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Abstract 

In the design of asphalt paving mixtures, aggregates from the 
stockpiles are blended at selected proportions to satisfy specified 
gradation ranges. In a laboratory environment, the mix designer 
controls the proportion from each stockpile so that the proportions (or 
weights) can be assumed fixed. This is unlike in a plant operation 
where aggregates are fed from bins into a mixing-drum so that the 
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proportion of each aggregate, from each bin is a random variable. 
Statistical analyses of the former case are well-known and are first 
repeated in Sections 2 and 3. The objective of this article is to provide 
statistical information for the case when aggregate proportions are 
treated as random variables. The formulas in Section 4 provide the 
reader with a method of calculating approximate first two moments of 
asphalt paving mixture characteristic treated as random variables 
witnessed in plant operations. 

1. Introduction 

Historically, asphalt is a derivative of petroleum and was first used more 
than 5000 years ago [6]. Typically, asphalt is produced from a petroleum 
residuum. A residuum or resid (pl. residua, resids) is the non-distillable 
fraction of petroleum [12]. 

The aggregate is the hard-inert material, such as sand, gravel, crushed 
stone, slag or rock dust that are mixed with the asphalt (binder) for the 
construction of roadways. However, the choice of aggregate is not an easy 
“pick-any material” choice and is far from being a simple procedure. The 
aggregate must be selected according to the properties of the asphalt binder 
as well as the conditions that will exist when the roadway is completed [6]. 
Aggregate gradation plays an important role in the behaviors of asphalt 
mixtures [4]. 

Many works are published regarding the aggregate gradation [14, 9], 
effect of aggregate properties, size and type on asphalt mixtures [2, 11, 7] 
and measurement of the variability of material properties of asphalt. Valle 
and Thom [10] present the results of a review on variability of key pavement 
design input variables and assess effects on pavement performance. They 
address the statistical characterization of layer thickness variation, asphalt 
stiffness and subgrade stiffness. 

There are various properties of asphalt mixes that can be considered. 
However, this paper analyzes the variability related with aggregate 
proportions of asphalt mixtures specifically focusing on analyzing aggregate 
proportions as random variables. 
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In the design of asphalt paving mixtures, aggregates from n stockpiles 
(generally )10...,,4,3,2=n  are blended at selected proportions to satisfy 

specified gradation ranges. In a laboratory environment, the proportion iw  

( )10...,,3,2=i  from each stockpile is controlled by the mix designer so 

that the n proportions (or weights) can be assumed fixed. This is unlike a 
plant operation where aggregates are fed from n bins into a mixing-drum so 
that the proportion of each aggregate, ,iW  from each bin is a random 

variable. 

Let nXXX ...,,, 21  be aggregate characteristics from n stockpiles. 

Suppose nXXX ...,,, 21  are random variables with known process means 

,...,,, 21 nμμμ  known process variances ,...,,, 2211 nnσσσ  respectively, 

and known covariances ( ) ( ) ,, jiijijji jiXXCOV σσρ=≠σ=  where ijρ  is 

the correlation coefficient between the inputs iX  and .jX  In the field of 

statistics, iμ ’s are also referred to as the population first origin moments, and 

iiσ ’s are called the population second central moments. Let the 

characteristic of a mixture, such as %-passing through a sieve, having n 

aggregates be denoted by ∑
=

=
n

i
iin XWY

1
,  where the proportions iW ’s are 

random variables with also known first two moments. This paper obtains the 
first two moments of the output nY  under all different scenarios based on the 

nature of iW ’s and their relationships to iX ’s. The developments are 

presented in the order of the simplest to the most complicated, where iW ’s 

and iX ’s are correlated variates and pair-wise correlated together. 

2. iW ’s = iw ’s are Known Constants 

In this case, the output nY  reduces to ∑
=

n

i
ii Xw

1
 and is referred to as a 

linear combination (LC). Thus, we have complete information about the first 
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two moments of the n inputs iX ’s, and the objective is to use them to 

compute the first two moments of the linear output .nY  Such LCs occur 

frequently in industrial applications and in the field of statistics (the simplest 
of all examples is the case of sample mean ,x=nY  which is a LC with each 

),1 nwi =  

 ( ) ( ) ∑
=

μ==μ
n

i
iinn wYEY

1
,  (1a) 

where E represents the linear expected-value operator throughout this paper. 
Equation (1a) shows that the mean of the mixture ( )nYE  is the same LC of 

iμ ’s as nY  is of iX ’s. The variance ( ) ( ),2
nn YYV σ=  whose expression is 

also given in numerous sources, can be computed by applying the nonlinear 
variance-operator V and is provided below, 

( ) ( ) ∑ ∑∑
=

−

= >
σ+σ=σ=

n

i

n

i

n

ij
ijjiiinn wwwYYV

1

1

1

222 2  

∑∑ ∑∑
= = = =

ρσσ=σ=
n

i

n

j

n

i

n

j
ijjijiijji wwww

1 1 1 1
,  (1b) 

where [( ) ( )] ( ),, jiijijjjiiij XXE σσσ=ρμ−μ−=σ  and variances ( )iXV  

niiii ...,,2,1,2 =σ=σ=  are all known parameters. If nXXX ...,,, 21  are 

stochastically independent, then ijσ  in equation (1b) for all ji ≠  is 

identically zero, and as a result the ( )nYV  reduces to ∑ ∑
= =

σ=σ
n

i

n

i
iiiii ww

1 1

222 .  

For example, if nY  is the mean of a random sample from an infinite 

population, then the previous formula yields the very well-known expression 

for the variance of the mean as ( ) nxV 2σ=  [20-22], where 2σ  is the 

variance of individuals in the target population. Further, if iX ’s are also 

normally distributed (besides being jointly independent), then nY  is also 
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normally distributed and expressed as .,
1 1

22
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σμ∑ ∑

= =

n

i

n

i
iiii wwN  However, if 

iX ’s are correlated (i.e., 0≠σij  for )ji ≠  and are also normally distributed, 

then from statistical theory the linear combination ∑
=

=
n

i
iin XwY

1
 is still 

normally distributed (or Laplace-Gaussian) with ( ) ∑
=

μ=
n

i
iin wYE

1
 and ( )nYV  

∑∑
= =

σ=
n

i

n

j
ijjiww

1 1
.  

The simple LC, ∑
=

=
n

i
iin XwY

1
,  occurs frequently in many industrial 

applications, and specifically, in the design and production of asphalt paving 
mixtures, where a laboratory combines aggregates from n stockpile samples 
in such a manner that the blend of aggregates meets certain design 
specifications. The aggregate characteristics, iX ’s, from each stockpile have 

known mean and variance based on quality control tests on samples obtained 
from the stockpiles. An example is provided below. 

Example 1. Suppose an asphalt mixture (or a job-mix formula) is 
designed to contain aggregates from 3=n  stockpiles, having means ( )1XE  

,1.351 =μ=  ( ) ,4.4622 ==μ XE  and %8.623 =μ  passing through the 

2.36mm-sieve, and variances ( ) ,60.8111 =σ=XV  ( ) ,40.16222 =σ=XV  

and ( ) .%96.12 2
333 =σ=XV  The percentages passing certain sieve sizes are 

key characteristics used in the design and control of asphalt paving mixtures. 
For the design of asphalt paving mixtures in a laboratory environment, the 
proportion ( )3,2,1=iwi  from each of the 3 stockpiles can be controlled 

precisely by the mix designer. Thus, for a Laboratory Job Mix Formula 
(JMF), unlike a plant operation, we can assume that the proportions from 
each stockpile can be controlled and are not random variables. If ,40.01 =w  
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,35.02 =w  and ,25.03 =w  the characteristic of interest for the combined 

blend is obtained from the LC: .25.035.040.0 3213 XXXY ++=  Then, for 

the combined % passing the 2.36mm-sieve, equations (1a) and (1b) yield the 
mean ( ) %,98.458.6225.04.4635.01.3540.03 =×+×+×=YE  and variance 

( )3YV  = 96.1225.040.1635.060.840.0 222 ×+×+×  = ( )3195.4 Yσ→  = 

2.05%. The coefficient of variation (or variation coefficient) of 3Y  is given 

by ( ) %.45.498.4505.23 ==YCV  Thus, assuming the iX ’s are normally 

distributed, then the overall % passing the 2.36mm-sieve has a sampling 
distribution which is normal with process mean 45.98% and process variance 

,%195.4 2  designated as N(45.98, 4.195). 

It should be highlighted that the output, ,nY  is not the same as in the 

classical mixture experiments, where iX ’s themselves are proportion of n 

ingredients that constitute a mixture so that ∑
=

n

i
iX

1
 is constrained to equal 1 

(or 100%). The mere objective in statistical mixture designs is to identify 
( )1−n  of the iX ’s in such a manner that some characteristic of the final 

mixture is optimized. Cornell [3] provides an example of a mixture 
experiment where 3=n  ingredients, =1X  proportion of polyethylene, 

=2X  proportion of polystyrene, and =3X  proportion of propylene, were 

blended to form fiber that would be spun into yarn for draperies. The 
objective of this mixture experiment was to determine the approximate 
values of ,1X  ,2X  (and by necessity )3X  such that the resulting yarn 

elongation, measured in kilograms of force applied, was maximized, bearing 
in mind that the constraint 1321 ≡++ XXX  among the 3 ingredients must 

be satisfied. While in this paper, as illustrated in Example 1 above, the output 

nY  represents the overall characteristic of a mixture, comprised of aggregates 

with differing known proportions from n stockpiles with constraint ∑
=

≡
n

i
iw

1
.1  
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3. iW ’s Are Correlated Random Variables but Independent 

of Correlated iX ’s 

Before we formulate results for the sum of products of n random 

variables given by ∑
=

=
n

i
iin XWY

1
,  we first obtain the mean and variance of 

the product of two independent random variables, which has been known in 
statistical literature for well over 60 years (e.g., see [18, p. 99]) but repeated 
below for completeness. 

Let 1W  and 1X  be two independent random variables with known process 

means ,1ξ  ,1μ  and known process variances 2
111 ω=ω  and ,2

111 σ=σ  

respectively. Let ;111 XWY =  our objective is to obtain the expected-value 

(or mean) and the variance of the random variable ,1Y  assuming 1W  and 1X  

are independent, 

( ) ( ) ( ) ( ) ,1111111 μξ=== XEWEXWEYE  (2a) 

( ) [( ) ] [( ) ]2
11111111

2
11111 μξ−μ+μ−=μξ−= WWXWEXWEYV  

( ) ( )[ ]2111111 ξ−μ+μ−= WXWE  

[ ( ) ] ( ) ( ) ( )[ ]111111
2

11
2
1

2
11

2
1 2 ξ−μ−μ+ξ−μ+μ−= WXWEWEXWE  

( ) ( ) ( )[ ]111111
2
1

2
1

2
1

2
1 2 ξ−μ−μ+ωμ+σ= WWEXEWE  

( ) .0 2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 ωμ+σξ+σω=+ωμ+σξ+ω=  (2b) 

In the above developments leading to equations (2a) and (2b), we have used 
the well-known fact that the expected-value of a product of two independent 
random variables is equal to the product of their expectations, i.e., 
( ) ( ) ( )1111 XEWEXWE =  [1, pp. 213-220], [8, pp. 259-260]. However, the 

converse of this last statement is not necessarily true; in other words, the 
equality ( ) ( ) ( )1111 XEWEXWE =  may hold, but still the two random 
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variables may not be stochastically independent. In the case of a bivariate 
normal random vector [ ] ,11 ′XW  the equality ( ) ( ) ( )1111 XEWEXWE =  does 

guarantee that the random components 1W  and 1X  are independent [5, pp. 

181-183], [13, p. 315]. The probability density function (pdf) of ,111 XWY =  

when the two variates are independent and normal, is provided by Springer 
[19] and has been studied by other authors such as [15, 17]. 

Now consider the general nonlinear combination, NLC, ∑
=

=
n

i
iin XWY

1
,  

where iW ’s have known covariances ( )jiij ≠ω  but are stochastically 

independent of all iX ’s, and iX ’s have also known covariances ( ).jiij ≠σ  

Further, the 1st two moments are also known (or can be estimated accurately) 

and given by ( ) ,iiWE ξ=  ( ) ,iiXE μ=  ( ) 2
iiiiWV ω=ω=  and ( ) =iXV  

,2
iii σ=σ  ....,,2,1 ni =  As before, our objective is to obtain the first two 

moments of the output nY  using the known first origin moments of iW ’s, 

iX ’s, and known covariance structures ijω  and .ijσ  

The first origin moment (or the mean) of nY  is easily obtained by 

applying the linear expected-value operator to ,nY  

( ) ( ) ( ) ( ) ( ).
1 1 11
∑ ∑ ∑∑
= = ==

μ×ξ===
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
=

n

i

n

i

n

i
iiiiii

n

i
iin XEWEXWEXWEYE  (3) 

The second central moment of nY  can be obtained by applying the variance-

operator V to ,nY  

( ) ( ) ( ).,2
1

1

11
∑ ∑∑∑
=

−

= >=
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i

n

i

n

ij
jjiiii

n

i
iin XWXWCOVXWVXWVYV  (4) 

However, by definition 

( ) ( ) jjiijjiijjii XWXWEXWXWCOV μξμξ−= ,,  

( ) ( ) jijijiji XXEWWE μμξξ−×=  
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( ) ( ) jijijiijjiij μμξξ−μμ+σ×ξξ+ω=  

.ijjiijjiijij σξξ+ωμμ+σω=  (5) 

Substituting equation (5) into (4) using results of (2b), 

( ) ( ) ( )∑ ∑∑
=

−

= >
σξξ+ωμμ+σω+ωμ+σξ+σω=

n

i

n

i

n

ij
ijjiijjiijijiiiiiiiiiinYV

1

1

1

22 .2  

 (6) 

One special case of equation (6), that occurs frequently in the production 
control of asphalt paving mixtures is when aggregate characteristics from n 
stockpiles (i.e., iX ’s) are independent (that is 0=σij  for all ),ji ≠  but the 

feed rates from each stockpile into a mixing-drum are constrained such that 
the variable proportions from the n stockpiles that enter the mixing-drum add 

to 1, i.e., the constraint ∑
=

≡
n

i
iW

1
1 must be satisfied. Thus, in this special 

case, equation (3) still holds true except for the fact that ( ) ==ξ nn WE  

,1 121 −ξ−−ξ−ξ− n  while equation (6) reduces to 

 ( ) ( ) .2
1

1

1

22∑ ∑∑
=

−

= >
ωμμ+ωμ+σξ+σω=

n

i

n

i

n

ij
ijjiiiiiiiiiiinYV  (7) 

Due to the constraint ∑
=

≡
n

i
iW

1
,1  equation (7) further reduces to a special 

form, which is proven below by starting with ,22112 XWXWY +=  with 

.121 ≡+ WW  

For 2=n  stockpiles, ( ) ( ) ( ) ,1 1111222 ω==−==ω WVWVWV  and 

( ) ( ) ( )[ ]22112112 , ξ−×ξ−==ω WWEWWCOV  

( ) ( )][ 1111 11 ξ+−−×ξ−= WWE  

( ) ( )[ ] .111111 ω−=ξ−×ξ−−= WWE  
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Thus, when ,2=n  equation (7) reduces to 

( ) ( )∑
=

ωμμ+ωμ+σξ+σω=
2

1
1221

22
2 2

i
iiiiiiiiiiYV  

( )∑
=

ωμμ−ωμ+σξ+σω=
2

1
1121

22 .2
i

iiiiiiiiii  

Substituting ( ) 11222 ω==ω WV  and ( ) 122 1 ξ−==ξ WE  into this last 

expression and combining common terms yield 

 ( ) [( ) ( )] .
2

1
112211

2
21

2
2 ∑

=
ω×σ+σ+μ−μ+σξ=

i
iiiYV  (8) 

Equation (8) shows that if an asphalt mixture in a plant-operation is blended 
from two stockpiles with variable feed rates such that ,121 ≡+ WW  then the 

exact variance of any characteristic of the mixture is given by equation (8). 
Bonaquist and Christensen [16] report the following equation for the 
variance of a two-stockpile mixture characteristic, ( ) ,1 bam α−+α=  as 

( ) ( ) ( ) .1 222222
ασ−+σα−+σα= baba XXmV  

In our notation, ,2=n  ,2Ym =  ,1W=α  ,1 2W=α−  ,1Xa =  ,2Xb =  

( ) ,11 μ== XEX a  and ( ) .22 μ== XEXb  Note that the Bonaquist and 

Christensen’s [16] formula for ( )mV  is an approximation to our equation (8) 

because the last two terms, ( ) ,112211 ω×σ+σ  are left out of ( ).mV  

However, the last two terms of equation (8), ( ) ,112211 ω×σ+σ  are small 

relative to the other 3 terms unless the ( ) ,111 μσ=XCV  ( ) =2XCV  

,22 μσ  and ( ) 111 ξω=WCV  all exceed 30%. It can be shown, see 

Appendix, that the ( )2YV  given by equation (8), where 2=n  stockpiles, 

generalizes to our main result 

 ( ) ( ) ( )∑ ∑
=

−

=
ωμ−μ+σω+ξ=

n

i

n

i
iiniiiiiinYV

1

1

1

22 ,  (9a) 
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for 2>n  stockpiles. Further, if we apply the approximation recommended 
by Bonaquist and Christensen [16] for 2=n  stockpiles, then equation (9a) 
further reduces to 

 ( ) ( )∑ ∑
=

−

=
ωμ−μ+σξ≅

n

i

n

i
iiniiiinYV

1

1

1

22 .  (9b) 

Equations (9a) and (9b) assume that only ( )1−n  out of the random 

proportions nWWW ...,,, 21  are independent due to the constraint ∑
=

≡
n

i
iW

1
,1  

i.e., there are only ( )1−n  degrees of freedom among the variates ,, 21 WW  

...., nW  Clearly, the stockpile designated as n impacts the variance given in 

equations (9a) and (9b). If the user denotes either the stockpile with 
maximum (or minimum) characteristic as n, then ( )nYV  of equations (9) 

attain its near maximum (or conservative) value. Example 2 provides an 
application of the special case of ( )nYV  as provided by equations (9a) and 

(9b). 

Example 2. Suppose an asphalt plant produces a paving mixture from 
3=n  stockpiles with the same parameter values as in Example 1, i.e., 

( ) ,1.3511 =μ=XE  ( ) ,4.4622 ==μ XE  %,8.623 =μ  ( ) =σ= 111XV  

8.60, ( ) ,40.16222 =σ=XV  and ( ) .%96.12 2
333 =σ=XV  However, the 

feed rates cannot be exactly controlled such that ( ) %15=ξω= iiiWCV  for 

,3,2,1=i  but 1321 ≡++ WWW  at any point in time during the process 

with ( ) ,40.011 ==ξ WE  35.02 =ξ  and ( ) .25.033 ==ξ WE  As noted 

above, ( )3YE  remains unaffected and remains as ( ) %98.453 =YE  passing 

the 2.36mm-sieve, but the variance now must be computed from equation 
(9a). Because the coefficient of variation of each iW  is assumed to be 15%, 

then ,40.01 =ξ  ,35.02 =ξ  ( ) 25.033 ==ξ WE  imply that ( )111 WV=ω  

( ) ,0036.040.015.0 2 =×=  ( ) ,0028.035.015.0 2
22 =×=ω  and =ω33  

( ) .0014.025.015.0 2 =×  Substituting iiω ’s ( )3,2,1=i  and ,1.351 =μ  
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,4.462 =μ  %,8.62=μn  ,60.811 =σ  ,40.1622 =σ  96.1233 =σ  into 

equation (9a) results in ( ) ( ) ,805356.73322113 =++= XWXWXWVYV  

( ) ,79381.23 =σ Y  and ( ) %.08.63 =YCV  As expected, if iW ’s are random 

variables, then ( )3Yσ  of Example 1 increases from 2.050% to 2.794%. This 

36.283% increase clearly depends on the ( );iWCV  e.g., at ( ) %,10=iWCV  

( ) %,4071.23 =σ Y  which is an increase of 17.42%. Further, if we use the 

approximation of equation (9b), used by [16], then at ( ) %,15=iWCV  

( ) %;77675.23 ≅σ Y  compared to the exact 2.794%, demonstrating a close 

approximation to our exact value. It should be highlighted that in general the 
in-plant variability for iX ’s are larger than those in the lab. In Example 2, we 

assumed the same variability for iX ’s as those of Example 1 for accessing 

the increase in the ( )3YV  when iW ’s are random variables. 

4. The Mean and Variance of Product of Two Correlated 
Random Variables 

Consider the product ,111 XWY =  where ( ) ==υ 1111 , XWCOV  

011,11 ≠ρσω XW  is known and the objective is to compute the mean and 

variance of the product .111 XWY =  By definition, ( ) ( )1111, XWEXWCOV =  

,11μξ−  and thus 

 ( ) ( ) .1111111 υ+μξ== XWEYE  (10) 

Because 1W  and 1X  are not independent, then the ( )1YV  is no longer given 

by equation (2a) as illustrated below: 

( ) [( ) ] [( )] ( ) ( ) .2
1111

2
1

2
1

2
11

2
1111 υ+μξ−=−= XWEXWEXWEXWV  (11) 

The 1st term on the RHS of equation (11) cannot be exactly computed unless 

the ( )2
1

2
1 , XWCOV  is known. Therefore, we resort to a Taylor’s expansion 

of any function ( )11, XWf  about 1ξ  and :1μ  

maghssa
Highlight

maghssa
Sticky Note
7.7930

maghssa
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maghssa
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2.7916

maghssa
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maghssa
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( ) ( )
( )

( )
( )

( )11
,1

11
,1

1111
1111

,, μ−
∂
∂+ξ−

∂
∂+μξ=

μξμξ
XX

fWW
ffXWf  

( )
( )

( )
( )211

,
2
1

2
2

11
,

2
1

2

1111
2
1

2
1 μ−

∂

∂+ξ−
∂

∂+
μξμξ

X
X

fW
W

f  

( )
( ) ( ) ( ),, 111111

,11

2

11

XWRXWXW
f +μ−ξ−
∂∂

∂+
μξ

 (12) 

where ( )11, XWR  is of order 3 or higher. Because in our special case 

( ) ,, 1111 XWXWf =  then its Taylor’s expansion from equation (12) reduces 

to 

 ( ) ( ) ( ) ( ).111111111111111 μ−ξ−+μ−ξ+ξ−μ+μξ== XWXWXWY  (13) 

Note that in the special case of ( ) ,, 1111 XWXWf =  the Taylor expansion in 

(12) is an exact identity. To obtain the mean of ,11XW  we apply the 

expected-value operator to both sides of equation (13): 

( ) ( ) ( )[ ]11111111 00 μ−ξ−+++μξ≅ XWEXWE  

( ) ., 11111111 υ+μξ=+μξ= XWCov  (14) 

The mean of 11XW  given in equation (14) is identical to that of equation 

(10), as expected. 

To approximate the variance of ,111 XWY =  we apply the variance 

operator to equation (13) and ignore the last order-2 term. Thus, 

( ) ( ) ( )[ ]11111111 μ−ξ+ξ−μ≅ XWVXWV  

( ) ( ) ( ) ( )[ ]11111111
2
111

2
1 ,2 μ−ξξ−μ+μ−ξ+ξ−μ≅ XWCOVXVWV  

( )111111
2
111

2
1 ,2 XWCOVμξ+σξ+ωμ≅  

.2 111111
2
111

2
1 υμξ+σξ+ωμ=  (15) 
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The approximate ( )11XWV  in equation (15) is fairly close to the exact 

( ) 2
1

2
1

2
1

2
1

2
1

2
11 σω+ωμ+σξ=YV  given in equation (2b) for the case when 1W  

and 1X  are independent. Unfortunately, the approximation in equation (15) 

does not reduce to the exact result of 2
1

2
1

2
1

2
1

2
1

2
1 σω+ωμ+σξ  when 1W  and 

1X  are independent for which 011 =υ  because the Taylor expansion was 

truncated. However, when both 11 ξω  and 11 μσ  are less than 30%, the 

product ( ) ( ) 2
1

2
1

2
1

2
1

2
1

2
1 0081.030.030.0 μξ=μξ<σω  so that 2

1
2
1σω  is much 

smaller than either 2
1

2
1ωμ  or ,2

1
2
1σξ  and thus, the approximation in (15) is fair 

agreement with equation (2b). For the worst-case scenario of %,30≥CV  

equation (15) further shows that the ( ) ( )111 XWVYV =  is an increasing 

function of the process correlation coefficient, ,11, XWρ  between 1W  and .1X  

Now consider the most general output ∑
=

=
n

i
iin XWY

1
,  where all the n×2  

random variables are correlated with covariance structure 

,

321

1333231

1232221

1131211

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ωωωω

ωωωω
ωωωω
ωωωω

=Σ

nnnnn

n

n

n

W  

where [( ) ( )]jjiiij WWE ξ−×ξ−=ω  represents the covariance between iW  

and .jW  Similarly, iX ’s are correlated random variables with means ( )iXE  

iμ=  and covariance structure 

,

321

1333231

1232221

1131211

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσσσ

σσσσ
σσσσ
σσσσ

=Σ

nnnnn

n

n

n

X  
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and iW  and iX  also are correlated with covariance structure 

,

21

22221

11211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

υυυ
⋅⋅⋅

υυυ
υυυ

=Σ

nnnn

n

n

WX  

then we have the following 2nd-order approximation for the mean of :nY  

 ( ) ∑ ∑
= =

υ+μξ≈
n

i

n

i
iiiinYE

1 1
 (16a) 

and rough 1st-order approximation for the variance of nY  is given by 

( ) ( ) ( )∑ ∑∑
=

−

= >
σξξ+ωμμ+σξ+ωμ≅

n

i

n

i

n

ij
ijjiijjiiiiiiinYV

1

1

1

22 2  

∑∑
= =

υξμ+
n

i

n

ij
ijji

1
.2  (16b) 

5. Conclusions 

This article first generalized the known approximate result for the 
variance of a mixture characteristic having two ingredients to the case of 
more than 2=n  ingredients. Equation (9a) is an exact formula and (9b) is 
the corresponding approximation for the practitioner. Secondly, equations 
(16a) and (16b) give the approximate formulas for the mean and variance, 

respectively, of an output ∑
=

=
n

i
iin XWY

1
 under the most general case that the 

2n random variables iW  and iX  are correlated. These formulas provide the 

reader with a method of calculating approximate mean and variance of an 
asphalt paving mixture treated as random variables witnessed in plant 
operations. We have prepared an Excel® spreadsheet to assist with 
calculations. The spreadsheet is available upon request. 
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Appendix 

The derivation of ,
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

i
ii XWV  for ,2>n  under the constraint ∑

=

n

i
iW

1
 

1≡  and the assumption of independent iX ’s 

The constraint ∑
=

≡
n

i
iW

1
1 implies that ( ) ∑

−

=
ξ−=ξ=

1

1
,1

n

i
innWE  and 

( ) ( ) ∑
−

=
− ω=−−−−−=ω=

1

1
1321 .1

n

i
iinnnn WWWWVWV  Further, ,, 21 WW  

1..., −nW  are jointly independent but 121 ...,,, −nWWW  are correlated with 

,nW  i.e., ( ) 0, ==ω jiij WWCOV  for all i and ,nj ≠  but 

( ) ( )121111 1,, −−−−−==ω nnn WWWWCOVWWCOV  

( ) ( ) ., 1111211 ω−=−=+++−= − WVWWWWCOV n  
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Similarly, iiin ω−=ω  for all .1...,,2,1 −= ni  The use of equation (9) 

leads to 

( ) ( )∑ ∑∑∑
=

−

= >=
ωμμ+ωμ+σξ+σω=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i

n

i

n

ij
ijjiiiiiiiiiii

n

i
iin XWVYV

1

1

1

22

1
2  

( )∑ ∑ ∑∑
= =

−

= >
ωμμ+ωμ+σξ+σω=

n

i

n

i

n

i

n

ij
ijjiiiiiiiiiii

1 1

1

1

22 .2  

Substituting ∑
−

=
ω=ω

1

1

n

i
iinn  and ( ) 0, ==ω jiij WWCOV  for all i and nj ≠  

into the last formula, we obtain 

( ) ( )∑ ∑ ∑
=

−

=

−

=
ωμμ+ωμ+ωμ+σξ+σω=

n

i

n

i

n

i
inninnniiiiiiiiiinYV

1

1

1

1

1

222 2  

( )∑ ∑ ∑ ∑
=

−

=

−

=

−

=
ωμμ−ωμ+ωμ+σξ+σω=

n

i

n

i

n

i

n

i
iiniiiniiiiiiiiii

1

1

1

1

1

1

1

222 2  

( ) ( )∑ ∑
=

−

=
ωμμ−μ+μ+σξ+σω=

n

i

n

i
iininiiiiiiii

1

1

1

222 2  

( ) ( )∑ ∑
=

−

=
ωμ−μ+σξ+ω=

n

i

n

i
iiniiiiii

1

1

1

22 ,  

completing the proof. 


