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Abstract—A strategy to enhance the accuracy of path following
for autonomous ground vehicles in a convoy is presented. GPS
carrier measurements are used to estimate relative position
with sub-two centimeter accuracy and a change in position to
millimeter accuracy. These estimates are used in conjunction
with three methods presented that enable a following vehicle
to replicate a lead vehicle’s path of travel while both are in
motion and not in sight of one another. Accuracies of the methods
achieved in simulation are shown with discussion on the benefits
and shortcomings of each method. Simulation results show a 1.6
meter error at a 50 m following distance. Discussion explains the
inaccuracies are due to the limitations inherent in the selected
vehicle controller and not necessarily in the trajectory duplication
methods.

I. INTRODUCTION

The ability to precisely follow another vehicle with large
separation distances would have an immediate impact on
ground vehicle systems operated by the military and future
automated civilian vehicle systems. A convoy of unmanned
ground vehicles (UGVs) could be controlled by a single driver
and operational efficiency could be improved by freeing more
personnel to handle other tasks. In high risk scenarios, such as
traveling through a field with unexploded ordinance (UXO),
safety could be improved by having a fleet of vehicles replicate
the path driven by a mine clearing vehicle or a vehicle with
an on-board UXO detection system.

Many current solutions to vehicle following require vehicles
to be in sight of one another so perception sensors, such
as laser scanners or cameras, can obtain range and bearing
information from the following to the lead vehicle [1]–[3].
However, the Global Positioning System (GPS) can be used
to obtain this same information with exceptional accuracy [4],
[5]. Previous works in the areas of formation flight [6], [7];
automated aircraft refueling (AAR) [8]; the Joint Precision
Approach and Landing System (JPALS) [9], [10]; and ship
flexure measurement [11] have derived similar methods to
produce relative position information with accuracies on the
order of two centimeters.

This work attempts to answer the following question: can

the accurate relative position information from GPS be used
to provide a means to precisely follow a path driven by
an out of sight lead vehicle? Presented in this paper are
three methods that can be used to replicate a lead vehicle’s
trajectory. Two require relatively short following distances, and
the third presents a modification to the first two methods to
significantly extend following distances. An explanation of the
algorithms necessary to implement the three methods and their
performance metrics are given. Simulation results are provided
with discussion to explain the achieved performance of the
path duplication methods. This work is outlined as follows:
• Section II discusses the vehicle controller derivation.
• Section III gives an overview of the relative positioning

algorithm and its performance.
• Section IV describes the three methods that enable a

following vehicle to drive the same path as a lead vehicle
while both are in motion.

• Section V presents another algorithm that accurately
estimates the change in position, which is required by
the third method presented in Section IV. Achieved
accuracies are listed.

• Section VI shows the results of the simulation, and a
discussion is offered to provide insight into the observed
accuracies.

II. VEHICLE CONTROLLER

A simplistic waypoint based heading controller was used to
initially determine the feasibility of the trajectory duplication
methods discussed later in Section IV. To follow a path,
a desired vehicle heading or yaw angle is calculated using
the vehicle’s current position and a selected reference point
ahead of the vehicle. The vehicle drives towards the selected
reference point as the yaw error approaches zero. New refer-
ence points are chosen as they come within a predetermined
distance from the vehicle forcing the vehicle to drive around
a path, rather than in a straight line. Human drivers alter their
“look ahead distance” based on the speed they are traveling.
In a parking lot environment, focus is placed in an area close



to the vehicle. However in a highway environment, the area of
focus could be a hundred meters from the vehicle. This concept
is intuitive, but the outcome is an increase in effective damping
of the system response as the distance increases. Therefore, the
predetermined distance can be a function of vehicle speed to
not only mimic human driving, but to soften the response to
variations in the reference point.

A classical proportional-derivative (PD) controller can be
used to drive the yaw error to zero. For this work, the
bicycle model was used to simulate the following vehicle
and derive the control gains. This model incorporates lateral
vehicle motion, and therefore provides more realistic dynamics
(assuming the vehicle operates within the linear region of its
tire) [12]. The following transfer function describes the steer
angle to yaw angle dynamics:

ψ(s)
δ(s)

=
n1s+ n0

s3 + d2s2 + d1s
(1)

where the coefficients consist of vehicle parameters and speed.
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Parameter values were determined for a 2003 Infiniti G35 in
a previous, but unrelated work [13].

Only two of the three closed loop poles are controllable with
a PD controller. The third pole approaches the imaginary axis
of the S-plane as speed increases. Fortunately, this pole re-
mains stable at reasonable speeds, legitimizing the sufficiency
of the PD controller. If a desired yaw rate is known, it can
be fed forward with knowledge of the vehicle’s understeer
gradient (Kus) and wheelbase (L) to eliminate steady state
errors while turning. The controlled input is shown below with
the PD and feed-forward terms.

δ = kp (ψR − ψ) + kd

(
ψ̇R − ψ̇

)
+
(
L

V
+KusV

)
ψ̇R (2)

This type of controller was modified to follow a vehicle,
rather than a pre-existing path defined by waypoints. Imple-
mentation of the controller follows the above explanation of
a generic path following controller, but the manner in which
the reference points are generated is different. For this work,
reference points, and therefore the desired vehicle yaw angle,
were constructed as functions of the relative angles between
the following and lead vehicles. Control gains were derived
to keep two closed loop poles at a natural frequency of 1 Hz
with a damping ratio of 0.707.

III. RELATIVE POSITION ESTIMATION WITH DRTK

By determining the relative position between the lead and
following vehicles, the relative angles can easily be obtained
to generate desired yaw angles for the following vehicles. A
Real-Time Kinematic (RTK) system is a form of differential
GPS (DGPS) that differences out common mode errors be-
tween GPS receivers in close proximity (<20 km) to obtain

a high accuracy position solution. Typically, a static receiver
is placed at a known location, often referred to as a base
station. A relative position vector (RPV), or baseline vector,
is determined with high accuracy between the base station and
a possibly dynamic roving receiver by processing GPS range
measurements. The RPV is then added to the known position
of the base station to produce a highly accurate global position
solution.

To increase the number of scenarios in which following
vehicles replicate a lead vehicle’s path of travel, it is desirable
to remove the constraint of having a fixed base station. A
Dynamic base RTK (DRTK) system removes the requirement
of operating a static receiver when calculating an accurate RPV
at the cost of losing the accurate global position information.

A. DRTK Algorithm

The DRTK algorithm operates in principle like a typical
RTK algorithm; errors correlated in time and across space
are differenced out using multiple receivers to determine the
position between those receivers. To understand the subsequent
derivation and appreciate the accuracies achieved by RTK and
DRTK, mathematical models of the code and carrier based
range measurements at time tk, as defined by [14], are given:

ρjA(tk) =‖~rjA(tk)‖+ λγ(tk) + λξ(tk) + cδtA(tk)

− cδtj(tk) + ερ(tk)
(3)

φjA(tk) =λ−1‖~rjA(tk)‖ − γ(tk) + ξ(tk) + ajA(tk)

+ fδtA(tk)− fδtj(tk) + εφ(tk)
(4)

The variables are defined as follows:
ρjA the measured range (pseudorange), in meters,

from receiver A to satellite j
φjA the measured carrier signal phase, in cycles,

from receiver A to satellite j
rjA the true range from satellite j to receiver A,

in meters
λ the wavelength of the carrier, in meters
γ the ionospheric delay/advancement, in cycles
ξ the tropospheric delay, in cycles
δtA the clock error, in seconds, at the receiver
δtj the clock error, in seconds, at satellite j
ajA the integer number of cycles from receiver

A to satellite j
f the carrier frequency
ε system noise, including multipath

Most GPS receivers use the code modulated onto the carrier
to determine the value of the pseudorange between the receiver
antenna and satellite. However, phase measurement accuracy
is significantly better than the pseudorange accuracy. Typical
accuracies for pseudorange measurements are half a meter,
while accuracies for the phase measurement are around five
millimeters [14]. The phase measurement is also more robust
to multipath error [15]. In order to use the phase measurements
to obtain higher accuracy position estimates, the integer num-
ber of cycles between the user and satellite must be resolved.
This value is commonly known as the integer ambiguity.



The DRTK algorithm uses a combination of the pseudo-
range and carrier phase measurements in a discrete, linear
Kalman filter [16] to estimate the relative ambiguity between
receivers. Once the ambiguities are fixed, a least squares rou-
tine is used to estimate the baseline vector between receivers.

The state vector, x, of length n used in the Kalman filter
contains relative position, velocity, and floating ambiguity
estimates.

xNC1 = [~̇b1x3
~b1x3 â1xm]T (5)

In the above equation, b and ḃ are relative position and velocity
vectors in Earth Centered, Earth Fixed (ECEF) coordinates.
The vector of length m containing floating point ambiguities
is denoted by â. The length of the vector is determined by
the number of double differenced carrier phase measurements
available. This and the integerization process of the floating
point ambiguity estimates will be discussed later.

The state dynamics matrix F is given by:

Fnxn =

 1
τ I3x3 03x3 03x3

I3x3 03x3 03x3

0mx3 0mx3 0mx3

 (6)

The matrix contains several sub matrices that relate each sub
vector in the state vector to its derivative. The time constant τ
is a tuning parameter based on the dynamics of each receiver,
I is an identity matrix, and 0 is an appropriately sized matrix
of zeros.

The continuous process noise covariance matrix, Q(t) is
constructed to capture the correlation between position and
velocity. The tuning parameters σQ and σa can be altered to
adjust the level of filtering on the estimated states.

Q(t)nxn =

σQI3x3 03x3 03x3

03x3 σQI3x3 03x3

0mx3 0mx3 σaImx3

 (7)

The matrices in Equations 6 and 7 can be discretized by
the method presented by van Loan [17] since this is a fixed
parameter system.

A2nx2n =
[
−F GQ(t)GT

0 FT

]
∆t (8)

For this system, G = Inxn. The discretized state transition
matrix and process noise covariance matrix can be extracted
using the following relationship:

eA =
[
B Φ−1Q
0 ΦT

]
(9)

Carrier phase and pseudorange measurements are used
in the measurement update, but first the error terms must
be addressed. A single difference is formed by subtracting
measurements from two receivers observing the same satellite
at the same instance in time. If the receivers are in close
proximity (<20 km), an assumption can be made that the
atmospheric errors observed at the two stations are the same.
It is important to note that some situations, such as high
ionospheric activity or severe weather, can potentially falsify

this assumption [18]. Using Equation 4, a single difference for
the carrier measurement can be calculated.

∆φjAB(tk) =φjB(tk)− φjA(tk)

=λ−1r(tk) + ajAB + fδtB(tk)
− fδtA(tk) + ε∆φ(tk)

(10)

Notice the atmospheric and satellite clock errors have been
removed, but the noise has been increased. A vector of single
differences of observations from different satellites can be
represented as follows:

∆φ(tk)mx1 = [φjAB(tk) . . . φnAB(tk)]T (11)

Assuming the phase measurements are linearly independent,
the covariance of the single differenced phases can be derived
[15].

R∆φmxm =E[(∆φ(tk)−∆φ(tk))2]

=2σ2
εφ
Imxm

(12)

This same procedure should be applied to the Equation 3 to
produce a vector of single differenced pseudorange measure-
ments, ∆ρ(tk)mx1, and its associated covariance, R∆ρmxm .
The remaining error sources are the receiver clock biases and
noise in the single differenced equations. An integer ambiguity
is present in the carrier phase equations.

A double difference is formed by differencing two single
differences, thus removing the error due to receiver clock bias:

∇∆φjzAB(tk) =∆φzAB(tk)−∆φjAB(tk)

=λ−1r(tk) + ajzAB + ε∇∆φ(tk)
(13)

A vector of double differences is formed by selecting a “base”
single difference (denoted by satellite z) and differencing all
the other single differences with it. The intuitive selection
would be the single difference of the satellite closest to the
zenith, as its signal travels the shortest distance through the
atmosphere and theoretically subjected to less interference.

∇∆φ(tk)mx1 = [∆φzAB(tk)−∆φ(tk)]T (14)

The covariance matrix for the double differenced phases
can be derived like the covariance of the single differenced
covariances in (12). Again, the noise is increased and the
measurements become correlated.

R∇∆φmxm = E[(∇∆φ(tk)−∇∆φ(tk))2]

R∇∆φij =

{
4σ2

εφ
for i = j

−2σ2
εφ

for i 6= j
(15)

Again, the vector of pseudorange double differences and
resulting covariance matrix, denoted by ∇∆ρ(tk)mx1 and
R∇∆ρmxm , respectively, can be formed using the same pro-
cedure.

Once the double differenced carrier phase and pseudor-
ange measurements are formed, the measurement vector and
measurement covariance matrix for the Kalman filter can be
constructed. The measurement vector z is formed using the



vector of double differenced carrier phase and pseudorange
measurements, where both are in units of cycles.

z2mx1 =
[
λ−1∇∆ρ(tk) ∇∆φ(tk)

]T
(16)

The covariance matrix R is constructed using the individual
double differenced covariance matrices.

R2mx2m =
[
R∇∆ρmxm 0mxm
0mxm R∇∆φmxm

]
(17)

Unit vectors from the user to each satellite must be formed
to form the measurement matrix. A single unit vector can be
formed by dividing the range components in the ECEF X, Y,
and Z direction by the magnitude of the range.

uj1x3 =
~rj1x3

‖~rj‖
(18)

Once all the unit vectors are determined, they should be
subtracted from the unit vector of the “base” satellite. Division
by the carrier wavelength, λ, converts the units from meters
to cycles.

∆Umx3 = λ−1

u
z − uj

...
uz − un

 (19)

Finally, the measurement matrix H is constructed using ∆U
as follows:

H2mxn =
[
0mx3 ∆Umx3 0mxm
0mx3 ∆Umx3 Imxm

]
(20)

Given enough satellites, the Kalman filter, as described, will
estimate a relative velocity, relative position, and a non-integer
number of carrier cycles. It is crucial to obtain integer values
for the cycle ambiguity if a high precision RPV is desired. The
LAMBDA method [19] has been proven to provide the highest
probability of acquiring the correct set of integer ambiguities
among many integer ambiguity acquisition algorithms [20].
The floating ambiguities, â, and their associated covariance
from the Kalman filter are input into the LAMBDA algorithm.
It decorrelates the ambiguities to produce a minimized search
space and outputs the possible integerized solution sets, (ã),
contained within that space with their covariance matrices (Pã)
[21]. A common method to determine the correct ambiguity
set is a ratio test between the square norms of the integer
ambiguities, where the best set is deemed correct if the ratio
is above some value, κ [6], [22]. In the equation below, a ratio
of the best set to the second best set is calculated. The value
for κ is selected by the user and is generally 1.5 or 2.

[â− ã2]T P−1
ã2

[â− ã2]

[â− ã1]T P−1
ã1

[â− ã1]

accept

R
reject

κ (21)

Future work will replace this test with a Bootstrapping tech-
nique to increase the integrity of the ambiguity solution [23].

Once the integer ambiguities have been correctly deter-
mined, a least squares procedure is used to determine a precise
RPV. The measurement vector consists of only the double

Fig. 1. Displayed is the error in the North and East components of the RPV
estimated with the DRTK algorithm. The standard deviations were 0.70 cm
and 0.68 cm, respectively, with an approximate 2 m baseline during the test.

differenced carrier measurements with the ambiguity removed.
The measurement matrix is compensated to reflect the reduced
size of the measurement vector.

~b3x1 =
[
∆UT∆U

]−1
∆UT [∇∆φ− ã] (22)

B. DRTK Performance

The RPV estimated with the DRTK algorithm was com-
pared to the position difference of the RTK position solution
from two moving NovAtel Propak-V3 receivers. GPS range
data and the RTK positions were logged at 5 Hz for twenty
minutes while the receivers were in motion. One receiver was
on a vehicle, and the other receiver was on a trailer towed
by the vehicle; therefore the magnitude of the RPV remained
constant, but the ECEF components of the RPV varied.

Figure 1 displays error in the North and East direction after
the RPV had been rotated from the ECEF to East, North, Up
(ENU) coordinate frame. The one sigma error bounds for this
data set were 0.70 cm and 0.68 cm in the North and East
directions. The small error can be attributed to the relatively
short baseline between the receivers, which was approximately
two meters for this test.

IV. REFERENCE ANGLE GENERATION METHODS

In order to duplicate a vehicle’s path of travel using the
controller described in Section II, reference points for the
following vehicles must be generated on the fly. Perhaps the
easiest method of generating reference points is to broadcast
the lead vehicle’s current position to the following vehicles.
However, the accuracy of a standalone receiver is, at best, three
meters. The following vehicles could be six or more meters
from the true path as they approach the reference points. If
an RTK system is available, this method would actually work
well as the positional accuracy would be reduced by an order
of magnitude. A six centimeter path error could be tolerable in
many scenarios. The requirement of a fixed base station could



Fig. 2. The schematic for the Trailer Method is shown. By controlling the
following vehicle’s yaw angle to the relative angle between the vehicle’s, the
following vehicle acts as if it were in tow by the lead vehicle. The relative
angle can be calculated once the RPV is known.

reduce the feasibility of autonomous trajectory duplication.
Therefore, methods that do not rely simply on broadcasting
and maintaining a log of lead vehicle position need to be
developed to broaden the application spectrum for automated
ground vehicle convoys.

The following three subsections present methods that rely
on the DRTK RPV to generate reference points for the
controller. The first two subsections present methods that allow
for short following distances. The third subsection outlines a
method to significantly extend following distances by modi-
fying the first two methods.

A. Short Distance Following

1) Trailer Method: The simplest method to generate a
reference for control with knowledge of the RPV, ~b, between
two vehicles is to control the following vehicle’s yaw angle,
ψF , to the relative angle between the vehicles, θF , as seen
in Figure 2. The following vehicle mimics a trailer in tow by
the lead vehicle, and the trailer hitch and GPS antenna on the
lead vehicle are collocated. Since the components of the RPV
are known and can be realized in a local ENU or NED frame,
the relative angle from North between the following vehicle
to the lead vehicle can be easily calculated.

θF = tan−1

(
bE
bN

)
(23)

Once the relative angle is known, it is given to the controller
as the desired yaw angle.

ψR = θF (24)

The simplicity of this method is both beneficial and harmful
to path duplication ability:
• The Trailer Method is relatively easy to implement.

The only information transferred between the vehicles
is the GPS range measurements from the leader to the

Fig. 3. The Extended Hitch Trailer Method controls the following vehicle
to a point behind the lead vehicle to force the following vehicle to turn about
the same radius as the lead vehicle. The reference angle for this method relies
on the RPV and the yaw angle of the lead vehicle.

followers. Once the RPV is known, the relative angle,
which is also the reference yaw angle, can be calculated.

• For short following distances, this method works well.
Natural lags in the system can overcome the tendency to
cut corners.

• The turning radius of the following vehicle will be
smaller than the lead vehicle’s turning radius. Therefore,
path following error will be zero only when the lead
vehicle drives straight.

• Lateral path error grows as the following distance in-
creases because the turning radii become more dissimilar.

2) Extended Hitch Trailer Method: Work presented by Ng
in [2] showed that projecting the reference point behind the
lead vehicle, creating a “virtual hitch”, reduced the lateral
error during a turn. This method was adapted and modified
to make use of the accurate RPV. It was also shown in [2]
that the optimal location for the hitch point was at a location
equidistant to both lead and following vehicles. This ensured
both vehicles were on a path of the same turning radius, R.
This concept is seen in the schematic for this method in Figure
3.

To create the reference angle, the reference point is placed
behind the lead vehicle along its longitudinal axis such that it
forms an isosceles triangle with the location of the following
vehicle. The reference yaw angle, ψR, can be derived with
knowledge of the non-vertex angle in the isosceles triangle, γ,
and the relative angle between the vehicles, θF .

Analysis of the angles about the following vehicle shows
that the following vehicle’s yaw angle should be controlled to
the angle to the reference point. Therefore, the reference angle
can be denoted by the following equation:

ψR = θF + γ (25)

If the relative angle of the following vehicle is projected to
the lead vehicle, the non-vertex angle can be calculated using



the lead vehicle’s yaw angle.

γ = θF − ψL (26)

Combining Equations 25 and 26 yields the following equation
for the reference angle:

ψR = 2θF + ψL (27)

Therefore, the only necessary information needed to calculate
the reference angle is the relative angle, which can be deter-
mined with the RPV as in Equation 23, and the yaw angle
of the lead vehicle. The complexity has been increased over
the Trailer Method because more information is necessary.
However, the level of increase is only slight. The yaw angle
could either be broadcast to the following vehicles with the
GPS range information, or the following vehicles could use the
range information to determine the lead vehicle’s heading. The
former solution would require a very slight increase in required
communication bandwidth, while the latter would raise the
computational requirements on the following vehicles.

As with the Trailer Method, trade offs exist due to the
simplicity of the Extended Hitch Trailer Method.
• Projecting the reference point behind the lead vehicle

creates a desired yaw angle that orients the following
vehicle along a path with the same turning radius as the
lead vehicle. This reduces error due to unequal turning
radii, which can occur using the Trailer Method.

• The Extended Hitch Trailer Method is only slightly more
complicated than the Trailer Method. The leader’s yaw
angle can easily be obtained.

• The following distance can be extended since the ten-
dency to cut corners has been addressed.

• Error still exists while turning; transitions of path cur-
vature cause the following vehicle to deviate from the
intended path as it prematurely attempts to equalize the
turning radii.

• Although following distances can be increased, this
method breaks down when long following distances are
desired.

3) Performance of the Trailer Methods: A simulation of a
following vehicle tracking the path of a lead vehicle making
a 100 m radius, left turn at 15 m/s with a 50 m following
distance is used to illustrate the performance of the two
methods previously discussed. Figure 4 shows the actual paths
traveled of the lead vehicle and the following vehicle using
both methods. Figure 5 displays the lateral path error of both
methods. The Extended Hitch Trailer Method significantly
outperforms the Trailer Method in the simulated scenario.
Lateral errors exhibited are approximately two meters and ten
meters, respectively. The Trailer Method caused the following
vehicle to turn about a smaller radius through the entire
duration of the turn, which generated large path error. The
Extended Hitch Trailer Method caused the following vehicle
to experience the most error as the lead vehicle transitioned
from driving straight to turning, and vise versa. Any change in
the yaw rate of the lead vehicle changes its turning radius. This

Fig. 4. The lead vehicle path (gray) is replicated using the Trailer Method
(dashed) and Extended Hitch Trailer Method (solid) while the lead vehicle
traveled around a 100 m radius left turn at 50 m/s. The following vehicle
was simulated with a 50 m following distance. The Extended Hitch Method
significantly outperforms the Trailer Method, but it still fails to replicate the
exact path of the leader because of errors induced by changes in curvature.

Fig. 5. Lateral error of the Trailer Method (dashed) and Extended Hitch
Trailer Method (solid) when 50 m behind a lead vehicle traveling around a
left 100 m radius turn at 15 m/s. Maximum path deviation is approximately
10 m and 2 m, respectively.

change immediately alters the turning radius of the following
vehicle, even though it should maintain a previous turning
radius of the lead vehicle to maximize accuracy. The overall
effect is the following vehicle turns off the path when the
leader transitions from a straight to curved trajectory, and the
following vehicle cuts off the remaining path when the lead
vehicle transitions from a curved to straight trajectory. The
magnitude of this effect is proportional to following distance;
short distances reduce errors while large distances magnify
them.

Realistic applications of these methods would demand short
following distances. Any complexity in the path driven by



Fig. 6. By accumulating the position change at each time step of the following vehicle, the RPV between the lead and following vehicle at a previous time
step can be translated to an RPV between the following vehicle at the current time step and the lead vehicle at a previous time step (black vector). This
reduces the effective following distance and increases the effectiveness of previously discussed trajectory duplication methods.

the lead vehicle would effectively be filtered if the following
vehicles were too far behind. Therefore, following distance
would be dependent upon anticipated path complexity.

B. Long Distance Following

The amount of error experienced using the previous meth-
ods is related to the separation distance between the lead
and following vehicles. Larger following distances cause the
following vehicle to deviate from simplistic paths and render
both methods useless for intricate paths driven by the leader.
However, short following distances can allow the following
vehicle to accurately repeat the leader’s path. Therefore, the
separation distance perceived by the following vehicle must
be reduced to improve accuracy.

If the change in position of the following vehicle can be
accumulated, it can be subtracted from a previous RPV. This
effort reduces the perceived baseline from the follower to the
leader, and the RPV is now the distance between the following
vehicle at the current time and the lead vehicle at a previous
time. Sufficient knowledge of past changes in position can
shrink the RPV to minimize trajectory duplication error using
either the Trailer Method or Extended Hitch Method. This
concept is mathematically expressed as follows:

~bk,k−n = ~bk−n −
k

Σ
j=k−n

∆~rj (28)

The change in position, ∆~r, is summed from index k−n to the
current index k. This value is then subtracted from the RPV
at index k− n to determine the RPV between the follower at
k and leader at k − n. Once the new RPV is obtained, it can
be utilized as described in either of the previously mentioned
methods.

This notion is graphically explained in Figure 6, where the
gray lines represent measurements of the RPV and change in
position at previous times and the black line represents the
shortened RPV between the leader at a previous time and
follower at the current time. The solid color vehicles indicate
their location at the current time step, and the transparent
vehicles are past locations.

Implementation of the Modified Extended Hitch Trailer
Method provides the user the capability to have an automated
vehicle follow and track a lead vehicle’s traveled path. How-
ever, some aspects might deem the method infeasible for some
applications. Pros and cons of this method are itemized below.
• The Modified Extended Hitch Trailer Method reduces

the perceived relative position regardless of following
distance by translating the RPV at between the follower
and leader at a previous instance in time to a shortened
RPV across time.

• Since the RPV has been reduced, the magnitude of the
errors displayed by the Trailer Method and Extended
Hitch Trailer Method is decreased.

• Longer following distances are possible regardless of path
complexity since the perceived distance is reduced.

• The method is more complicated as a database of in-
formation is required. This includes RPV’s, changes in
position, and yaw angles of the lead vehicle.

• An additional measurement is required to determine the
position change of the following vehicle.

• Any error in the change of position measurement will
accumulate, potentially degrading the effectiveness of
this method. Accuracy requirements of this measurement
might be too stringent for some applications. The effect
of errors are considered in Section VI-A.

V. ESTIMATION OF THE CHANGE IN POSITION

The GPS carrier signal is used to achieve the necessary
accuracies required to improve the usefulness of the method
presented in Section IV-B. The advantage to carrier processing
has already been demonstrated with the accuracy of the DRTK
algorithm in Figure 1. The following algorithm description
relies on similar concepts to those discussed in Section III.

A. TDCP Algorithm

The discussion on the error mitigation achieved by dif-
ferencing carrier measurements across receivers and across
satellites can now be amended to present another technique
to reduce errors inherent in the GPS signal. Time differenced



Fig. 7. The change in receiver and satellite position is captured in the
difference in range measurements from the user to the satellite, assuming the
time difference between measurements is small.

carrier phase (TDCP) measurements can provide a measure of
change in position. Similar to differencing across receivers or
satellites, differencing across time can reduce the atmospheric
and satellite clock errors to negligible values and remove the
integer ambiguity. The underlying stipulation is the time dif-
ference is small enough to assume all the errors are correlated.

The carrier phase measurement model from satellite j at
the current and a previous time step is shown in the following
equation, where τ represents the small time difference between
measurements.
φjA(tk) =λ−1(‖~rjA(tk)‖ − λγ(tk) + λξ(tk)) + ajA(tk)

+ fδtA(tk)− fδtj(tk) + εφ(tk)
(29)

φjA(tk−τ ) =λ−1(‖~rjA(tk−τ )‖ − γ(tk−τ ) + ξ(tk−τ ))

+ ajA(tk−τ ) + fδtA(tk−τ )

− fδtj(tk−τ ) + εφ(tk−τ )

(30)

The TDCP measurement is realized by subtracting Equation
30 from Equation 29. The variable t will be dropped for
simplicity.

φjAk − φ
j
Ak−τ

=λ−1
(
‖~rjA‖k − ‖~r

j
A‖k−τ

)
+ f

(
δAk − δAk−τ

)
+ εφk,k−τ

(31)

The above equation can be written more succinctly as follows:

∆φjAk,k−τ = λ−1∆‖~rjA‖k,k−τ + f∆δAk,k−τ + εφk,k−τ (32)

The TDCP measurement, assuming the time difference is suf-
ficiently small, is unaffected by atmospheric effects, satellite
clock bias, and the integer ambiguity. The remaining terms
are the change in the range measurements, ∆‖~rjA‖k,k−τ , and
the change in receiver clock bias, ∆δAk,k−τ . Contained in the
change in range is both the change in satellite and receiver
positions, as depicted by Figure 7.

Normally the use of the TDCP measurement would require
a restructuring of the estimator to handle measurements at
different instances in time [24], [25]. However, a method is
presented in [26] that expands Equations 31 and 32 about a
nominal position, ~rA0k

, and clock bias, δA0k
, using a Taylor

series. The ECEF receiver position and clock bias can be
expressed as shown below.

~rAk = ~rA0k
+ ∆~rAk (33)

δAk = δA0k
+ ∆δAk (34)

Incorporating Equations 33 and 34 into Equation 31 produces
a TDCP equation where all but four terms are known; the
remaining unknowns are the change in receiver position,
∆~rAk , and change in receiver clock bias, ∆δAk .

λ∆φjAk,k−τ =‖~rjA0
‖k − ‖~rjA‖k−τ

~rjA0k

‖~rjA0
‖k
·∆~rAk

+ cδA0k
+ c∆δAk + εφk,k−τ

(35)

A weighted least squares algorithm can be used to estimate
the change in position. The state vector is as follows:

x4x1 = [∆~rA1x3 c∆δ1x1]T (36)

The measurement vector contains the TDCP measurements
and expansion terms. The variable j is used in the following
equations to denote values between the receiver and satellite.

zmx1 = λ∆φjAk,k−τ − ‖~r
j
A0
‖k + ‖~rjA‖k−τ − cδA0k

(37)

The measurement matrix consists of the unit vectors created
with the ranges from the nominal position to the satellites.

Hmx4 =

[
~rjA0k

‖~rjA0
‖k

1

]
(38)

The diagonal weighting matrix was constructed using a ther-
mal noise model described in [27]. This incorporated the
carrier to noise ratio, C/N0, so the degraded signals were
de-weighted.

Wii =
(

Bn
C/N0

(
1 +

1
2TsC/N0

))−1

(39)

A third order loop filter was assumed with a bandwidth, Bn,
of 18 Hz and a predetection integration time, Ts, of five
milliseconds. The reasoning for the selection of these values
is thoroughly explained in [27].

B. TDCP Performance

GPS range data was collected at 5 Hz on a static NovAtel
Propak-V3 receiver for 85 minutes. Dynamic data was also
collected and analyzed to verify the algorithm, but static data
was used to obtain more accurate error statistics. Figure 8
shows a scatter plot of the error in change in position after
the estimates had been rotated to the ENU coordinate frame.
The one sigma bounds in the North and East directions were
0.75 mm and 1.09 mm, respectively.

A trade off exists between measurement rate and accuracy.
Measurement errors are more correlated with higher sampling
rates, therefore more of the errors will be removed by the
time difference. Slower sampling rates will yield less accurate
results because of the lower error correlation. The full extent
of accuracy versus sampling rate has not been investigated at
this time.



Fig. 8. TDCP performance using 85 minutes of static data logged at 5 Hz.
The North standard deviation was 0.75 mm, while the East standard deviation
was 1.09 mm.

VI. RESULTS USING THE MODIFIED EXTENDED HITCH
TRAILER METHOD

A. Reference Error

Transferring the DRTK baseline estimate using the TDCP
output increases the noise on the perceived RPV. This noise
increase is proportional to the number of accumulated position
changes. The following derivation analytically predicts the
standard deviation of the translated RPV with the assump-
tion the DRTK and TDCP outputs are both zero mean and
uncorrelated.

σ2
~bk,k−n

= E

[(
~bk−n −

k

Σ
j=k−n

∆~rj

)2
]

= E
[
~b2k−n

]
− 2E

[
~bk−n

k

Σ
j=k−n

∆~rj

]
+ E

[
k

Σ
j=k−n

∆~r2
j

]
= E

[
~b2k−n

]
+ nE

[
∆~r2

]
(40)

Solving for the standard deviation shows the standard devia-
tion of the translated RPV is a function of the covariance of
the previous RPV, σ2

~bk−n
; the covariance of the TDCP output,

σ2
∆~r; and the number of accumulated position changes, n.

σ~bk,k−n =
√
σ2
~bk−n

+ nσ2
∆~r (41)

The translated RPV is used to generate a relative angle
using Equation 23, which is then used in either Equations
24 or 27 to calculate a desired yaw angle for a following
vehicle. A Monte Carlo analysis reveals the accuracy of this
reference angle as a function of the number of accumulated
position changes and average change in position. The results
for average position changes of one meter and five meters with
a 5 Hz measurement rate are shown in Figure 9. After 500
summations of the change in position measurements, the error
in the reference angle is approximately four degrees when the

Fig. 9. Reference angle error grows as a function of the number of
accumulated positions, n, and the average change in position. An analytical
approximation (dashed) given in Equation 42 captures the growth while
n ≤ 500. Maximum error for an average change in position of 1 m and
5 m is 4 degrees and 0.9 degrees, respectively.

average position change was one meter and approximately 0.9
degrees when the average position change was five meters.
For reference, an average change in position of five meters
at a measurement rate of 5 Hz is an average velocity of 25
m/s, and the accumulation of 500 measurements indicates a
following distance of 2.5 km.

An analytical approximation of these curves is expressed by
the following equation:

σψR = ‖∆~r‖−1
(
σ2
~bk−n

+ nσ2
∆~r

) 9
20

(42)

This approximation considers the covariance of the RPV,
change in position, number of accumulated positions, and the
inverse of the magnitude of the average change in position,
‖∆~r‖. Note the approximation begins to break down as the
number of position accumulations increases.

B. Trajectory Duplication Performance

Position data was collected in a parking lot to generate
a complex lead vehicle path. Speeds ranged from 1-15 m/s.
The data was replayed in simulation, and a following vehicle
attempted to track the traveled path with a 50 m separation
distance while both vehicles were in motion. The Modified
Extended Hitch Trailer Method was used to reduce the effec-
tive RPV between the vehicles. Measurements of the RPV and
change in position were simulated at 5 Hz and corrupted with 2
cm Gaussian noise. Although this value is higher than reported
statistics, it was chosen to stress the trajectory duplication
method. Figure 10 shows the path traveled by both vehicles;
the lead vehicle traveled the gray path and the following
vehicle traveled the black path.

Figure 11 shows the lateral error between the follower
vehicle and the lead vehicle’s travel path. The large initial
error is due to the 50 m offset between the follower position



Fig. 10. Shown are the simulated trajectories of the lead (gray) and following
(black) vehicles as the follower attempted to replicate the leader’s path of
travel with a 50 m separation distance.

Fig. 11. The lateral error between the traveled paths of the follower and lead
vehicles reaches a maximum of 1.6 meters with a 50 m following distance.

and the first point of the path traveled by the leader. Once
the follower is on the path, a maximum error of 1.6 meters is
observed.

While this level of error might be acceptable in some
scenarios, such as a convoy operating in an open field, it is not
desirable for high precision applications, such as convoying
through a city making 90 degree turns or on public roads
where the lane width could be as narrow as three meters.
However, the Modified Extended Hitch Trailer Method does
provide a means to follow a lead vehicle at large follow-
ing distances. The previous methods shown fail when path
complexity increases. Also, further analysis reveals that the
inability to replicate the path with higher accuracy is due to
the controller and not the reference point generation method.

C. Controller Limitations

The waypoint based heading controller has inherent limita-
tions in its ability to follow a set of reference points. The most
obvious shortcoming of the method is its tendency to filter
curvature in the path (i.e. cut through a corner) if a reference
point is chosen too far away from the vehicle. The vehicle
drives to the chosen reference point using the shortest path
possible. The feed forward gain in the controller can reduce
this effect by generating a steer angle based on a desired yaw
rate, but the reduction is mainly noticed in steady state turning
maneuvers.

The second drawback to the controller is that reference
points too close to the vehicle can promote marginally stable,
or even unstable behavior. If the reference point is such that
a large yaw error is given to the controller, a large input will
be produced to turn the vehicle towards the reference point.
This action causes the vehicle to drive more perpendicular to
the path rather than along the path. Once the vehicle reaches
the reference point, another is chosen. Due to the current
orientation of the vehicle, a larger yaw error is calculated
which generates a larger input. If speeds are low enough,
the vehicle can oscillate about the desired path of travel.
Instability is encountered when speeds are high enough that
the vehicle breaches its physical limitations and either slides
out or rolls over. A higher closed loop bandwidth generates
larger control gains and therefore bigger inputs, so the effect
can be worsened if this approach is used in an attempt to fix
ill desired behavior. Also, higher control gains require higher
measurement rates, which can increase system complexity and
cost.

To minimize the limitations of a waypoint based controller,
a “look ahead distance” was set based on the vehicle speed.
The reference angle was generated by using the past location
of the lead vehicle that was nearest to this distance. The look
ahead distance was short at slow speeds where the possibility
of a dynamic path is higher. High speeds required a longer
distance to effectively filter out subtle changes in the reference
points that could destabilize the vehicle.

The path duplication inaccuracies can be attributed to the
“look ahead distance” having to be too large to ensure stability.
Therefore when using the Modified Extended Hitch Trailer
Method, some of the negative aspects of the Trailer Method
and Extended Hitch Trailer Method are reacquired because
the following vehicle cannot control to a sufficiently close past
position of the lead vehicle. Future work will adapt this method
for use in a more robust vehicle controller that can track
lines instead of waypoints. This type of controller will offer
more tuning capability and provide immunity to a constantly
changing reference.

VII. CONCLUSION

A method was presented to enable a following vehicle to
replicate the path driven by a lead vehicle while both are in
motion and out of sight of one another. This method improved
accuracy over simply following waypoints dropped by the



leader. Limitations were due to the selected vehicle controller
and not the method itself.

Also detailed were carrier based algorithms to determine
relative position between two dynamic points and the change
in position of a point. The DRTK algorithm provided a
centimeter level accurate RPV, while the TDCP algorithm
provided a millimeter level change in position.

Future work will alter the trajectory duplication method to
work with a line tracking controller, as opposed to the current
waypoint based heading controller. Also, the integer ambiguity
ratio test will be replaced with a Bootstrapping method to
improve the integrity of the chosen sets.
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