMATECH e-Handbook of Statistical
Methods is to use n = 50. When one sample is
used to estimate σ , we recommend n to be in the
hundreds based on Table 3. This recommenda-
tion would result in increasing the current sam-
ple size used in industry by a factor of 10. How-
ever, it will minimize the effect of sampling error
on Cp.

(b) It is more efficient to use a single sample of size
N than m samples of size n (where N = m ×
n). This can be seen by comparing results from
Tables 3 and 5;

(c) If the practitioner has no preference for how
to estimate the process standard deviation from
a sample of size n, using the estimator s/c4 is
somewhat preferred over s since the standard
deviation of the APE is smaller.

(d) The use of APE with the two decision crite-
ria, Max APE and α, provides a simple method
to characterize the between samples variation
when estimating Cp. Practitioners can easily
understand and visualize the impact of their
sample size selection on the calculation of Cp by
using our tool.

It should be noted that our work assumes that the
process output is centered and is normally distributed.
These two assumptions are not restrictive. Steiner and
Mackay (2005, Ch. 15) provide an algorithm for mov-
ing the process center. There are several transforma-
tions that can be used to transform non-normal data
(e.g., Box-Cox transformation). Perhaps more impor-
tantly, these are the assumptions behind using Cp for
determining process capability. In this article, our goal

is to highlight what sample size is needed (given these
assumptions are true) so that the effect of estima-
tion error can be neglected. Future work can address
extending our methodology to other process capability
indices. It should be noted however that other indices
often require the estimation of multiple parameters so
the solutions for these should be based on numerical
simulations. Thismightmake the development of a tool
for practitioners more difficult.
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Appendix

Finding the sample size based on the different
estimators

When s is used to estimate σ

In the section titled “s as an estimator for σ” we pre-
sented Eq. [9] where we stated that an appropriate sam-
ple size based on a pre-specified error criterion can be
obtained. In this subsection of the Appendix, we start
with this equation and show the mathematical manip-
ulations needed to solve for n. Our final equation has
n as the only unknown and could be solved using any
statistical package. We present our R code for solving
this formulation in the next section:

P (APEs < Max APE) > 1 − α, [A1]

P

(
− Max APE <

Cp− Ĉp
Cp

< Max APE

)
> 1 − α,

[A2]
By substituting Cp and Ĉp by their corresponding

values that are based on Eqs. [1] and [2] and replacing
σ̂ by s, we obtain:

P

(
− Max APE <

USL−LSL
6σ − USL−LSL

6s
USL−LSL

6σ

< Max APE

)
> 1 − α. [A3]

This will give us:

P
(

1
1 + Max APE

<
s
σ

<
1

1 − Max APE

)
> 1 − α. [A4]

P
(

1
(1 + Max APE)2

<
s2

σ 2 <
1

(1 − Max APE)2

)
> 1 − α. [A5]

By substituting s2
σ 2 by its corresponding distribution

function, we obtain:

P
(

n − 1
(1 + Max APE)2

< χ2
n−1 <

n − 1
(1 − Max APE)2

)
> 1 − α. [A6]

Finally, by determining the α and Max APE, we can
solve the equation to find the sample size.

When
s
c4

is used to estimate σ
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Similar to our discussion for s, lets us consider Eq. [10]
in the section titled “s/c4 as an estimator for σ” to find
the appropriate sample size based on a pre-specified
error criterion. Then in this subsection of the appendix,
we will have:

P
(
APE s

c4
< Max APE

)
> 1 − α , and [A7]

P

(
− Max APE <

Cp− Ĉp
Cp

< Max APE

)
> 1 − α,

By substituting Cp and Ĉp by their corresponding
values, and replacing σ̂ by s

c4
, one could easily obtain:

P

⎛⎜⎝ − Max APE <

USL−LSL
6σ − USL−LSL

6
(

s
c4

)
USL−LSL

6σ

< Max APE

⎞⎟⎠
> 1 − α. [A8]

Then:

P
(

c4
1 + Max APE

<
s
σ

<
c4

1 − Max APE

)
> 1 − α.

[A9]

P

((
c4

1 + Max APE

)2

<
s2

σ 2 <

(
c4

1 − Max APE

)2
)

> 1 − α. [A10]

By substituting s2
σ 2 by its corresponding probability

density function, we obtain:

P

(
(n − 1)

(
c4

1 + Max APE

)2

< χ2
n−1 < (n − 1)

×
(

c4
1 − Max APE

)2
)

> 1 − α. [A11]

By considering Max APE and a pre-defined α value
this final equation has n as the only unknown and could
be solved using any statistical package.

When sp is used to estimate σ

Similar to our procedure for s, consider Eq. [14] in the
section titled “Using the pooled sample standard devi-
ation (Sp)” to find the sample size. In this case, we start
with this Eq and show themathematical manipulations
needed to solve for n.

p
(
APEsp < Max APE

)
> 1 − α , and [A12]

P(− Max APE <
Cp− Ĉp

Cp
< Max APE) > 1 − α,

By substituting Cp and Ĉp by their corresponding
values and replacing σ̂ by sp, we obtain:

P

(
− Max APE <

USL−LSL
6σ − USL−LSL

6sp
USL−LSL

6σ

< Max APE

)
> 1 − α. [A13]

This will give us:

P
(

1
1 + Max APE

<
sp
σ

<
1

1 − Max APE

)
> 1 − α. [A14]

P
(

1
(1 + Max APE)2

<
sp2

σ 2 <
1

(1 − Max APE)2

)
> 1 − α. [A15]

Then by substituting sp2

σ 2 by its corresponding distri-
bution function, we have:

P
(

m (n − 1)
(1 + Max APE)2

< χ2
m(n−1) <

m (n − 1)
(1 − Max APE)2

)
> 1 − α. [A16]

This final equation has n andmas the only unknown
and could be solved using any statistical package.

When s̄
c4
is used to estimate σ

Here, we will follow the same steps as when s is used to
estimate σ .

We will use Eq. [A17] to find the appropriate sample
size:

P
(
APE s̄

c4
< Max APE

)
> 1 − α , and [A17]

P

(
− Max APE <

Cp− Ĉp
Cp

< Max APE

)
> 1 − α,

By substituting Cp and Ĉp by their corresponding
values and replacing σ̂ by s̄

c4
, we have:

P

⎛⎜⎝ − Max APE <

USL−LSL
6σ − USL−LSL

6
(

s̄
c4

)
USL−LSL

6σ

< Max APE

⎞⎟⎠
> 1 − α. [A18]

This will give us:

P
(

1
1 + Max APE

<
s̄

c4σ
<

1
1 − Max APE

)
> 1 − α. [A19]
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Figure A. The landing page of the practitioner’s toolkit for determining sample size.

By substituting s̄
c4σ

by its corresponding distribution
function, we obtain:

P
(

1
1 + Max APE

<
cχν√

ν
<

1
1 − Max APE

)
> 1 − α. [A20]

This final equation allows us to calculate the
required sample n and m for a given α and Max APE.

Figure A. The user-form for the pooled standard deviation.

R codes to find the sample size based on the different
estimators

The code used to generate the results discussed
in this article uses the R Programming Language
(https://www.r-project.org/). To allow researchers to
replicate/extend our work, we provide the following
link to our code: https://github.com/zahrame/Process-
Capability-tool. The reader should note that this shared
folder contains four different files; one corresponding
to each estimator for σ . To use the code, one should
specify the max APE and 1 − α for the single sample
situation. The code will present a suitable sample size
based on these constraints. For the multiple samples
scenario, the user should also specify eitherm or n and
solve for the other.

An overview of the practitioner’s toolkit for sample
size determination

Here, we present an excel-based tool that practitioners
can use for calculating the sample size (or number of
samples) for the different estimators of σ . We provide
the Excel based tool at: https://github.com/zahrame/
Process-Capability-tool. An overview of the function-
ality of the tool is provided below to serve as a help doc-
ument for practitioners.
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In the landing page of the tool, we ask the user to
select the estimator that they want to use for σ . The
four estimators are represented by different buttons
as shown in Figure A1. Once the user clicks on any
of the four buttons, it will display a particular user-
form where he/she can input data for that button and
calculate the sample size. For multiple samples, they
can also calculate number of samples if they were to
provide the sample size as an input (otherwise they
should provide the number of samples and solve for

the sample size). As an example, we show the user-
form generated by selecting the pooled estimator in
Figure A2. Based on this information, practitioners
can easily determine the sample size needed for their
given application. Note that we assume that practition-
ers have access to Microsoft Excel and that they are
familiar with the different estimators for the standard
deviation. We believe that these assumptions are rea-
sonable based on our experience with quality practi-
tioners in advanced manufacturing domains.
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