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Abstract —   GPS receiver performance can suffer in difficult 
environments such as urban canyons and heavy foliage.  
Inertial sensors provide information between GPS updates and 
can enhance the position solution in a GPS/INS architecture.  
Additional information from safety sensors already on the 
vehicle, such as lane departure warning (LDW) sensors, can 
enhance the navigation solution further by constraining 
inertial errors even in the presence of GPS errors.  This paper 
outlines a scalable navigation solution that can use a 
combination of GPS, reduced inertial sensors, full inertial data, 
vehicle CAN data, and vision sensors, depending on what data 
is available in difficult environments.  Data was collected in 
Detroit, Michigan in a diverse mix of environments that 
includes heavy foliage, highway, and downtown areas, in 
proportions representative of what is expected in typical 
driving.   Validation of the approach consists of both a 
qualitative analysis of the resulting trajectories overlaid on a 
map of the area and quantitative comparison of the 
trajectories produced by the proposed system and the 
reference system. 

Keywords- positioning; localization; sensor fusion; urban 
canyon; foliage; GPS; INS; IMU; inertial; navigation; vision; 
camera; lidar. 

I.  INTRODUCTION  
Intelligent vehicles of the future demand precise and 

robust localization for improved safety and performance. 
This information is typically provided by systems that 
integrate GPS with inertial navigation (INS). The features 
and quality of these systems vary and their performance 
differs across various environments. GPS is especially 
dependent on the line of sight to satellites, and presence of 
obstructions such as buildings or foliage can reduce the 
accuracy of GPS.  New mass-produced passenger vehicles 
are starting to use additional sensors for safety systems, such 
as cameras and lidars (light detection and ranging). With 
these new sensors come new capabilities that can be 
leveraged in advanced positioning solutions to combat the 
errors in GPS that arise due to obstructed views of the sky. 

The integrated GPS/INS navigation system is a well-
established localization architecture [1][2]. GPS updates 
provide a means for bounding error growth in the INS 
solution, while the INS solution bridges GPS gaps. Recently, 
reduced inertial sensor systems (RISS) have been combined 
with vehicle speed to provide pose estimates with limited 
acceleration and angular rate information [3][4]. Moving 
forward, these systems will be augmented with information 
from vision based systems to aid GPS in error mitigation.  

Lidars and camera systems are used in detection of, or 
ranging to, distinct features in the environment. For vehicle 
positioning, these sensors often rely on tracking the change 
in vehicle position with respect to nearby buildings or lane 
markings. Lidar-based lane-marking detection has been 
performed using histogram and histogram gradient feature 
extraction algorithms in [5][6]. Additionally, work by [7] 
compared results of lane marking detection by lidar and 
camera, including estimation of vehicle position in the lane. 
Lane departure warning (LDW) systems using cameras are 
currently available.  A system is developed in [8] using a 
linear-parabolic lane model. Hough transform methods were 
used to obtain road edges in [9], and clothoid model 
parameters used for horizontal and vertical road parameter 
recognition in [10]. 

Integration of global navigation solutions, such as those 
from GPS/INS systems, with local information from camera 
or lidar, often requires additional knowledge of the 
environment in the form of maps.  Map matching is of 
particular importance in [11]. Miller and Campbell enhanced 
accuracy and robustness of a GPS/INS system by fusing it 
with vision-based measurements in a particle filter [12]. 
Another particle filtering application, [13], was able to show 
centimeter level accuracy in simulation when fusing mono-
camera, low cost GPS, and map data. 

The variety of sensors available on current and future 
production vehicles, and the variety of approaches to 
integrate them, present a unique opportunity for a scalable 
navigation solution. The term “scalable” highlights the fact 
that the proposed system integrates a number of possible 
inputs (depending on the available sensor information) to 
provide estimates of the vehicle pose. The accuracy and 
reliability of such a system depends on the available sensor 
suite. The presented work will show the performance of 
navigation algorithms using information ranging from as 
little as two accelerometers and one gyroscope combined 
with L1-frequency-only GPS,  to a full six degree of freedom 
inertial measurement unit (IMU) with L1 and L2 frequency 
GPS accompanied by lateral positions from lidar and camera. 
A map database of the lane markings will be used for vision-
based measurement integration. Vehicle wheel speeds from 
the in-vehicle CAN network will also be incorporated.  
Validation of the results will consist of both qualitative 
analysis, by inspection of trajectories plotted on satellite 
imagery, and quantitative analysis, by differencing between 
trajectories from proposed algorithms and from the reference 
system, in order to derive position error statistics.  



II. NAVIGATION ALGORITHMS 
The navigation algorithm is an extended Kalman filter 

implementation. Three sensor combinations were examined 
in this work. The first combined a reduced inertial sensor 
system, L1 frequency GPS pseudorange and pseudorange 
rate, and vehicle wheel speed. The second system added L2 
frequency GPS measurements. The final system used the six 
degree of freedom IMU instead of the reduced IMU and also 
added lateral lane position updates from the camera and 
lidar. Each implementation is discussed in detail in this 
section.  

A. RISS 
Single frequency GPS measurements were integrated 

with two accelerometers, a single gyroscope, and vehicle 
speed measurements to form the production grade navigation 
system for this study. The sensitive axes of the 
accelerometers were aligned with the longitudinal and lateral 
axis of the vehicle, and the sensitive axis of gyroscope was 
aligned with the vertical axis of the vehicle. 

The states of the filter are: the position of the vehicle in 
geodetic coordinates (latitude (λ), longitude (𝜙), and altitude 
(h), the velocity in a local tangent plane (north (Vn), east (Ve), 
and down (Vd)), the heading (𝜓) of the vehicle relative to 
north in the local tangent plane, two accelerometer bias states 
(bax, bay), one gyroscope bias state (bgz), GPS receiver clock 
bias (Δ𝑡) and drift (Δ�̇�), and a tire slip state (s). Kinematic 
relationships were used to formulate the dynamic equations 
for the propagation of the vehicle position states. Note that 
Rλ and Rφ are the meridian radius and normal radius 
respectively.  

 �̇� = 𝑉𝑛
𝑅𝜆+ℎ

 (1) 

 �̇� = 𝑉𝑒
�𝑅𝜙+ℎ� cos(𝜆) (2) 

 ℎ̇ = −𝑉𝑑 (3) 

The dynamics of the velocities were approximated by the 
accelerometer measurements (𝑓𝑎𝑥 , 𝑓𝑎𝑦), the expected 
measurement error, and the assumption that the vertical 
velocity was driven by zero mean white noise.  

 𝑉�̇� = (𝑓𝑎𝑥 − 𝑏𝑎𝑥) cos(𝜓) − �𝑓𝑎𝑦 − 𝑏𝑎𝑦� sin(𝜓) (4) 

 𝑉�̇� = (𝑓𝑎𝑥 − 𝑏𝑎𝑥) sin(𝜓) + �𝑓𝑎𝑦 − 𝑏𝑎𝑦� cos(𝜓) (5)  
𝑉�̇� = 0  (6) 

The heading dynamics were defined relative to the angular 
velocity measured by the gyroscope 𝜔𝑔𝑧, the measurement 
error 𝑏𝑔𝑧, and the dynamics introduced by the dynamics of 
the Earth 𝜔𝑒. 

 �̇� = 𝜔𝑔𝑧 − 𝑏𝑔𝑧 − 𝜔𝑒sin (𝜆) (7) 

IMU biases were assumed to be first order Gauss Markov 
processes as is the tire slip state. For additional information 
on these dynamics, see [2][14]. The clock bias dynamics are 
driven by the drift term and the clock drift is assumed to be 
driven by zero mean white noise.  

The Kalman filter covariance matrix was propagated 
using the linearized error dynamics derived from the 
dynamics described above (detailed further in [1]). Note that 

in this formulation the vehicle roll and pitch were assumed to 
be negligible as is the lever arm between the IMU and GPS 
antenna. 

The INS navigation solution was updated using both GPS 
and wheel speed measurements. GPS pseudorange and 
pseudorange rate measurements were used in this 
formulation. The INS solution was used to predict the 
pseudorange and pseudorange rate for each visible satellite at 
each GPS measurement. The pseudorange prediction model 
was as follows: 

 𝜌� = �(𝑥𝑠 − 𝑥)2 + (𝑦𝑠 − 𝑦)2 + (𝑧𝑠 − 𝑧)2 + 𝑐Δ𝑡  (8) 

where xs, ys, and zs are the Earth centered Earth fixed (ECEF) 
coordinates of the satellite, and x, y, and z are the estimates 
of the vehicle position in the ECEF frame. The receiver 
clock error is labeled 𝑐Δ𝑡. The pseudorange rate prediction is 
given by: 

  �̇�� =
(𝑉𝑥𝑠−𝑉𝑥)(𝑥𝑠− 𝑥)+�𝑉𝑦𝑠−𝑉𝑦�(𝑦𝑠−𝑦 )+(𝑉𝑧𝑠−𝑉𝑧)(𝑧𝑠−𝑧)

�(𝑥𝑠−𝑥)2+(𝑦𝑠−𝑦)2+(𝑧𝑠−𝑧)2
+ 𝑐Δ�̇� (9) 

where Vxs, Vys, and Vzs  are the velocities of the satellite in the 
ECEF frame, and Vx, Vy, and Vz are the estimated vehicle 
velocities in the ECEF frame. 

The pseudorange and pseudorange rate predictions were 
compared to the measurements to calculate the navigation 
solution correction. Using the linearized geometry matrix, 
derived by computing the partial derivative of the 
pseudorange and pseudorange rate models with respect to the 
state vector, the correction was mapped into the state domain 
and applied to the navigation solution and the error 
covariance matrix was updated. 

An additional state update was performed using the 
encoder-provided wheel position measurement in terms of 
pulses per revolution. This measurement was converted to 
wheel speed using the wheel radius and the number of pulses 
per revolution. The two rear wheel speeds were then 
averaged to form one observable. This value was then 
compared to the wheel speed predicted by the INS solution. 
The model for the wheel speed prediction contains the 
estimated north and east velocities and the estimated tire slip. 

 𝑣�𝑤𝑠 = (𝑉𝑛2 + 𝑉𝑒2)2(1 + 𝑠) (10) 

The correction to the position solution is computed by 
calculating the difference between the predicted and 
measured wheel speed and mapping that error into the state 
domain using the geometry matrix. Note also that the 
stationary condition (i.e., the measured wheel speed is zero) 
allows for improved estimates of the inertial biases. This is 
called a zero velocity update, and is further described in [15].  

B. GPS/INS 
Unlike with the reduced inertial navigation algorithm, 

when the full six degree of freedom IMU was used, the total 
attitude (i.e., roll, pitch, and heading) was estimated. Also, 
rather than navigating in the local tangent plane (used to 
minimize complexity of mapping the IMU to the navigation 
frame), the ECEF frame was selected as the navigation frame 
(minimizing the complexity of mapping the GPS to the 
navigation frame). 

The change of navigation frames impacts the dynamic 
equations used in the propagation step of the Kalman filter. 
A rotation matrix was maintained to map accelerometer 



measurements from the vehicle body frame to the navigation 
frame. The dynamics of this rotation matrix, 𝐶𝑏𝑒 were given 
by:  

 𝐶𝑏�̇� = 𝐶𝑏𝑒Ω𝑖𝑏 − Ω𝑖𝑒𝐶𝑏𝑒 (11) 

where Ω𝑖𝑏  is the measured angular velocity of the body 
frame relative to an inertial frame and Ω𝑖𝑒  is the rotation rate 
of the Earth. Note that the gyroscope biases must be 
removed. 

The velocity dynamics are now written in vector form as 
a function of the three axes accelerometer measurements 
accounting for the effects of gravity on the measured 
accelerations. 

 𝑉�̇� = 𝐶𝑏𝑒�𝑓𝑎𝑏 − 𝑏𝑎𝑏� + 𝑔𝑒  (12) 

Here, 𝑓𝑎𝑏 are the three axes accelerometer measurements, 
𝑏𝑎𝑏  are the accelerometer biases, and 𝑔𝑒 is the local 
acceleration due to gravity.  

Since the velocity and position are now expressed in a 
common navigation frame, the position dynamic equations 
are straightforward with Pe equal to the x, y, and z 
components of the position of the vehicle expressed in the 
ECEF frame. 
 �̇�𝑒 = 𝑉𝑒 (13) 

Processing the GPS pseudorange and pseudorange rate 
measurements follows the same procedure previously 
described for the RISS implementation. The measurement 
models can be found in equations 8 and 9.  Note that the 
NovAtel GPS receiver provided measurements from both the 
L1 and L2 frequency carrier. This typically results in two 
times the number of observables at each GPS measurement 
epoch. The wheel speed measurement update was also 
performed according to the previous formulation.  

C. Full Vision Integration 
The full vision integration system uses six degree of 

freedom inertial measurements, dual frequency NovAtel 
GPS measurements, two estimates of lateral position within 
the lane – one provided by the lidar and another by the 
camera, and a map of the lane to estimate the pose of the 
vehicle. The estimation procedure followed the form 
described for the GPS/INS algorithm with the addition of a 
new update step when lateral position measurement were 
provided by either vision-based sensor. The lane detection 
and positioning methods for each vision system are 
described briefly below. A description of the procedure for 
integrating the measurements in the Kalman filter follows.  

1) Lidar Lane Detection 
The lidar-based lane detection algorithm is based on 

fitting an ideal lane model to actual road data, where the 
ideal lane model is updated with each lidar scan to reflect the 
current road conditions.  Ideally a lane takes on a profile 
similar to the 100 averaged lidar reflectivity scans seen in 
Figure 1, where the corresponding road is seen in the lower 
image. The plot is a mirror image of the photo due to the fact 
that the right portion of the image corresponds to negative 
horizontal angles. Note that this profile has a relatively 
constant area between the peaks, where the peaks represent 
the lane markings, which are typically bright and thus have 
higher reflectivity. The constant area is the unmarked 
pavement of the road surface, which is typically dark and 

thus has lower reflectivity.  An ideal lane model is generated 
with each lidar scan to mimic this averaged data, where the 
constant portion is generated by averaging the reflectivity 
directly in front of the vehicle and the lane markings are 
generated by increasing the average road surface reflectivity 
by 75%.  This model is then stretched over a range of some 
minimum expected lane width to some maximum expected 
lane width, and the minimum RMSE between the ideal lane 
and the lidar data is assumed to be the area where the lane 
resides.  For additional information on this method, see [16]. 

 
Figure 1: Reflectivity scan from lidar and corresponding road 
image 

2) Camera Lane Detection 
The camera-based method uses line extraction techniques 

applied to the image to detect lane markings and calculate a 
lateral distance from a 2nd order polynomial model for the 
lane marking.  A threshold is chosen from the histogram of 
the image to compensate for differences in lighting, weather, 
or other non-ideal scenarios for extracting the lane markings.  
The thresholding operation transforms the image into a 
binary image, which is followed by Canny edge detection.  
The Hough transform is then used to extract the lines from 
the image, fill in holes in the lane marking edges, and 
exclude erroneous edges.   Using the slope of the lines, the 
lines are divided into left or right lane markings.  Two 
criteria are used to further exclude non-lane markings in the 
image based on the assumption that the lane markings do not 
move significantly within the image from frame to frame.  
The first test checks that the slope of the line is within a 
threshold of the slope of the near region of the last frame’s 
2nd order polynomial model.  The second test uses boundary 
lines from the last frame’s 2nd order polynomial to exclude 
lines that are not near the current estimate of the polynomial.  
The 2nd order polynomial interpolation is used on the 
selected lines’ midpoint and endpoints to determine the 
coefficients of the polynomial model, and a Kalman filter is 
used to filter the model to decrease the effect of erroneous 
polynomial coefficient estimates.  Finally, the lateral 
distance is calculated using the polynomial model on the 
lowest measurable row of the image (for greater resolution) 
and a real-distance-to-pixel factor.  For more information on 
this method, see [17]. 

3) Vision Measurement Update 
The described camera and lidar algorithms provide 

measurements of the lateral position of the vehicle relative 
to the center of  the lane (Figure 2).  



A prediction of the lateral position of the vehicle within 
lane is calculated using the current estimate of the vehicle 
position and its two closest lane map points in the direction 
of travel. If the estimated position is inaccurate, incorrect 
lane coordinates may be selected in the map. This is a 
limitation of this approach. The distance of the vehicle is 
calculated normal to the line defined by the two closest 
points in the north and east directions using the following 
equations: 
 𝜇 = �𝑝𝑛−𝑚2𝑛��𝑚1𝑛−𝑚2𝑛�+�𝑝𝑒−𝑚1𝑒��𝑚1𝑒−𝑚2𝑒�

�𝑚1𝑛−𝑚2𝑛�
2
+�𝑚1𝑒−𝑚2𝑒�

2  (14) 

 𝑛𝑛 = 𝑚1𝑛 + 𝜇�𝑚2𝑛 −𝑚1𝑛� (15) 
 𝑛𝑒 = 𝑚1𝑒 + 𝜇�𝑚2𝑒 − 𝑚1𝑒� (16) 
 �̂� = �(𝑝𝑛 − 𝑛𝑛)2 + (𝑝𝑒 − 𝑛𝑒)2 (17) 
where m1 and m2 are the closest map points and �̂� is the 
calculated lateral distance. 

The predicted lateral distance, �̂�, is compared to the 
camera- or lidar-measured distance, �̃�, to calculate 
correction error. The camera and lidar measurements are 
applied independently when either algorithm reports a 
lateral position. The lateral error is then mapped into the 
state domain using the linearized geometry matrix. Lastly 
the state estimates and error covariance are updated.   

 
Figure 2: Lateral distance prediction (𝒓�) and measurement (𝒓�) 

III. TEST PROCEDURE 
Testing occurred in Detroit, Michigan. Data was captured 
following a 46-mile route through the city center and 
surrounding suburbs to mimic driving experienced by a 
typical driver. In an attempt to capture the full range of GPS 
satellite geometry variability, the testing occurred over three 
days. This paper presents results from the first day of 
testing.  

A. Test Route Selection 
The test route was designed with two main aims: 1) to 

cover a variety of environment types that have characteristic 
effects on positioning performance, and 2) to be 
representative of typical U.S. driving in the proportioning of 
environment type selections. The environmental features 
considered important here for their influence on GNSS-based 
positioning accuracy and for their commonality are trees, 
tree canopies, mountains, overpasses, buildings, urban 
canyons, and tunnels. These features, along with other 
helpful attributes, are used to define seven sufficiently 
distinct environments in Table 1. This is partially modeled 
after the table in [18] on page 529. The test route here 
ensures that the Open and Urban environment types are 
covered. 

Table 1: Environment Definitions 

Environment 

Features 

Terrain Vegetation Buildings Overpasses Tunnels 

Open flat or mildly 
undulating; 

mask ≤ 5° 

almost none almost none none none 

Ru
ra

l Sparse scattered trees rare, low, far none none 

Moderate mountains 
masking 5-20° 

some tree 
canopies some low maybe but rare 

Dense mountains 
mask 20-60° 

dominant tree 
canopies 

negligible compared to natural 
obstructions although there could be a 

long tunnel 

Ur
ba

n Sparse usually flat or 
mildly 

undulating with 
mask ≤ 5 

scattered trees some, low or 
far none none 

Moderate moderate 
number, some 
short canopies 

multi-story, 
rare high-rises some rare 

Dense dominant high-
rise canyons frequent long 

FHWA’s data on U.S. road use in terms of total miles 
traveled in each road-class category [19] was used as the 
best available statistical data to indicate environment 
proportioning typically encountered in the U.S, even though 
it does not actually classify roads according to sky-visibility 
environments, but rather according to road size and volume. 
The selection of the test route was then guided by the goal 
of having the roads comprising the route closely match 
(within ±5%) the urban road-use class proportioning in the 
found by FHWA. The resulting 46-mile test route is shown 
in Figure 3.  

B. Test Timing 
Due to satellite geometry variability over time, the test 
timing is a critical component of the test plan. Since the 
satellite configuration, as seen by the receiver on the 
ground, repeats every 24 hours, for repeatable results, it is 
desirable to have the testing span 24 hours. For procedural 
convenience, the 24 hour period is divided into 3 shifts. 
Each shift is on a different day (thus allowing a large break 
from test driving), and spans 10 hours, with 2-hour overlaps 
with respect to time of day, for a total desired span of 24 
hours. 

 

 
Figure 3: Test Route Overview 

C. Sensors 
Some sensors used here (Table 2) mimic those 

commonly found on modern-day passenger vehicles. Higher 
end sensors are also included to acknowledge the expected 
improvement in sensor capabilities for future production 
vehicles. Sensors are tested in several combinations. 



Table 2: All Sensors Used in Testing 
Type Model Description Rate (Hz) 
Production or Near-Production Grade 
GPS NovAtel 

Propak V3 
Scientific GPS receiver, but position, 
velocity, and L1 data used only 

5 

Wheel 
Speed 

From in-vehicle 
CAN network 

Production sensor for vehicle wheel 
speed 

50 

RISS Crossbow IMU 
440, reduced 

Reduced data set used for mimicking 
near-production grade 

100 

Camera Logitech 
Quickcam 9000 

Web-camera, production-like quality 10 

Beyond Production Grade 
GPS NovAtel 

Propak V3 
Scientific GPS receiver gives: 
position, velocity, L1 and L2 
pseudorange and pseudorange rate 

5 

IMU Crossbow IMU 
440, full 

Six degree of freedom IMU, Micro-
Electro-Mechanical (MEMS) 

100 

Lidar Ibeo Alasca XT marketed as automotive-grade but not 
typically available on production 
vehicles 

10 

Reference System 
GPS NovAtel 

SPAN-SE 
Scientific GPS receiver 5 

IMU Honeywell 
HG1700 AG58 

Military-grade IMU 100 

External 
encoder 

Peiseler 
MT1000/r 

Mounted on passenger-side rear wheel 
to count wheel rotations 

Speed 
dependent 

DGPS Differential GPS solution was calculated in post-processing by 
differencing on-vehicle GPS data with data from local GPS 
reference stations to mitigate atmospheric effects. Typically, this 
processing limits global position errors to decimeter level. 

D. Vehicle 
The test vehicle was a four door sedan.  The NovAtel 

receiver under test and the NovAtel reference receiver shared 
the GPS antenna mounted centrally on the roof.  
Additionally, an external wheel odometer was mounted on 
the passenger-side rear wheel to aid the reference system.  
Both the camera and lidar were attached to a roof rack and 
centered laterally. Data was logged using a full-sized PC in 
the trunk. 

IV. RESULTS 
Results are presented in the form of a plot of satellite 

availability, tables showing error statistics, and plots of 
navigation solutions on road maps. In Figure 4, the number 
of visible satellites and the resulting horizontal dilution of 
precision (HDOP) are shown for the test route over three test 
runs. As seen, the number of visible satellites varies from 
twelve to one. Accordingly, the HDOP ranges from typical 
values (less than 2 [18]) to extreme values when less than 
four satellites are visible. The GPS positioning accuracy is 
compromised due to the reduced GPS satellite visibility and 
increased multipath reflections in portions of the test route. 
This information is not used directly in the position estimate 
but provides insight to variations in the achievable accuracy. 
Note that the HDOP and an approximation for the one sigma 
user-equivalent range error (UERE) can be used to calculate 
the expected one sigma horizontal error bound. For a HDOP 
value of 2 and an UERE of 5.1 meters the expected one 
sigma horizontal error bound is 10.2 meters [21]. 

The results of the NovAtel GPS-only solution and the 
GPS/INS solution combining the NovAtel receiver data with 
the full six degree of freedom IMU440 are shown. The 
NovAtel only solution is labeled Propak_’run number’ and 
the GPS/INS solution is labeled GPS_INS_’run number.’ 

Table 3 includes the mean horizontal errors and the 
percentage of errors less than 1.5 and 5 meters for both the 
standalone NovAtel solution and the combined solution. The 
combined navigation solution exhibits improvement in all 
three categories with nearly 6 percentage points of 
improvement in the overall 5 meter error analysis. 

 
Figure 4: Number of satellites in view and HDOP for 
three data sets 

Table 3: Error Statistics for NovAtel GPS with 6DOF IMU 
Run Number Mean Absolute 

Horizontal Error % < 1.5 m % < 5 m 

Propak_R1 2.3 44.1 91.4 
GPS_INS_R1 2.3 41.5 94.0 

Propak_R3 2.9 46.7 88.8 
GPS_INS_R3 2.0 59.8 95.5 

Propak_R5 2.3 38.1 86.8 
GPS_INS_R5 1.9 46.5 93.2 

Propak Overall 2.6 55.9 88.4 
GPS_INS Overall 2.2 63.8 94.3 

Figure 5 is a zoomed view of one test run from Table 3. 
In Figure 5, the GPS/INS solution (green) can be seen 
bridging several outages of the standalone GPS solution 
(blue). The GPS/INS performance improvements were seen 
in this scenario and in heavy foliage environments. 

Error statistics are shown in Table 4 as a function of the 
local environment. The table gives the percentage of errors 
less than 1.5 meters across all test runs. As seen in the table, 
GPS/INS integration provided the highest improvement, by 
percentage in the moderate and tree environments. There 
was also a slight improvement in the canyon areas. 
Table 4: Error Statistics by Environment 

Device Environment 
Open Ok Trees Canyon All 

Propak All Runs 67 49 33 14 42 
GPS_INS All 
Runs 74 56 40 18 49 

Proportion % 4 54 15 8 100 
As previously stated, the full vision system accuracy is 

limited by the ability to correctly identify the closest map 
coordinates. A map of the test route was developed using 
Google Earth and analysis was performed using residual 
errors in GPS pseudorange predictions to verify lane 
selection. This method did not show statistical improvement 
over the GPS/INS results presented earlier. One can see 
qualitative improvements in the positioning estimates in the 
downtown area in Figure 6 when using vision based 
estimation updates. It is anticipated that future system 
improvements (such as road edge detection) will provide 
additional information for improved identification of the lane 
of travel. In order to identify the potential for improvements 
when the correct lane is selected, the algorithm was run 



assuming the lane of travel was known. Modest 
improvement in the percentage of errors less than 1.5 meters 
were seen in run 1 (45.1 %) and run 3 (61.8%). It should also 
be noted that the accuracy of the full vision integrated system 
is limited by the accuracy of the map. 

 
Figure 5: Zoom -- results of GPS/INS integration 
shown on satellite image of Detroit (image by 
GPSVisualizer.com)  

 
Figure 6: Results of full system with GPS/INS 
integration shown on a map of Detroit (image by 
GPSVisualizer.com)  

V. CONCLUSIONS 
In conclusion, a scalable navigation solution using 

typical or near typical vehicle sensors was presented. 
Analysis of the positioning capabilities of the system 
operating in various environments was shown. The GPS/INS 
system provided improved results over standalone GPS 
particularly in heavy foliage and urban canyon 
environments. The full system exhibited improved 
performance in the urban areas were GPS availability was 
limited. Statistical improvement using vision updates was 
shown for the case where the lane of travel was assumed to 
be known. Future work will be focused on road edge 
detection to provide better predictions of the lane of travel. 
Additionally, visual odometry will be investigated to allow 
vision integration when a map database is unavailable. 
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