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• LiDAR Lane Detection

• Camera Lane Detection

• Sensor Integration

Intelligent Multi-Sensor 
Measurements to Enhance Vehicle 

Navigation and Safety Systems

DTFH61-07-H-00026 
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Motivation for Research

• 53% of U.S. highway 
fatalities in 2008 due 
to unintended lane 
departure accidents.

• Potential to save 
almost 20,000 lives.

• Goal : prevent lane 
departure fatalities by 
fusing multiple vehicle 
sensors •From www.iteris.com

•From Google Images
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Approach

• The goal of this project is to design a system 
that can track lateral lane position on a highway

• 3 types of vehicle sensors to detect lane position
– GPS/Map

– Camera

– (Light Detection and Ranging) LiDAR

• Fused sensors to take advantage of the 
strengths of each sensor to provide a more 
robust solution
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Sensors

www.xbow.comwww.novatel.com

• Novatel Propak®-V3

• GPS Receiver

• 2Hz Update Rate

• Provided Raw Measurements

• Crossbow 440 IMU

• IMU

• 50 Hz Update Rate

• 3 Accelerometers / 3 Gyros

• Ibeo ALASCA XT

• 4 layer simultaneous scanning

• 3.2 ° vertical field of view

• Capable of .25 ° resolution

• Rotation frequency 8-40Hz

• Camera

• Quickcam Pro 9000 webcam

• Low cost, low resolution
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Sensor Integration - Track Survey

• In order to use GPS to measure lane position, 
an accurate map of the lane must constructed.

• For our project, we surveyed the NCAT test 
track in Opelika, AL.
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Results



Samuel Ginn College of Engineering 7

Dissemination of Results

• Published Papers

- Allen, J. and Bevly D. “Use of Vision Sensors and Lane Maps to Aid GPS/INS under a Limited GPS Satellite 
Constellation.” In Proceedings of the ION GNSS, 2009. 

- John Allen, Jordan Britt, Chris Rose, David Bevly, “Intelligent Multi-Sensor Measurements to Enhance Vehicle 
Navigation and Safety Systems, The Institute of Navigation 2009 International Technical Meeting, January 2009.

- Allen, J. and Bevly D. “Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint 
Based Maps.” IEEE PLANS, 2010.

- Britt, Jordan H., Bevly, David M., "Lane Tracking using Multilayer Laser Scanner to Enhance Vehicle Navigation and 
Safety Systems," Proceedings of the 2009 International Technical Meeting of The Institute of Navigation, Anaheim, CA, 
January 2009, pp. 629-634.

- Jordan Britt,, David Bevly “LiDAR Calibration Method for Vehicle Safety Systems”, SAE World Congress  Intelligent Vehicle 
Initiative (IVI) Technology Advanced Controls and Navigation, April 2010.

- Britt, J.; Broderick, D. J.; Bevly, D. & Hung, J., “Lidar attitude estimation for vehicle safety systems”, Position Location and 
Navigation Symposium (PLANS), 2010 IEEE/ION, 2010, 1226 -1231 

- Thesis – Jordan Britt, Lane Detection Calibration and Attitude Determination with a Multilayer LiDAR for Vehicle Safety 
Systems, 2010

- D.J. Broderick, J. Britt, J. Ryan, D.M. Bevly, J.Y. Hung, “Simple Calibration for Vehicle Pose Estimation Using Gaussian 
Processes,” Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, San Diego, CA, January 
2011.

- Rose, C. and Bevly, D. “Camera and Inertial Measurement Unit Sensor Fusion for Lane Detection and Tracking using Polynomial 
Bounding Curves.” In Proceedings of the ION GNSS, 2009.

- Rose, C. and Bevly, D. “Vehicle Lane Position Estimation with Camera Vision using Bounded Polynomial Interpolated Lines.” In 
Proceedings of the ION Technical Meeting, 2009.

-Thesis – Christopher Rose, Lane Level Localization with Camera and Inertial Measurement Unit using an Extended Kalman 
Filter, 2010 

• Forthcoming Publications

- Thesis – John Allen, in progress expected completion May 2011

03/28/11GPS and Vehicle 
Dynamics Lab

7
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Dissemination of Results

• Presentations
– Mid-point presentation to FHWA at Turner 

Fairbanks
– Presentation to Nissan at Auburn AL.
– Presentation to Honda at Auburn AL.
– EAR kickoff Presentation to Automotive 

Advisory Board at Auburn, AL.
– Presentation at TRB at Washington D.C.

03/28/11GPS and Vehicle 
Dynamics Lab

8
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Closing Comments

• Questions?

GPS and Vehicle Dynamics Lab 9
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Camera-based Lane Detection 

Christopher Rose 

David Bevly 
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Motivation 

• We can save lives. 

• In 2008 52% of all highway fatalities 

occurred from unintended lane 

departure  

• Nearly 20,000 deaths 

• In 2006 it was 58%, comprising nearly 

25,000 deaths 

• In short: more fatalities than any other 

crash type occur due to single vehicle 

road departures 

 

 

2 2 
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Overview – Camera Lane Detection 

• Introduction 
– Background 

• Vision System 
– Image Processing 

– Line Processing 

– Linear Kalman Filter 

– Calculations 

– Vision System Experimental Results 

• Vision/INS/Velocity Integration 
– State Structure 

– Time Update 

– Measurement Update 

– Vision/IMU/Velocity Experimental Results 

• Conclusions 
– Future Work 

3 
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Introduction 

• Lane departure warning systems are 

already present in commercial vehicles; 

however, these systems are limited by the 

quality of the images obtained from 

cameras.  Use of other sensors in addition 

to vision can provide the position within 

the lane even when lane markings are not 

visible. 

4 
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Background 

• C.R. Jung 
– Linear-parabolic model to create an LDW system using 

lateral offset based on near-field and far-field 

• Y. Feng 
– Improved Hough transform for detection of road edge and 

establishment of an area of interested based on the 
prediction result of a Kalman filter 

• E.C. Yeh 
– Obtained heading and lateral distance from single camera 

images 

• D.A. Schwartz 
– Clothoid model for the road is unsuitable for sensor fusion 

• T.J. Broida 
– 3-d motion estimation with a monocular camera 

GPS and Vehicle Dynamics Lab 5 
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Contributions 

• Specific contributions include: 

– Use of vision and inertial data specifically for 

lateral position estimation in the lane 

– Tracking of the lane in the image using only 

inertial data when the image fails to detect 

lines 

GPS and Vehicle Dynamics Lab 6 
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Vision System 

Vision Algorithm 

GPS and Vehicle Dynamics Lab 7 
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Constant Threshold 

• Constant thresholds can provide feature extraction 
for unchanging or similar environments 
– Thresholds for one scene can fail for changing 

environments and lighting conditions 

GPS and Vehicle Dynamics Lab 8 

Dark Scene Constant Threshold (T=210) 
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Dynamic Threshold 

GPS and Vehicle Dynamics Lab 9 

• Dynamic Threshold 
– With a dynamic threshold, lane markings are 

detected in the image even with different lighting 
conditions 

– Threshold changes with respect to the statistics 
of the image 

𝑇 = 𝜇 + 𝐾𝜎 

T: new threshold 

µ: mean of grayscale values 

K: expected noise 
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Dynamic Threshold 

• Dynamic threshold – lane markings are 
detected in the image even with different 
lighting conditions 

GPS and Vehicle Dynamics Lab 10 

Night Scene Dynamically Thresholded Image 
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Edge Detection 

GPS and Vehicle Dynamics Lab 11 

  

• Canny edge detection 

• Extracts the edges of the thresholded image 
 

Day Scene Edge Map 
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Hough Transform 

• Hough Transform 

– Extracts, merges, and ignores lines from images 

– Uses the probabilistic Hough transform 

GPS and Vehicle Dynamics Lab 12 

Hough Lines 
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Line Selection 

• Lines are classified as either left or right lane marking 

lines using their slope.   

• Two further checks are used 

– Polynomial boundary checking 

– Slope checking 

4/15/2011GPS and Vehicle 

Dynamics Lab 

13 
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Polynomial Boundary Checking 

14 

))2(sin(tan 1 baxrxx estestrb  

))2(cos(tan 1 baxryy estestrb  

))2(sin(tan 1 baxrxx estestlb  

))2(cos(tan 1 baxryy estestlb  

Three points on each polynomial bound are calculated: 

Right Polynomial Bound Calculation 

Left Polynomial Bound Calculation 

Least squares polynomial interpolation gives the coefficients of 

each polynomial bound. 
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Slope Checking 

• The slope form each line from the Hough transform is 
compared with the slope from the last estimated lane 
marking.  If within a given tolerance and if the line is 
within the polynomial bound, the endpoint and the 
midpoint of the line is added to the point pool. 

15 
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Least Squares Polynomial 

Interpolation 
• Each lane is modeled with a polynomial equation: 

16 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

• Least squares polynomial interpolation is used to 

generate the coefficients of the model 

𝛽 = (𝑓′𝑓)−1𝑓′𝑦 

where 
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Kalman filter 

GPS and Vehicle Dynamics Lab 17 

• Kalman filter 

– Reduce erroneous lane marking estimates 

– Measurement update corrects coefficients 
using the coefficients from the 2nd order 
polynomial interpolation 

 RRRLLL cbacbax ˆ
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Lateral Distance Calculation 

• Lateral distance is calculated when a lane 
marking is found 

4/15/2011GPS and Vehicle 

Dynamics Lab 

18 

𝑑𝑟 = 𝑛
−𝑏 + 4𝑎𝑦 + 𝑏2 − 4𝑎𝑐

2𝑎
 

𝑑𝑙 = 𝑛
−𝑏 − 4𝑎𝑦 + 𝑏2 − 4𝑎𝑐

2𝑎
 

a,b,c: coefficient of the estimated polynomial model 

y: image row for measurement 

n: conversion factor 

The conversion factor serves as the conversion from image to world space 

𝑛 =
𝑤

𝑝
 

w = width (m) of a typical lane 

p = pixel count of the lane (image space) 
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Heading Calculation 

• Heading is determined based on 

– Vanishing point of measured lane markings 

– Vanishing point of the camera 

4/15/2011GPS and Vehicle 

Dynamics Lab 

19 
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Heading Calculation 

4/15/2011GPS and Vehicle 

Dynamics Lab 

20 

𝜓 = tan−1 𝑂𝑃
tan

Θ
2

𝑂𝑃2
 

OP: distance (pixels) from 

center point to vanishing point 

OP2: distance (pixels) from 

center point to image edge 

Θ: visual angle 

Ψ: heading angle 

Bird’s eye view of road 
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Performance in Varying Environments 

- City 

4/15/2011GPS and Vehicle 

Dynamics Lab 

21 
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Performance in Varying Environments 

GPS and Vehicle Dynamics Lab 22 

Dusk Night Rain Dusk Rain Night 

Average Absolute Error (m) 0.2379 0.0307 0.0327 0.0512 

RMS Error(m) 0.4214 0.0401 0.094 0.1253 

std of Error 0.3526 0.0402 0.0887 0.1149 

var of Error 0.1243 0.0016 0.0079 0.0132 

% Detection 0.4801 0.9 0.1808 0.1947 
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Experimental Results 

• Test Run 
– Hyundai Sonata driven around the right lane 

– NCAT test track 

– RTK GPS truth data 

GPS and Vehicle Dynamics Lab 23 

Truth Lateral Distance vs. Calculated Lateral distance 
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Heading Results 

GPS and Vehicle Dynamics Lab 24 

True Heading vs. Calculated Heading 

Two “spike”  

regions are 

the curves 

of the track 
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Vision/INS/Velocity Integration 

• Various problems can hinder lane detection 

– Environment 

– Eroded lane marking lines 

– Objects on road 

• Integration of other sensors can provide 
lateral distance in the road when camera 
vision fails 

• Extended Kalman filter used for sensor fusion 

GPS and Vehicle Dynamics Lab 25 
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Vision/IMU/Velocity Integration 

• GPS used for velocity 

• Wheel odometry, radar, etc. can also be used 

GPS and Vehicle Dynamics Lab 26 
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Road Frame 

• Road Frame 

– Positive x-axis 

pointing down 

the road on the 

right lane 

marking 

– Y-axis points 

perpendicularly 

to the right 

– Z-axis points 

down and 

perpendicular to 

the road plane 

27 
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States 

• State vector 

GPS and Vehicle Dynamics Lab 28 

𝑥 = 𝑝𝑦 𝑣𝑥 𝑏𝑥 𝜓 𝑏𝜓
𝑇
 

𝑝𝑦: lateral distance 

𝑣𝑥: longitudinal velocity 

𝑏𝑥: longitudinal acceleration bias 

𝜓: yaw 

𝑏𝜓: yaw rate bias 
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Time Update – Nonlinear equations 

• Inputs: 

– 𝜓 : yaw rate 

– 𝑎𝑙𝑜𝑛𝑔: longitudinal acceleration 

• States included are 

– 𝑏𝜓 

– 𝑏𝑙𝑜𝑛𝑔 

– 𝑣𝑥 

– 𝜓 

GPS and Vehicle Dynamics Lab 29 
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Equations of Motion 

• Propagation of states through time 
– Runge-kutta approximates solution 

– Noise is assumed to be zero 

GPS and Vehicle Dynamics Lab 30 

𝑝𝑥 = 𝑣𝑥 sin 𝜓  

𝑣𝑦 = 𝑎𝑙𝑜𝑛𝑔 − 𝑏𝑙𝑜𝑛𝑔 

𝑏𝑙𝑜𝑛𝑔 = 0 

𝜓 = 𝜓 − 𝑏𝜓 

𝑏𝜓 = 0  

• Time update can use the heading and longitudinal velocity to 

estimate the location of the lane markings 

• m: pixels shifted in image space 

• r: radians per pixel shift 

𝑚 =
𝑣𝑥 sin𝜓 𝑑𝑡

𝑛
 𝑟 =

2𝑞

𝑤
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Time Update 

• New coefficients of lane 
model for lateral motion 

4/15/2011GPS and Vehicle 

Dynamics Lab 

31 

𝑏 =
𝑏

1 − 𝑏𝑟𝑚
 

 

𝑐 =
𝑐

1 − 𝑏𝑟𝑚
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Measurement Update 

• Measurement Update 

– Correction of states with camera and velocity 

(from GPS) measurement 

– Correct for drift from IMU 

– Measurements 

• Lateral distance (camera) 

• Heading (camera) 

• Longitudinal velocity (GPS) 

4/15/2011GPS and Vehicle 

Dynamics Lab 

32 
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Vision/IMU/Velocity Experimental 

Results 
• New test run 

– Approximate straight road conditions of a 
highway 

– Taken at night under low light conditions 

– Faded section in first half 

– Double lane change maneuver in second 

– IMU: Crossbow 440 IMU 

– Speed: 30 mph 

4/15/2011GPS and Vehicle 

Dynamics Lab 

33 
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Lateral Position Estimate 

4/15/2011GPS and Vehicle 

Dynamics Lab 

34 

5s – 20s: faded lane markings 

25s – 30s: double lane change 

Estimated Lateral Distance vs. True Lateral Distance 
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Heading Estimate 

GPS and Vehicle Dynamics Lab 35 

5s – 20s: faded lane markings 

25s – 30s: double lane change 

Estimated Heading vs. True Heading 
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Conclusions 

• Two systems are presented for estimating 

lateral distance in the lane 

– Vision only 

– Vision/IMU/Velocity 

• Experimental results were compared with 

truth data to verify the vision/IMU 

algorithms.  Lane model estimation was 

verified through observation. 

GPS and Vehicle Dynamics Lab 36 
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Future Work 

• Future work 

– Real time implementation of vision/IMU system 

– Extension of system to curved roads using 

coefficients to compensate for non-inertial frame 

– Compensation of lateral lane measurement on 

curved roads due to forward movement 

GPS and Vehicle Dynamics Lab 37 



Lane Detection, Calibration, 

and Attitude Determination 

with a Multi-Layer Lidar for 

Vehicle Safety Systems

Jordan Britt :Auburn University

Dr. John Hung :Auburn University

Dr. David Bevly :Auburn University

Dr. Thaddeus Roppel :Auburn University
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Overview : Lane Detection

• Problem Introduction

• Motivation

• Background

• Proposed Method

• Testing

• Results

• Conclusions

• On to attitude determination

22
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Problem Introduction

• Attempt to detect lane markings using a 

3D lidar to prevent unintended lane 

departures

• Should be capable to adapting to changing 

road conditions

3

From www.iteris.comwww.iteris.com

3
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Motivation

• We can save lives.

• In 2008 52% of all highway fatalities 

occurred from unintended lane 

departure 

• Nearly 20,000 deaths

• In 2006 it was 58%, comprising nearly 

25,000 deaths

• In short: more fatalities than any other 

crash type occur due to single vehicle 

road departures
44



Samuel Ginn College of Engineering

Background: Previous Work

• [23] J. Kibbel, W. Justus, and K. Furstenberg. Lane estimation and 

departure warning using multilayer laserscanner. In Proc. IEEE 

Intelligent Transportation Systems, pages 607-611, September 13-

15, 2005.

– Uses Ibeo, Large ROI 10-30m and 12m, and uses histogram for detection.  No truth metric 

provided, but provides detection rates varying from 16-100%, Averaging at 87%.

• [13] K. Dietmayer, N. Kämpchen, K. Fürstenberg, J. Kibbel, W. 

Justus, and R. Schulz. Advanced Microsystems for Automotive 

Applications 2005. VDI-Buch. Springer Berlin Heidelberg, 2005.

– Once again uses a large ROI 0-30m and 12m.  Truth metric was driving straight for short 

periods of time and estimating lane width, accurate to 0.25m

• [24] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai. 

Multi-channel lidar processing for lane detection and estimation. In 

Proc. 12th International IEEE Conference on Intelligent 

Transportation Systems ITSC '09, pages 16, October 47, 2009.

– 6-layer lidar, uses a polar histogram. No truth data, but notes it works best on asphalt, and 

worst on concrete. Rain has an adverse affect on detection

5
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Contributions

• Development of a novel lane extraction 

method, that is based on a MMSE to an 

ideal lane

• Provide truth measurements in the form of 

high accuracy GPS

6
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Background : What is a LiDAR ?

• LiDAR : Light Detection and Ranging

• Similar in concept to sonar or radar, but 

uses light instead of sound or 

electromagnetic waves

7

1D 2D 3D

7
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LiDAR : Reflectivity

• LiDAR provides distance as well as 

reflectivity, known as echo width

• Lines are detected on the premise that 

they are of high reflectivity than the road’s 

surface

8
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Hardware Overview

• Ibeo ALASCA XT

• 3D LiDAR

– 4 layers

• 3.2 vertical field of view

• Capable of . 25

resolution (varies with 

scan angle)

• Data taken at 10Hz

• Multi-echo receivers

9
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Mounting

• Mounted on roof rack 

of vehicle

– Scans 1.7m in front of 

vehicle

– Height of approx 1.5m

– Pitched approximately 
-22

– Resolution of 1.6 

inches at lane 

markings

10
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Calibrating the Lidar

• Calibrate the height 

and pitch of the 

LiDAR. 

• Allows us to 

compensate for 

LiDAR mounting

• Determine resolution 

at lane markings

11
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Detection Overview

• Bound the Search 

Area

• Generate an ideal 

scan to match actual 

lane markings

• Find the MMSE 

between the ideal 

scan and an actual 

scan

• Window the data

• Filter the data

Courtesy: Google Images

12
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Bounding the Search area

• Choose a bound to 

search for lanes 

within

• Chosen so that 

wherever the vehicle 

is in lane, it will see 

the lane markings

• Initially assumes a 

standard lane width of 

12’

13



Samuel Ginn College of Engineering

An Ideal Scan

14
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Non-Ideal Scan

15
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Creating an Ideal Scan

• Spikes represent the 

increase in reflectivity 

of the lane markings

• Flat area represents 

road’s surface

16
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Match the ideal scan to actual data

• Average the 

reflectivity in front of 

the car to generate 

the flat portion of the 

scan

• Increase this average 

by 75% to generate 

lane markings

• Hence the ideal scan 

changes depending 

on the surface

17
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Match the ideal scan to actual data

• Allow size of the ideal scan to change size 

from some minimum lane width to some 

maximum lane width

• Find the MMSE of the ideal scan to the 

real data over the entirety of the search 

space

• Repeat for each layer

18
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Match Ideal scan to data

19



Samuel Ginn College of Engineering

Narrow the Search: Windows

• Window is a 4 bound 

around where lane 

marking was found

• Simply narrows the 

search space

• If no lane marking is 

found for two scans 

resume the origional

search space

• In case of conflict 

choose closest 

window
20
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Filtering the Data

• Weighted average of L and R distances 

are computed

• These distances are then used to compute 

the distance from the center of the lane

• Finally, this distance is filtered using a 

single state Kalman filter to smooth data

21
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Testing

• Driving at NCAT test track, and comparing 

reported LiDAR position to a surveyed 

map of the track.

• Driving on various roads with know lane 

width, and comparing estimated lane width 

to actual lane width as in [23] and [13]

22
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NCAT Testing

• Mean error : 0.1193m

• Var of error: 0.0536m

23
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Lane Width Estimations

1. Highway 

2. Double yellow on L, solid white on R

3. Gravel on road surface

4. Grass closely bordering roadway

24
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Comparison to Literature

• [13] claimed by driving perfectly straight, 

their system was accurate to within 0.25m, 

– The presented algorithm is accurate to 0.12m

• [23] Lane width estimation, maximum 

error was 0.24m with a minimum detection 

rate of 16%

– The presented algorithm maximum error was 

.269m with a minimum detection rate of 76%

25
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Sources of Error

• Grass closely bordering roadway

• Sunlight directly shinning on LiDAR

• Dead bugs

• Rain 

26
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Conclusions

• Lane extraction algorithm does not appear 

to be effected by changes in lighting.

• Accurate to within the width of a lane 

marking

• Capable of extracting both solid and 

dashed lane markings

27



LiDAR Calibration and Attitude 

Determination

28
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Overview

• Problem Introduction

• Motivation

• Background

• Hardware Overview

• Assumptions

• LiDAR Calibration

• Vehicle Attitude Estimation

• Results

• Conclusions
29
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Problem Introduction

• Determine how the LiDAR is mounted in 

relation to the vehicle’s axes.

• Determine vehicle pitch and roll.

30
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Motivation

• It is critical to have sensor measurements 

aligned properly to vehicle, especially for 

LDW, E-Braking, ACC

• Determination of vehicle roll relative to the 

roadway could aid in roll-over estimation 

and prevention.

31
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Background: Previous Work

• [37] Toshihiro Tsumura, Hiroshi Okubo, and Nobuo Komatsu. A 3-d 

position and attitude measurement system using laser scanners and 

corner cubes. IEEE/RSJ International Conference on Intelligent 

Robots and Systems, pages 604-611, 1993.

– Calibrate uses prior surveyed points

• [5] Matthew Antone and Yuli Friedman. Fully automated laser range 

calibration.

• [7] Frank S. Barickman. Lane departure warning system research 

and test development. Transportation Research Center Inc., (07-

0495), 2007.
– Calibrate using known geometric structures 

• [38] Zhenqi Zhu, Qing Tang, Jinsong Li, and Zhongxue Gan. 

Calibration of laser displacement sensor used by industrial robots. 

Optical Engineering, 43(1):12-13, 2004.

– Calibrates using known motion of robitic arm

32
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Background : LiDAR Attitude

• Many calibration and LiDAR attitude 

estimation algorithms rely on:

– Beacons

– Scanning objects with known geometry

– Previously mapped environments

• Often not feasible for quick or in the field 

calibration

33
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Contributions

• Development of a 3D LiDAR calibration 

and attitude determination scheme.

• Capable of calibrating “quickly”

• Capable of determining attitude with sub-

degree accuracy.

34
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Assumptions

• Vehicle is on a planar surface 

– Road, Garage, Hanger, Factory Floor

• Vehicle is capable of performing a pure 

pitch maneuver

• Vehicle is equipped with forward looking 

3D LiDAR that can measure the planar 

surface 

• LiDAR remains fixed on the vehicle once 

calibrated

35
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Assumptions Continued

• Vehicle and lidar 

operating in the NED 

coordinate frame

• All LiDAR 

measurements 

originate at the same 

physical location

• All rotations assume 

right-handed 

convention

36
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Senor Used

• IBEO ALASCA XT

– Automotive Grade LiDAR 

– 4 layers at diverging vertical angles

– Data collected at 10Hz with 0.25 resolution

– All points originate at same location

37

Images courtesy of Ibeo
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Algorithm Overview

• Develop an equation to describe the Euler 

angles relating the LiDAR measurements 

to a vehicle on a level plane.

• LiDAR data will be collected on a static 

vehicle in steady state.

• LiDAR data will then be taken on a 

dynamic vehicle and compared to the 

steady state data to estimate vehicle 

motion and/or calibration parameters

38



Samuel Ginn College of Engineering

Determination of Yaw

• Yaw cannot be 

determined directly

• Must have additional 

dynamic

• Rotation about Z-axis
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Determination of LiDAR Pitch

• Rotation about Y-axis
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Determination of LiDAR Roll

• Rotation about X-axis
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Determination of LiDAR Pitch 

& Roll :: Calibration Phase
• Because all points originate at the same location, we 

have an over determined system. 

– Note: pitch and roll are not a function of yaw.
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Determining LiDAR yaw

• The yaw is the relative yaw between the 

vehicle and LiDAR not global yaw.

• Vehicle must undergo a pure pitch 

dynamic.

– Hence if the LiDAR and vehicle’s axes are 

aligned with the vehicle’s there should be no 

change in roll during this maneuver.

• We compare a pitched scan and static 

scan to determine this relative yaw

43



Samuel Ginn College of Engineering

Determination of Vehicle Pitch 

& Roll

44
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Perform some math
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Determination of Vehicle Pitch 

& Roll

• Note: Function of LiDAR yaw

• Use similar procedure. 

46



Samuel Ginn College of Engineering

Determination of relative yaw

• Note: yaw is now reduced to LiDAR pitch 

and roll measurements.

• Setting the static vehicle roll calculation 

and the pitched vehicle roll calculation 

equal to one another, yields:
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Considerations

• Singularities

– Cannot report meaningful data if pointed 

straight down

• Larger separation the better

– Due to numerical issues and noise, the LiDAR 

measurements should have a large 

separation to guarantee the best results 
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Computing a Solution

• Unscented Transform used for error 

propagation estimation and propagation.

– See thesis for details

• Kalman filter used for determining the final 

result.
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Testing

• Laboratory testing 

– Benign environment with highly controlled 

maneuvers

• Vehicle testing (static)

– Vehicle undergoes induced maneuvers

• Vehicle testing (dynamic)

– Vehicle undergoes driving maneuvers 
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Test Setup: Laboratory

• 5 DOF Jig created

– Simulates LiDAR pitch & roll, vehicle pitch & 

roll, and a yaw between them.

– Hallway floor used to simulate planar surface.

• Relative angle measured using US-
DIGITAL inclinometers (0.1 ) accuracy

• Preformed tests with a calibration scan 

and then a series of (vehicle) pitch and 

(vehicle) roll maneuvers
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Test Results

• Total of ~200 tests preformed

• 50 LiDAR scans are analyzed at each test 

point

• 20 unique calibration points

• Pitch varies between 352.5 and 340.8

• Roll varies between 0.1 and 337.1
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Pitch Errors
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Roll Errors
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Results: Laboratory 

• Results accurate to 
within 0.1 possible

• However after 200 

tests the average 

error was:

– Pitch =1.6 

– Roll = 1.78
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Test Procedure

Calibration:

• 50 Static Scans taken

• Vehicle was then 

driven and the brakes 

applied to induce 

vehicle pitch

• 50 static and one 

pitched scan of the 

brake test compared

Attitude Testing:

• Vehicle Position on 

flat level ground

• Vehicle underwent 

induced pitch and roll 

maneuvers.

– Vehicle change in 
pitch = 1.46 

– Vehicle change in 
roll = 2.75 
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Truth & Comparative system :: 

Septentrio

• 3-antenna GPS 

system

• Provides vehicle 

pitch, roll, and yaw in 

Euler angle form.

• Accurate to ~0.6 for 

our given baseline
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Pitch Comparison to Septentrio

Pitch: Roll:
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Results Vehicle(static)
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Pitch Error

Roll Error

– MSE Pitch = 0.1129

– MSE Roll = 0.7855

– Avg Error Pitch =0.28 

– Avg Error Roll = 0.68 

– Average Processing 

time per scan = 0.26s

– Average Calibration 

time = 66s
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Test Procedure

Calibration:

• 50 Static Scans taken

• Vehicle was then 

driven and the brakes 

applied to induce 

vehicle pitch

• 50 static and one 

pitched scan of the 

brake test compared

Attitude Testing:

• Vehicle put through a 

series of dynamic 

maneuvers to induce 

vehicle pitch and roll

• Data analyzed only 

when in the maneuver
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Dynamic Testing:
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Pitch Comparison to Septentrio

Pitch: Roll:
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Results Vehicle(static)

63

– MSE Pitch = 2.054

– MSE Roll = 0.4617

– Avg Error Pitch =0.78

– Avg Error Roll = 0.31 

– Average Processing 

time per scan = 0.06s

– Average Calibration 

time = 2.26s
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Results – Considerations

• Data was post processed

• No truth method used for determination of 

calibration success

• Error is merely comparative not absolute

– Septentrio only accurate to ~0.6

– No test preformed to determine the accuracy 

of the Septentrio's mounting on the vehicle
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Conclusions

• Capable of determining vehicle pitch and 

roll to within sub-degree accuracy

• For meaningful calibration : vehicle’s axes 

must be aligned with plane

• Highly non-linear problem

• Computationally complex

• Larger change in pitch dynamics the better 

for calibration
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Future Work

• Determine how non uniform plane can be 

to yield accurate results
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Questions or Comments?
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Outline 

• Prior Work/Contributions 

• Motivation 

• Background 

• Lane Map 

• 6DOF Filter Setup and Results 

• Limited GPS Satellite Observabilty and 

Results 



Motivation 

• Research has shown that nearly half of 

traffic fatalities occur due to an unintentional 

lane departure. 

– Lane departure warning (LDW) 

systems may prevent many of these 

accidents. 

– Current LDW systems use only vision 

sensors. 

• GPS based navigation filters are prone to 
failure in urban environments. 

• Goal of this thesis is to present a method of 
combining vision measurements and vehicle 
constraints to maintain observability of a 
GPS based navigation filter when only 2 
GPS satellites are visible. 

• An Extended Kalman Filter is used to 
combine measurements from a GPS 
receiver, LiDAR, camera, and IMU. 

– The navigation coordinate frame used 
is a Cartesian coordinate frame based 
off a waypoint map. 
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Background 

• Typical navigation filter setup 

– Filter is based in a navigation 
coordinate frame 

– IMU measurements are given 
in the body coordinate frame 
and must be rotated into the 
navigation coordinate frame. 

– Update measurements are 
given in the navigation 
coordinate frame. 

• Vision measurements are not 
given in the navigation coordinate 
frame. 



Background 

• If measurements are not 
given in the navigation 
coordinate frame, they 
can be rotated and 
translated to the 
navigation coordinate 
frame. 

• This will not work for a 
lane position 
measurement 



Background 

• First approach was to 
construct a navigation 
filter with a navigation 
coordinate frame 
based on the way-
point map. 

• Ideally, we would like 
to add lane position 
measurements to 
typical types of 
navigation filters. 



Rotation 2D 

• 2D rotations are 
based on one rotation 

• Rotation is about an 
axis that is 
perpendicular to the 
2D coordinate frame 



Rotation 3D 



Rotation and Translation 

• Coordinates from 2 
different coordinate 
frames can be 
mapped into each 
other. 



Track Survey 

• In order to use GPS to measure lane position, an 
accurate map of the lane must constructed. 

• For our project, we surveyed the NCAT test track in 
Opelika, AL. 

Google Earth 



Track Survey 



Track Map 



Track Map 

• RTK GPS used to 
survey the track 

• RTK provides a very 
accurate base line 
between base station 
and rover 

• Survey should be saved 
as base-line vectors 
from a marked location 
in order to prevent 
global biasing 

 



Track Map 

• Along with waypoint positions, 
road attitude is needed 

• Attitude represents rotation 
from the ECEF (navigation) 
coordinate frame to the Road 
(measurement) coordinate 
frame 

• Road coordinate frame 

– X axis points in the from 
last waypoint passed to 
next waypoint 

– Y axis points right when 
facing direction of travel 

– Z axis points down with 
respect to the x-y plane 

 



Track Map 

• Can be thought of as 4 Euler rotations (longitude, 
latitude, road heading, and road pitch) 

– Longitude and Latitude can be determined from 
waypoint positions 

– Road heading and pitch can be determined by 
waypoint geometry. 

• Wish to determine the 3 Euler angles that correspond to 
the 4 known rotations 



6 DOF Filter Setup 

• States: position, velocity, 
attitude, accel/gyro 
biases, clock drift/bias 

• Navigation coordinate 
frame is the global 
(ECEF) coordinate frame 

• GPS measurements are 
given in the global 
coordinate frame 



6 DOF Filter Setup 

• Adding lane map results in the 
ability to use measurements in 
the road coordinate frame 

• Vision is used to measure 
position in one axis 

• Height above the road is 
constant allowing 
measurement of position 
in another axis 



Vision\Height Measurement Update 



Vision\Height Measurement Update 



Test Setup 

• All test was done at the 
Nation Center for Asphalt 
Testing (NCAT) test track in 
Opelika, AL 

• 2 Lanes 

• 1.8 mile oval 

• 8 degrees of bank in 
the turns 

 



Test Setup 

• Results obtained by post 
processing real data. 

• All data was collected at 
the NCAT test track 

• Equipment Used: 

– Septentrio GPS 
receiver 

– Crossbow 440 IMU 

– IBEO ALASCA XT laser 
scanner 

– Logitch QuickCam Pro 
9000 

 



Results 



Results 





Results 



Results 



Results 



Results 

• Availability of differential 
GPS or vision 
measurements will result in 
lane level accuracy. 

• Standalone GPS can 
not achieve lane 
level position without 
the aid of vision 

• Longitudinal position 
remains accurate as long 
as GPS is available. 

• Vision can be used 
to maintain lane 
position with no 
GPS, however, this 
will result in 
longitudinal position 
drift 



Observabilty Analysis 

• 11 States 

• These equation assume a 

steady state attitude 

• G=gravity vector expressed in 

navigation coordinate frame 

• u=IMU input 

• u
1
-u

3
=accelerometer inputs 
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Closely Coupled (4 Observations) 

• rank(OBS)=11 if the unit 

vector to each SV is 

independent 

• Requires at least 4 

observations to be fully 

observable. 
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H Tightly Coupled (2 Observations) 
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H

• No x axis position or x axis 
velocity information is 
provided by the GPS 
observations.  This causes 
a loss of observability. 

Observability Analysis (2 Observations) 

rank(obs)=10 

 

 

Elevation Azimuth 

SV1 60° 90° 

SV2 30° -90° 
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• No y axis position or y axis 
velocity information is 
provided by the GPS 
observations: however, the 
system is still observable 
because the vision 
measurements provide 
information in the y axis. 

Observability Analysis (2 Observations) 

rank(obs)=13 

 

 

Elevation Azimuth 

SV1 45° 0° 

SV2 45° 180° 



NCAT Test Track 









Results 

Elevation Azimuth 

SV5 19° 63° 

SV9 16° 151° 

SV15 80° 100° 

SV18 38° -80° 

SV21 52° -39° 

SV26 44° 47° 

SV27 25° 129° 

SV29 49° 148° 



Results 

• Velocity error directly 
corresponds to number of 
observations available 

• Using vision during satellite 
outages results in better 
overall velocity estimation 

• There is no benefit when 
using only 1 GPS 
observation 

 



SV 21 26 29 SV 15 18 

SV 5 26 SV 26 



Results 

C2N 

SV5 48 

SV9 48 

SV15 54 

SV18 53 

SV21 52 

SV26 48 

SV27 42 

SV29 51 



Conclusions 

• It is possible to use measurements in a coordinate frame 
that is not aligned with the navigation coordinate frame. 

• This technique can be applied to any situation where the 
measurement coordinate frame and navigation coordinate 
frame do not align. 

• Using an accurate map along with vision based lane 
position measurements will improve global accuracy in 2 
dimensions. 

• It is possible to have a fully observable navigation filter only 
using 2 GPS satellites as long as supplemental 
measurements are provided.  Using only 2 GPS satellites 
will result in more estimate error than using a full GPS 
satellite constellation. 

• Effects of satellite geometry will increase as the number of 
GPS observations used decreases. 

 



Future Work 

• Use multiple waypoint maps to create a filter that 
can track lane changes and track the current lane 
the vehicle resides 

• Use DSRC ranging, visual odometry, and road 
signature maps to further improve robustness 

• Develop maps that incorporate road bank 

• Develop maps that are equation based instead of 
way-point based. 

• Use of SLAM or other techniques simultaneous 
positioning and mapping. 
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