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a b s t r a c t

The current work considers the multi-scale nature of surface roughness in a new model that predicts
the real area of contact and surface separation as functions of load. This work is based upon a previous
rough surface multi-scale contact model which used stacked elastic–plastic spheres to model the multiple
scales of roughness. Instead, this work uses stacked 3D sinusoids to represent the asperities in contact
eywords:
ough surface contact
ultiscale

ontact mechanics
lectrical contact resistance

at each scale of the surface. By summing the distance between the two surfaces at all scales, a model of
surface separation as a function of dimensionless load is obtained. Since the model makes predictions for
the real area of contact, it is also able to make predictions for thermal and electrical contact resistance.
In accordance with concerns in previous works that the iterative calculation of the real contact area in
multi-scale methods does not converge, this work not only tests but also gives conditions required for
convergence in these techniques. The results are also compared to other existing rough surface contact
ontact area models.

. Introduction

There are many different methods to model the contact of
ough surfaces including statistical [1–4], fractal [5–8], and multi-
cale models [9–11]. The fractal mathematics based methods were
erived to account for different scales of surface features not
ccounted for by the statistical models. The multi-scale models
ere developed to alleviate the assumptions imposed by fractal
athematics and to also improve how the material deformation
echanics are considered. This work uses a Fourier transform to

onvert the data into a series of stacked sinusoids, see Fig. 1. In a
revious work [11] a method to calculate the surface separation
rom the multi-scale model was not provided. It is in the current
ork. In addition, this work differs from a previous multi-scale
odel [11] in that it uses sine shaped surfaces instead of spheri-

al shaped surfaces to model contact of the asperities. The current
ork also provides a methodology for calculating the electrical and

hermal contact resistance using the multi-scale methodology. This
rovides a method for including the effect of the scale dependent
hermal properties [12–16]. Also, the surface characteristics nec-
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

ssary to obtain convergence of the iterative multi-scale scheme is
xamined.

There is also a great deal of previous work in the area of
ulti-scale contact. Archard [17] was probably the first to con-
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sider the multi-scale nature of surfaces in the modeling of the
contact between them. By using a concept of multiple scales of
asperities modeled as smaller and smaller spheres layed upon each
other, Archard showed that a linear relationship between real con-
tact area and load is obtained. This is of course very important
in validating the sometimes experimentally observed Amonton’s
‘Law’ of friction that friction is directly proportional to normal load.
Much later, Ciavarella et al. [18] solved the contact problem of a
2D Weierstrass–Mandelbrot fractal surface in contact with a rigid
flat using the same stacked asperity assumption. They modeled
the surface deformation using the two-dimensional elastic sinu-
soidal solution given by Westergaard [19]. They also conclude that
as higher scales are included in the contact model via fractal math-
ematics that the contact area will approach zero. This is a result of
assuming that the surface is characterized by the W–M fractal.

Ciavarella et al. [20] also extended their 2D stacked model of
contact between fractal surfaces by including a method to predict
contact resistance and elastic contact stiffness (i.e. surface separa-
tion) from it. The methodology is very similar to that presented in
the current work, except that the current work is for 3D surface
contact, and the surface geometry is not assumed to be perfectly
fractal. Rather, the current work uses experimentally measured
surface profiles. Additional work on using 2D stacked multi-scale
contact resistance considering sinusoidal elastic–plastic multi-scale

models to predict the contact resistance is given in ref [21].
In addition to the work by Jackson and Streator [11], Gao and

Bower [22] also extended the multi-scale stacked contact model by
including plastic deformation. The model by Gao and Bower also has
similarities to the current work, especially that it is for 2D contact
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Nomenclature

a Radius of the area of contact
A Area of contact
Ā Individual asperity area of contact
An Nominal contact area
B Material dependent exponent
C Critical yield stress coefficient
d Separation of mean asperity height
D Contact area factor
ey yield strength to elastic modulus ratio, Sy/E′

E elastic modulus
E′ E/(1–v2)
Er electrical contact resistance
f spatial frequency (reciprocal of wavelength)
F constant found from slope of Fourier Series
G asymptotic solution from JGH
HG geometrical hardness limit
Hc heat capacity
k thermal conductivity
K hardness factor
Kn Knudsen number
L scan length
M spectral moment of the surface
N total number of asperities
p* average pressure for complete contact
P contact force
P̄ individual asperity contact force
p̄ mean pressure
R radius of hemispherical asperity
Sy yield strength
Tr thermal contact resistance
vs solid speed of sound
ys distance between the mean asperity height and the

mean surface height
z height of asperity measured from the mean of asper-

ity heights

Greek symbols
˛ coefficient of surface spectrum equation
� separation of mean surface height
� exponent of surface spectrum equation
� area density of asperities
� density of surface material
�L electrical resistivity of surface material
�T thermal resistivity of surface material
� standard deviation of surface heights
�s standard deviation of asperity heights
� asperity wavelength
�MFP phonon mean free path
� asperity amplitude
˚ distribution function of asperity heights
ω interference between hemisphere and surface
v poisson’s ratio

Subscripts
E elastic regime
P plastic regime
c critical value at onset of plastic deformation
i frequency level
JGH from Johnson, Greenwood, and Higginson [10]
JG from Jackson and Green [15]
asp asperity
sur surface

L electrical

T thermal
SD scale-dependent

and the employed 2D elastic–plastic asperity contact model [23]
appears to limit the contact pressure to 5.8 times the yield strength.
The authors of the current work are not certain if that is always true
for 2D elastic-perfectly plastic sinusoidal contact, but believe that
the works by Krithivasan and Jackson [24], Jackson et al. [25] and
Manners [26] show that for 3D elastic-perfectly plastic sinusoidal
contact the pressure is not limited in this way.

Persson [27] also uses a diffusion theory to model rough surface
contact. Persson’s model is quite complex, but Pei et al. and Hyun
et al. [28,29] were able to show a simplified version where it is pro-
portional to the RMS slope of the surface. Pei et al. and Hyun et al.
[28,29] also show that the model by Persson [27] appear to agree
fairly well with deterministic finite element models. Ciavarella et
al. [30] also constructed a discrete form of the Greenwood and
Williamson model for contact of fractal surfaces which should in
theory compare well to a full deterministic model. In contrast to Pei
and co-workers [28,29] their results suggested that Persson’s model
will underpredict the real area of contact, and that the statistically
based model by Bush et al. [31] makes a better prediction.

Additionally, Ciaverella et al. [32] made comparisons of their 2D
multi-scale elastic stacked model to deterministic models, and also
the model by Persson [27]. Interestingly, they also use a Fourier
series to describe the Weierstrass fractal surface. Essentially, by
using a Fourier series the scaling then becomes arithmetic instead
of geometric. The current work also uses a Fourier series, but
instead of for a perfectly fractal surface, it is for a experimentally
measured surface profile. Ciaverella et al. [32] find that the 2D Pers-
son and the multi-scale stacked model both appear to significantly
underpredict the real area of contact. They also predict that the
stacked model is only accurate if a very large fractal scaling param-
eter is used. It does appear that using a Fourier series in Persson’s
model improves the predictions of the model. They do not show
contact resistance considering sinusoidal elastic–plastic multi-scale

results for the Archard type model using the Fourier series, which
would then be more similar to the current work.

Again, the current work differs from the previous works because
it uses a stacked multi-scale model based on the Fourier series
obtained from an experimentally measured surfaces. In addition,

Fig. 1. A schematic depicting the decomposition of a surface into superimposed sine
waves.

dx.doi.org/10.1016/j.wear.2009.07.012
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multi-scale and deterministic models are compared in Fig. 2 for
surface 1 (which will be defined later in this work). Note that the
deterministic model is more accurate for higher loads at which
more nodes are in contact (this is also the region where it appears
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D sinusoidal asperity contact models are used for both elas-
ic and elastic–plastic contact. Finally, the current work provides

ethodologies for making predictions of the surface separation
nd the contact resistance. In so doing, one apparent deficiency
n the GW model regarding the prediction of the contact area
o surface separation relationship is found and an approximate
orrection provided. In addition, an analysis is provided which
hows when a stacked multi-scale model will converge to a non-
ero real area of contact, rather than zero as occurs when the

eierstrass–Mandelbrot surface is used.

. Methodology

.1. Multi-scale perfectly elastic contact

The employed multi-scale model [11] uses the same direction of
hought as Archard [33], but provides a method that can be easily
pplied to real surfaces. First, a Dektak 150 stylus profilometer was
sed to measure the surface data (although any profilometer could
e used and the authors have also used other such sets of data in the
odel). Second, a fast Fourier transform is performed on the surface

rofile data. This series describes the surface as a summation of a
eries of sine and cosine waves. The complex forms of the sine and
osine terms at each frequency are combined using a complex con-
ugate to provide the amplitude of the waveform at each scale for
urther calculations. These amplitudes are then inserted directly
nto the stacked asperity model to describe each scale. Each fre-
uency is considered a scale or layer of asperities which are stacked

teratively upon each other. All the scales from the Fourier series
re used, such that the maximum frequency is related to the sample
ength and the minimum frequency is the Nyquist Limit. However,
he current work finds that the smaller scales do not influence the
alculated contact area. Therefore the resulting assumptions that
re made by the current model are:

1) Asperities are arranged so that asperities of smaller cross-
sectional surface area are located on top of larger asperities.
In the frequency domain this means that asperity distributions
of higher frequencies are superimposed upon lower frequency
asperities. This is similar to Archard’s “protuberance upon pro-
tuberance” concept.

2) Each “level” or frequency of asperities carries the same total
load.

3) The load at each frequency level is shared equally among all the
asperities at that level.

4) At a given frequency level, each asperity deforms according to a
chosen elastic or elastic–plastic sinusoidal contact model, irre-
spective of the presence of higher frequency asperities upon
it.

5) A given frequency level cannot increase the contact area beyond
what is experienced by the frequency level below it. This is now
automatically enforced by the sinusoidal contact models, while
in the original work [11] it was not because spherical contact
models were used.

This differs from previous Archard-type multi-scale mod-
ls [18,20–22,34] in that the current work does not assume
hat the surface follows a fractal structure exactly (such as the

eierstrass–Mandelbrot function). However, this results in the
sperity scales not being geometrically scaled as far apart (this is
ne of the limiting assumptions of the model). In equation form
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

hese relationships are given by:

=
(
imax∏
i=1

Āi�i

)
An (1)
 PRESS
xx (2009) xxx–xxx 3

P = P̄i�iĀi−1 (2)

where Ar is the real area of contact,�i is the real asperity density, P is
the contact load, An is the nominal contact area, and the subscript i
denotes a frequency level, with imax denoting the highest frequency
level considered. Note that �i = 2(fi)2 because there are actually two
sinusoidal asperity peaks for each square area of 1/f × 1/f.

Each frequency level is modeled using a sinusoidal contact
model. Previously derived [11] equations fit to the data and asymp-
totic solutions given by Johnson, Greenwood, and Higginson [35]
are used:

(AJGH)1 = 	

f 2

[
3

8	
p̄

p∗

]
(3)

(AJGH)2 = 1
f 2

(
1 − 3

2	

[
1 − p̄

p∗

])
(4)

For p̄/p∗< 0.8

Āi = (AJGH)1

(
1 −
[
p̄

p∗

]1.51
)

+ (AJGH)2

(
p̄

p∗

)1.04

(5)

For p̄/p∗ ≥ 0.8

Āi = (AJGH)2 (6)

where p* is the average pressure to cause complete contact between
the surfaces of a single scale and is given by [35] as:

p∗ =
√

2	E′
ifi (7)

This multi-scale model has been compared to other existing
models in the previous work, but an additional comparison with
a deterministic model is provided here. However, the comparison
is only for a 2D version of the model that makes use of the West-
ergaard [19] solution of 2D sinusoidal contact. The 2D case is used
to save computational time because deterministic models are com-
putationally expensive. A 2D deterministic contact model is then
constructed using the solutions found in Johnson [36] for a uniform
pressure on a half-space, along with the theory of elastic superpo-
sition so that a non-uniform pressure distribution is modeled.

The resulting predictions of contact area versus load for the
contact resistance considering sinusoidal elastic–plastic multi-scale

Fig. 2. Comparison of a 2D version of the multi-scale model with a deterministic
model.

dx.doi.org/10.1016/j.wear.2009.07.012
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ig. 3. Graphic depicting comparison of JGH asymptotic solutions with Eq. (10).

o compare best with the multi-scale model). Although, this is out-
ide the immediate scope of this work, this comparison does show
hat the multi-scale model appears to compare fairly well with the
eterministic model. It should be noted that this does not com-
letely validate the model because the range of loads is small and
he deterministic model also contains some numerical error and

ay not be completely accurate.
The current work also fits a new equation to the surface sepa-

ation results given by JGH [35]. In previous works, the multi-scale
odel was used to relate area to load. However, for many applica-

ions it is also important to be able to predict surface separation.
GH gave asymptotic solutions for the surface separation. As p̄/p∗

pproaches zero, the solution is:

1 = 1 − 1
2

(
3	2 p̄

p∗

)2/3

+
[
4 ln(

√
2 + 1)

]( p̄
p∗

)
(8)

While as p̄/p∗ approaches 1 the solution given by [35] is:

2 = 16
15	2

(
3
2

)3/2[
1 − p̄

p∗

]5/2

(9)

In the current work an equation is then fit to join these two
olutions:

¯
i =


(
1 − p̄

p∗

)
∧
(

0.696
p̄

p∗ + 0.158
)

∧ (−0.847) (10)

As seen in Fig. 3, Eq. (10) appears to be a good fit to the asymp-
otic functions given by Eqs. (8) and (9).

The separation height, H, between the two surfaces is calcu-
ated by subtracting the ı̄i value from the amplitude, �i, at each
cale level and then summing them together as follows (a graphical
epiction of this method is shown in Fig. 4):

=
imax∑
i=1

(
− ı̄)i (11)
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

Note, that in the current work the surface separation is consider-
ng only the distance between the mean height of a rough surface
nd a smooth surface, as was originally done by Greenwood and
illiamson. There are methodologies available in the literature

o effectively combine two rough surfaces together to effectively
odel contact between them as contact between a smooth and

ough surface.
Fig. 4. Approximate schematic of a surface consisting of two scales in contact.
Geometry is not to scale to improve clarity.

2.2. Multi-scale elastic–plastic contact

However, many of the asperities at the different frequency levels
undergo plastic deformation. Therefore an elastic–plastic sinu-
soidal contact model is needed to consider this effect. The equations
used in the current work to calculate the elastic–plastic contact are
derived from FEM results by Krithivasan and Jackson [24] and Jack-
son et al. [25]. An alternative model was given by Gao et al. [23],
but with differing results. Gao et al. found that the average pres-
sure converged to 5.8Sy for high loads, while the analysis given by
Krithivasan and Jackson [24] and Jackson et al. [25] found that the
average pressure was not limited solely by Sy. The methodology is
very similar to that of the perfectly elastic case with the exception
that a different set of formulas is used once a calculated critical
pressure is reached. The critical average contact pressure (Pc), crit-
ical average pressure over the nominal area (p̄c), the critical load
and critical area (Ac) are given by:

Pc = 1
6	

(
1


f 2E′

)2(C
2
Sy

)3

(12)

Ac = 2
	

(
CSy

8
f 2E′

)2

(13)

p̄c = 2Acpcf 2 = 2f 2
(

CSy
8
f 2E′

)2 2
	

(2CSy
3

)
= 1

24	
(CSy)

3

(
fE′)2
(14)

where C = 1.295exp(0.736v).
At low loads, P < Pc, and consequently small areas of contact,

it is acceptable to assume that any deformation of the asperities in
contact will behave perfectly elastically. However, as load increases
to the critical value, plastic deformation will begin to occur within
the asperities. To evaluate the plastic deformation we replace Eq.
(3) with:

AP = 2(Ac)
1/1+d

(
3p̄

4CSyf 2

)d/1+d
(15)

d = 3.8

(
E′

Sy

f

)0.11

(16)

This replacement results in the following equation for contact
area at a single scale, i:
contact resistance considering sinusoidal elastic–plastic multi-scale

Āi = (AP)

(
1 −
[
p̄

p∗
P

]1.51
)

+ (AJGH)2

(
p̄

p∗
P

)1.04

(17)

dx.doi.org/10.1016/j.wear.2009.07.012
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Eq. (27). For this test, ˛ ranges from 10−3 to 103 by an order of
magnitude at each step. The fit value for ˛ was found to be 0.085,
which falls within the range of values tested. As seen in Figs. 6 and 7,
˛ does not appear to play a significant role in convergence since all
the lines show a flattening trend at the smaller wavelengths. This
ARTICLEModel

EA-99251; No. of Pages 12

W.E. Wilson et al. /

.7. Statistical electrical contact resistance

To continue comparing the multi-scale results with that of the
arlier statistical method (see Appendices A and B), the electrical
ontact resistance is also obtained for statistical perfectly elas-
ic and elastic–plastic methods. Greenwood and Williamson [1]
nclude a solution for conductance in their work. Resistance is sim-
ly the inverse of conductance so the technique for calculating
erfectly-elastic contact resistance is as follows:

1
Ere(d)

= 2An���−1
L R

1/2

∞∫
d

ω1/2˚(z)dz (23)

Note the inclusion of the alleviation factor, � . The statistical
ethod is not a multi-scale procedure so the alleviation factor is

alculated as follows:

=
(

1 −
√
Ar
An

)1.5

(24)

Elastic–plastic statistical contact is calculated in the same man-
er except using a different elastic–plastic asperity contact model.
ne such technique is given by Kogut and Etsion [42], which is used
s an outline for this work. However, there are dissimilarities since
his work relies on the methodology of Jackson and Green [37]. Eq.
23) is still used but the contact radius, a, has changed in accordance
ith the work of Jackson and Green.

ep =
√
DωR (25)

here if 0 ≤ω/ωc ≤ 1.9, then D = 1, but if ω≥ 1.9ωc, then
= (ω/1.9ωc)B.

By applying the contact radius in Eq. (25) to the resistance cal-
ulation in Eq. (23), the elastic–plastic electrical contact resistance
s obtained.

1
Erep(d)

= An��
∞∫
d

2aep
�L

˚(z)dz (26)

Similar to the multi-scale model, the alleviation factor,  , is
ncluded here as well.

Additional details for the perfectly-elastic or elastic–plastic sta-
istical electrical resistance calculations Eqs. (23–26) can be found
n Appendices A and B.

.8. Scale dependent thermal contact resistance

Thermal contact resistance refers to the build-up of heat at the
oundary between the two surfaces due to the same “bottleneck”
ffect referred to in electrical resistance seen in Fig. 5. Technically,
eat can flow across the gaps in the material as well as through the
ontacting asperities. However, the heat transfer across the gaps is
eglected since like electrical current, usually the majority of the
eat flow will follow the path of least resistance or in this case the
sperities in contact. Indeed, thermal and electrical contact resis-
ances are very similar effects and are computed using very similar

ethods as well.
Scale dependency is an emerging topic in the field of contact

esistance. The concept behind scale dependency is that as a sam-
le of a material is viewed at increasingly higher magnification
he material properties actually change according to how small
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

f a sample is viewed. The reason for this is that at some point
ne is viewing actual atoms pressed against each other instead of
he continuous material. Therefore, at this point the scale is below
hat where most imperfections and features are seen, such as grain
oundaries. This impacts the multi-scale contact model because
 PRESS
xxx (2009) xxx–xxx

it takes into account many different scales of asperities down to
where this phenomenon is seen. To include these effects, the ther-
mal contact resistance is replaced with a scale dependent value
found in the work of Prasher and Phelan [43].

The current work finds that the inclusion of scale dependent
single asperity thermal contact resistance does not affect the
predicted overall thermal contact resistance significantly for the
sinusoidal based multi-scale rough surface contact model. This is
also confirmed for the different spherical based multi-scale contact
model by [41]. Due to the similarity of electrical contact resistance,
thermal contact resistance and scale dependent thermal contact
resistance, the methodologies and results will not be included but
can be seen in the work of Jackson, Bhavnani, and Ferguson [41]
using a multi-scale spherical contact model.

3. Results

3.1. Convergence of real contact area

As mentioned previously, the data set used for this model is
converted into a series of stacked sine waves using the Fourier
Transform. All calculations for the model are then made based off
the amplitude and wavelength of these sine waves. The multi-scale
model considered here assumes that the predicted area converges
as all scales are included in the model. This is important because if
the predictions do not converge then the area will approach zero
as smaller scales are included as was predicted by [18]. In order to
test convergence, a power fit is found for the nominal amplitude as
a function of wavelength.


i = ˛��i (27)

where �i is the wavelength (inverse of frequency) and both ˛
and � are constants derived by fitting Eq. (17) to the Fourier series
of the surface data. For a particular surface the best fit was found
with ˛= 0.085 and � = 1.5. Starting with this “benchmark case”, the
values˛ and� are then varied individually to find any critical values
at which point convergence is not possible. This process is carried
out for both perfectly elastic and elastic plastic cases.

The first test of convergence is to see the role that ˛ plays in
contact resistance considering sinusoidal elastic–plastic multi-scale

Fig. 6. Contact area ratio as a function of wavelength for perfectly elastic multi-scale
method where ˛ is varied in Eq. (27).

dx.doi.org/10.1016/j.wear.2009.07.012
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ig. 7. Contact area ratio as a function of wavelength for elastic–plastic multi-scale
ethod where ˛ is varied in Eq. (27).

esult is independent of plasticity since the same trend is seen in
oth Figs. 6 and 7.

The second test of convergence is conducted by varying the
alue of � in Eq. (27). The results from this test (shown in
igs. 8 and 9) show that this exponent is the deciding factor for
onvergence in both perfectly elastic and elastic–plastic cases. For
his test � is varied from 0 to 2 at intervals of 0.25. For a good fit
o the FFT data, � was found to be 1.5, which is within the range of
alues tested. � values lower than 1 show a continual slope despite
he wavelength size suggesting that convergence is not possible for
hese cases. This result is shown to be similar for both perfectly and
lastic–plastic cases.

The results of these tests have shown that convergence is depen-
ent upon the exponent, � , in the power function fit to the FFT data

n Eq. (27). As the scales are iteratively included, the contact area
educes. Therefore, the average pressure continues to increase and
ay eventually become larger than the pressure to cause complete

ontact (p*). If this pressure stays above the pressure to cause com-
lete contact (p*) the area will no longer reduce and convergence

s obtained. Therefore, for convergence to occur, p* must stay con-
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

tant or decrease as�decreases. This suggests that the requirement
or convergence depends upon the following relationship:

∗ ∝ 


�
= ˛��−1 (28)

ig. 8. Contact area ratio as a function of wavelength for perfectly elastic multi-scale
ethod where � is varied in Eq. (27).
Fig. 9. Contact area ratio as a function of wavelength for elastic–plastic multi-scale
method where �2 is varied in Eq. (27).

As long as �/� stays constant or decreases as � decreases then
the multi-scale sinusoidal method will converge. This condition is
met as long as the � value in Eqs. (27) and (28) are greater than or
equal to 1, as shown by Eq. (28).

3.2. Model predictions

This work assumes realistic material properties for all results
gathered (see Table 1). Since this work includes an examination of
electrical resistance, the material of choice is Tin due to its common
use in electrical connectors and circuits. The surface profile is mea-
sured from machined metal samples using a stylus profilometer. A
scan length of 400 �m was used. To ensure an accurate comparison
of the contact models, the material properties and surface geom-
etry are kept constant for all calculations. For actual calculations,
MatlabTM is used for evaluating mathematical results.

Once the data is gathered, a Fast Fourier Transform is performed
as mentioned before. All frequencies present in the surface data
are included. This means that the minimum frequency was based
on the scan length and the maximum frequency was the Nyquist
Limit. However, we found that the higher frequency (smaller scale)
asperities did not contribute anyway because they just flatten out
under high pressures. The result is then converted to amplitude
via the complex conjugate. Then multi-scale models can be calcu-
lated as described above. For the GW and JG models, the statistical
parameters are acquired using McCool’s [44] methods by finding
the spectral moments about the surface (see Appendix B). From
here, the GW model is fairly straightforward except for the inte-
grals found in Eqs. (23), (26), (35) and (36). To solve these, numerical
integration techniques are employed. Simpson’s Method is used by
first breaking the integral into 1000 sub-intervals and performing
the Simpson’s interpolation on each subinterval.

As seen in Fig. 10, higher loads result in a greater area of
contact resistance considering sinusoidal elastic–plastic multi-scale

contact for the two surfaces. The comparison of the two model-
ing techniques resulted in good qualitative agreement but poor
quantitative agreement. Greater contact area also results from the
inclusion of plastic deformation. This is caused by the behavior of
the solid asperities to flow and flatten under plastic deformation.

Table 1
Material properties of tin.

Sy = 14 × 106 Pa E = 41.369 × 109 Pa
�L = 11.5 × 10−8
m v = 0.36

dx.doi.org/10.1016/j.wear.2009.07.012
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Fig. 10. Plot of non-dimensional area vs. load.
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6�, one could make an approximation of ˇ between 4 and 12. For
ig. 11. Area compared to Surface Separation including the adjusted separation for
tatistical Contact Methods.

he asperity material tends to “flow” resulting in greater defor-
ation as well as “filling in” the low spots around each asperity.

his combines with the higher loads to produce larger amounts
f contact. These two techniques are calculated in very different
anners using almost no common equations. Therefore, this qual-
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

tative agreement serves to confirm the accuracy of the trends of
oth methods for modeling the contact of rough surfaces.

Fig. 11 shows the surface separation as a function of the cal-
ulated real area of contact. Although the overall trends of the two

Fig. 12. Graphical comparison of surface sepa
Fig. 13. Plot of non-dimensional surface separation vs. load.

models are similar, the calculations for the statistical methods both
show the separation reaching zero before the surfaces are in full
contact. Logically, when contact is complete, the real area of contact
should be at its maximum and surface separation should be zero.
The reasons for difference amongst the statistical and multi-scale
methods are three-fold. First, in the multi-scale method, all asper-
ities are loaded equally so they may actually be over-compressed.
Second, the statistical model does not consider the interactions
between adjacent asperities. At some loads, the valleys neighboring
each peak may be rising as they fill in with the plastically deformed
material. Third, and what the authors believe is the most impor-
tant, the statistical method does not adjust the mean height based
on asperity deformation.

Also, the sharp elbows seen in the curves are believed to be an
artifact of the multi-scale modeling technique resulting from the
flattening of scales which then no longer influence the solution.

ıADJ = ı+ 0.5ˇ�
2

(29)

As seen in Fig. 12, Eq. (29) takes the average of the mean sur-
face height at zero deformation, ˇ�/2, and the distance from the
mean surface height to the peak of the deformed surface, ı. The ˇ
value is found not to be constant and varies not only for different
surfaces but also depends on whether plasticity is considered. As
shown in Fig. 12, ˇ� represents the peak to valley height of the
surface. Since statistically 68% of the asperities are accounted for
between −2� and 2� and 99.7% accounted for between −6� and
contact resistance considering sinusoidal elastic–plastic multi-scale

the surface data considered in the current analysis a value ofˇ = 5.2
was found to work well for the perfectly elastic case. However,
for elastic–plastic deformation, ˇ = 10.02 produced the appropriate
results. These adjustments will be different for each case because

ration and adjusted surface separation.

dx.doi.org/10.1016/j.wear.2009.07.012
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Fig. 15. Surface profile data with different roughness values.

Table 2
Rough surface characteristics and convergence variables.

Surface Roughness (�m) ˛ in Eq. (27) � in Eq. (27) RMS error of
FFT to Fit

1 0.24 0.13 1.60 0.3322

To measure this effect, multiple surface profiles were obtained
ARTICLEModel
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he amount of compression and deformation will be different for
he perfectly elastic and elastic–plastic cases. The resulting adjusted
tatistical model results are shown in Fig. 11.

Fig. 13 shows, as expected, that greater loads as well as plastic
eformation serve to decrease the gap between the surfaces. This

s logically correct since greater loads increase the area of contact
hrough deforming the asperities. One would expect the flatten-
ng of the asperities to allow the surfaces to come closer to each
ther and eventually contact completely when the calculated area
s equal to the nominal area. The adjustment given by Eq. (29) once
gain improves the agreement between the statistical and multi-
cale methods.

Perhaps surprisingly, the models predict similar results on the
ame order of magnitude. Once again the overall trends of both the
tatistical and multi-scale methods are confirmed by one another.
n this case though, the estimated behavior of the separation is fairly
ifferent. Both methods show the decreasing gap with greater loads
ut they follow significantly different curves.

Without strong experimental confirmation, it is difficult to
scertain the accuracy of either model. However, the current multi-
cale model will result in larger contact stiffness than predicted by
he statistical models. Stiffness is defined as the change in con-
act force per change in surface separation. This appears to agree
ith experimental findings by Drinkwater et al. [45] using acoustic
ethods.

.3. Electrical contact resistance

For the particular case of modeling the contact of an electrical
onnector, one concern was the amount of electrical resistance due
o the “bottleneck” effect of contacting asperities. Fig. 14 shows
he calculated results for this effect and compares the results
or the multi-scale and statistical models described here. Since
he electrical resistance is due to the gaps between the surfaces,
t follows naturally that the electrical resistance decreases with
oad which as expected is inverse to the behavior of contact area.
et again, the greater contact area at lower loads seen by the
lastic–plastic cases shows in the electrical resistance plot as these
ases decreases in resistance considerably quicker than the elastic
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

ases. The multi-scale and statistical models also agree surprisingly
ell even though they make different predictions for contact area.

his suggests that it can be difficult to validate these models based
n contact resistance measurements alone. Interestingly, the ECR

Fig. 14. Electrical contact resistance as a function of non-dimensional load.
2 0.34 0.085 1.5 0.4134
3 1.05 0.037 1.4 0.4053
4 5.82 0.006 1.0 0.0678

appears to decrease rapidly as complete contact is approached (as
seen by the elbows at the end of each curve).

3.4. Comparison between multiple surfaces

The next concern is what effect real multi-scale roughness plays
in the contact area, separation, and resistance for different surfaces.
contact resistance considering sinusoidal elastic–plastic multi-scale

using a stylus profilometer on four surfaces with roughness vary-
ing from 0.24 �m up to 5.82 �m. Fig. 15 shows that the smoother
profiles are relatively flat where the roughest shows rather large
changes in surface heights.

Fig. 16. Real area of contact as a function of dimensionless load for surfaces of
different roughness.

dx.doi.org/10.1016/j.wear.2009.07.012
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ig. 17. Electrical contact resistance (ECR) as a function of dimensionless load for
urfaces of different roughness.

Table 2 provides a comparison between roughness and the
ower equation, Eq. (27), fit to the Fourier transform for each of the
our surfaces examined in this work. The root-mean-square error
etween the fit and FFT data is given as well. Some of the error
alues are quite high due to the scattering of the FFT data which
oes not allow for a precise fit. In application, this could result in

arge differences in the model predictions when a power equation
s used versus the actual data. In the current work the actual data
s used in the multi-scale model. It is important to note that the
alues for ˛ vary seemingly independent of roughness whereas �
ehaves inversely of roughness. Therefore, the roughest surface has
= 1.0 which is at the limit of convergence as seen in Figs. 8 and 9.

herefore there may be some very rough surfaces for which the
ulti-scale technique will not converge. This is not a concern for

elatively smooth surfaces however.
As seen in Fig. 16, the real area of contact changes, but remains

n the same orders of magnitude despite the different roughness
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

alues of the four profiles. This results in the predicted real area of
ontact being extremely similar despite the change in roughness
etween surfaces. However, as is expected, the graph does show
hat the results are ranked in order of decreasing roughness with

ig. 18. Surface Separation as a function of dimensionless load surfaces of different
oughness.
Fig. 19. Surface separation as a function of real area of contact for surfaces of dif-
ferent roughness.

smoother surfaces showing a greater contact area for each load
level.

In accordance with the real area of contact, electrical contact
resistance is very similar for the four surfaces and is also ranked
according to roughness with the smoothest surface having the least
resistance values as seen in Fig. 17. The electrical contact resistance
shows the inverse trend between the surfaces as the contact area
until high loads are reached.

Fig. 18 shows some interesting results when considering differ-
ent surface roughness. The surfaces rank themselves according to
roughness again where the smoothest surface has the lowest sep-
aration. This is true except for surface 4, the roughest, which has
broken rank for low loads. However, as higher loads decrease sepa-
ration the roughest surface does in fact require a greater force than
the others to reach zero separation. Although surface 4 is rougher,
the differences in behavior may be caused by a different surface
structure unique to #4 that the others don’t share.

Fig. 19 shows the relation of surface separation with the real area
of contact. In this case the same behavior is seen as in Fig. 18, but
the limiting situations of the multi-scale model are very apparent
in this plot. The multi-scale method predicts surface separation to
reach zero as full contact approaches. This is shown at Ar/A = 100 = 1,
where the results seem to be sharply cut off so that the logical
condition of zero separation at full contact is upheld.

4. Conclusions

The results from a multi-scale model based on stacked
sinusoidal surfaces have shown to be qualitatively similar in com-
parison with existing statistical contact models. When viewing
surface separation as a function of dimensionless load, it seems
that the multi-scale models offer a differing description of how the
surface behaves. At high loads, the multi-scale methods predicts
no separation between the surfaces which correlates exactly with
the area of contact equaling the apparent area of contact (complete
contact). However, even though the statistical methods show a sim-
ilar trend as the maximum area is reached, there appears to still be
some separation between the two surfaces. This is most likely a
contact resistance considering sinusoidal elastic–plastic multi-scale

result of the statistical methods being designed more for lightly
loaded contacts and ignoring the change in overall peak to valley
height between asperities at higher loads. The adjusted statistical
model separation calculation offered in this work takes this effect
into account and does show zero separation at the maximum con-

dx.doi.org/10.1016/j.wear.2009.07.012
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act area. Electrical contact resistance predictions seem reasonable
ased on the similarity between statistical and multi-scale meth-
ds. Actually, the statistical and multi-scale models predict very
imilar values, while the predicted contact areas are not as similar.
his suggests that using contact resistance measurements may not
e an effective way of evaluating rough surface contact models.

In response to concerns about the convergence of the multi-
cale techniques, this work relates a power fit to the FFT data which
eveals that the sinusoidal multi-scale technique will converge as
ong as the average pressure stays constant or decreases as the

avelength decreases. This situation requires that the exponent
n the power fit remain 1 or greater for the multi-scale sinusoidal
echnique to converge.

Finally, once the multi-scale sinusoidal method is verified as
valid contact model, results for a variety of real surfaces shows

he overall expected trends for area, electrical contact resistance
nd surface separation. As is expected, the results for the surfaces
re ranked according to roughness yet produce extremely simi-
ar results. Upon first inspection, it appears that surface separation
oes not match the ranking behavior for the various surfaces. How-
ver, at greater loads, lower roughness values do decrease surface
eparation.

ppendix A. Statistical elastic model

Using the Greenwood and Williamson type statistical method
inges upon obtaining statistical parameters that describe the sur-

ace. The radius of curvature, R, and the areal asperity density, �,
re calculated by McCool [45] using the spectral moments of the
urfaces:

2 = 1
N

N∑
n=1

(
dz

dx

)2

n
(30)

4 = 1
N

N∑
n=1

(
d2z

dx2

)2

n

(31)

here N is the total number of asperities on the surface and z is the
istance from the mean height of the surface to the asperity peak.
hen R and � are found from:

=
(
M4

M2

)(
1

6	
√

3

)
(32)

= 0.375
(
	

M4

)0.5
(33)

The Gaussian distribution for the asperity heights is given as
ollows:

= (2	)−1/2

�s
exp

[
−0.5

(
z

�s

)2
]

(34)

McCool [45] defines�s to be the standard deviation of the asper-
ty heights. This is calculated from the standard deviation of the
ntire surface (RMS roughness):

2 = �2
s + 3.717 × 10−4

�2R2
(35)

For the GW case, the area and load are calculated using an inte-
ral of� and a function relating the z value to a value d. d is defined
s the value above which the asperities will be in contact with
he rigid flat. The compression distance, z–d, is the interference
Please cite this article in press as: W.E. Wilson, et al., Surface separation and
rough surface contact, Wear (2009), doi:10.1016/j.wear.2009.07.012

f the rigid flat with the asperity peaks and is known as ω for the
emainder of this work.

(d) = An�
∫ ∞

d

Ā(ω)˚(z)dz (36)
 PRESS
xx (2009) xxx–xxx 11

P(d) = An�
∫ ∞

d

p̄(ω)˚(z)dz (37)

For the perfectly elastic case, the Ā and P̄ are acquired from the
Hertz solutions given as:

ĀE = 	Rω (38)

P̄E = 4
3
E′√R(ω)3/2 (39)

Furthermore, surface separation can be obtained by relating the
distance from the mean surface height to the rigid flat, ı , to d.

ı = d+ ys (40)

The value ys is defined by Front [46] as follows:

ys = 0.045944
�R

(41)

Appendix B. Statistical elastic plastic model

The statistical method calculates load and area as a function
of separation instead of area as a function of load as seen in the
multi-scale methods. Therefore, instead of using the critical force
to define the elastic–plastic regime of contact, the critical inter-
ference is used. The critical interference value is given by [37] as
follows:

ωc =
(
	CSy
2E′

)2

R (42)

For interference ω < 1.9ωc, spherical contact is considered to
effectively agree with the perfectly elastic Hertzian contact model.
However, if ω≥ 1.9ωc then the following equations from JG are
used in place of Eqs. (38) and (39). This substitution will provide
the necessary values to calculate the elastic–plastic behavior of the
asperities in contact.

ĀJG = 	Rω
(
ω

ωc

)B
(43)

P̄JG = Pc

{[
exp

(
−1

4

(
ω

ωc

)5/12
)](

ω

ωc

)3/2

+ 4HG
CSy

[
1 − exp

(
− 1

25

(
ω

ωc

)5/9
)]

ω

ωc

}
(44)

where

Pc = 4
3

(
R

E′

)2(C
2
	Sy

)3

(45)

B = 0.14 exp(23ey) (46)

ey = Sy
E′ (47)

HG
Sy

= 2.84 − 0.92
(

1 − cos
(
	
a

R

))
(48)

a

R
=
√
ω

R

(
ω

1.9ωc

)
(49)

These equations are then used in Eqs. (36) and (37) for the single
asperity area and load.
contact resistance considering sinusoidal elastic–plastic multi-scale
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