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Intelligent Multi-Sensor
Measurements to Enhance Vehicle
Navigation and Safety Systems
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e LIDAR Lane Detection
e Camera Lane Detection
* Sensor Integration
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Motivation for Research 6

AUBUR

* 53% of U.S. highway
fatalities in 2008 due
to unintended lane
departure accidents.

e Potential to save
almost 20,000 lives.

* Goal : prevent lane
departure fatalities by
fusing multiple vehicle
Sensors

*From www.iteris.com

Samuel Ginn College of Engineering



AUBURN

Approach

* The goal of this project is to design a system
that can track lateral lane position on a highway

* 3 types of vehicle sensors to detect lane position
— GPS/Map
— Camera
— (Light Detection and Ranging) LIDAR

* Fused sensors to take advantage of the
strengths of each sensor to provide a more
robust solution

Samuel Ginn College of Engineering 3
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Sensors

* Novatel Propak®-V3

* GPS Receiver

* 2Hz Update Rate

* Provided Raw Measurements
* Crossbow 440 IMU

* IMU

* 50 Hz Update Rate

* 3 Accelerometers / 3 Gyros
* Ibeo ALASCA XT

* 4 layer simultaneous scanning

www.novatel.com www.xbow.com

3.2 ° vertical field of view

* Capable of .25 ° resolution

* Rotation frequency 8-40Hz
* Camera

* Quickcam Pro 9000 webcam
* Low cost, low resolution

Samuel Ginn College of Engineering 4
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Sensor Integration - Track Survey o

* |n order to use GPS to measure lane position,
an accurate map of the lane must constructed.

* For our project, we surveyed the NCAT test
track in Opelika, AL.

Samuel Ginn College of Engineering



Results

AUBURN
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Dissemination of Results

AUBURN
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- Allen, J. and Bevly D. “Use of Vision Sensors and Lane Maps to Aid GPS/INS under a Limited GPS Satellite
Constellation.” In Proceedings of the ION GNSS, 2009.

- John Allen, Jordan Britt, Chris Rose, David Bevly, “Intelligent Multi-Sensor Measurements to Enhance Vehicle
Navigation and Safety Systems, The Institute of Navigation 2009 International Technical Meeting, January 2009.

- Allen, J. and Bevly D. “Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint
Based Maps.” IEEE PLANS, 2010.

- Britt, Jordan H., Bevly, David M., "Lane Tracking using Multilayer Laser Scanner to Enhance Vehicle Navigation and
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- Jordan Britt,, David Bevly “LiDAR Calibration Method for Vehicle Safety Systems”, SAE World Congress Intelligent Vehicle
Initiative (IVI) Technology Advanced Controls and Navigation, April 2010.

- Britt, J.; Broderick, D. J.; Bevly, D. & Hung, J., “Lidar attitude estimation for vehicle safety systems”, Position Location and
Navigation Symposium (PLANS), 2010 IEEE/ION, 2010, 1226 -1231

- Thesis — Jordan Britt, Lane Detection Calibration and Attitude Determination with a Multilayer LiDAR for Vehicle Safety
Systems, 2010

- D.J. Broderick, J. Britt, J. Ryan, D.M. Bevly, J.Y. Hung, “Simple Calibration for Vehicle Pose Estimation Using Gaussian
Processes,” Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, San Diego, CA, January
2011.

- Rose, C. and Bevly, D. “Camera and Inertial Measurement Unit Sensor Fusion for Lane Detection and Tracking using Polynomial
Bounding Curves.” In Proceedings of the ION GNSS, 2009.

- Rose, C. and Bevly, D. “Vehicle Lane Position Estimation with Camera Vision using Bounded Polynomial Interpolated Lines.” In
Proceedings of the ION Technical Meeting, 2009.
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Dissemination of Results AUBBU“R

* Presentations

— Mid-point presentation to FHWA at Turner
—airbanks

— Presentation to Nissan at Auburn AL.
— Presentation to Honda at Auburn AL.

— EAR kickoff Presentation to Automotive
Advisory Board at Auburn, AL.

— Presentation at TRB at Washington D.C.

03/28/11GPS and Vehicle Samuel Ginn College of Engineering



Closing Comments AUBBUf\

* Questions?

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering



)

AUBURN

Camera-based Lane Detection

Christopher Rose
David Bevly
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AUBURN

Motivation

« \We can save lives.

* In 2008 52% of all highway fatalities
occurred from unintended lane
departure

* Nearly 20,000 deaths

* In 2006 it was 58%, comprising nearly
25,000 deaths

* In short: more fatalities than any other
crash type occur due to single vehicle
road departures



Overview — Camera Lane Detection Auaguim

 Introduction

— Background
* Vision System

— Image Processing

— Line Processing

— Linear Kalman Filter

— Calculations

— Vision System Experimental Results

* Vision/INS/Velocity Integration

— State Structure

— Time Update

— Measurement Update

— Vision/IMU/Velocity Experimental Results

« Conclusions
— Future Work

Samuel Ginn College of Engineering 3



Introduction -
* Lane departure warning systems are

already present in commercial vehicles;
however, these systems are limited by the
guality of the images obtained from

cameras. Use of other sensors in addition

to vision can provide the position within

the lane even when lane markings are not

visible.

Samuel Ginn College of Engineering 4



Background
 C.R. Jung

— Linear-parabolic model to create an LDW system using
lateral offset based on near-field and far-field

Y. Feng

— Improved Hough transform for detection of road edge and
establishment of an area of interested based on the
prediction result of a Kalman filter

E.C. Yeh

— Obtained heading and lateral distance from single camera
images

D.A. Schwartz
— Clothoid model for the road is unsuitable for sensor fusion

T.J. Broida
— 3-d motion estimation with a monocular camera

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 5



Contributions

AUBURN

* Specific contributions include:

— Use of vision and inertial data specifically for
lateral position estimation in the lane

— Tracking of the lane in the image using only
Inertial data when the image fails to detect
lines

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 6



Vision System Ag

Vision Algorithm

Line Pools

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 7



Constant Threshold Vx|

AUBURN

 Constant thresholds can provide feature extraction
for unchanging or similar environments

— Thresholds for one scene can fail for changing
environments and lighting conditions

Dark Scene Constant Threshold (T=210)

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 8



Dynamic Threshold
* Dynamic Threshold

— With a dynamic threshold, lane markings are
detected in the image even with different lighting

conditions
— Threshold changes with respect to the statistics
of the image
T=u+Ko

T. new threshold
lI: mean of grayscale values
K: expected noise

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 9



Dynamic Threshold Ux |

AUBURN

« Dynamic threshold — lane markings are
detected In the image even with different
lighting conditions

Night Scene Dynamically Thresholded Image

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 10



Edge Detection

.'A‘.

-’
AUBUR

« Canny edge detection
« Extracts the edges of the thresholded image

Day Scene Edge Map

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering
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Hough Transform B

AUBLUR

* Hough Transform
— Extracts, merges, and ignores lines from images
— Uses the probabilistic Hough transform

Hough Lines

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 12



Line Selection 8

AUBLUR

* Lines are classified as either left or right lane marking
lines using their slope.

« Two further checks are used
— Polynomial boundary checking
— Slope checking

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 13



Polynomial Boundary Checking

AUBURN

Three points on each polynomial bound are calculated:

Right Polynomial Bound Calculation

Ko = Xest T rsin(tan™ (2a%., +D))
Yio = Yo — T COS(taIT (2%, +1))

Left Polynomial Bound Calculation

Xip = Xeqt +F'Sin(tan™ (2ax., +b))
Yib = Yest = Cos(tan‘l (Zaxest + b))

Least squares polynomial interpolation gives the coefficients of
each polynomial bound.

Samuel Ginn College of Engineering 14



Slope Checking

AUBURN

The slope form each line from the Hough transform is
compared with the slope from the last estimated lane
marking. If within a given tolerance and if the line is
within the polynomial bound, the endpoint and the
midpoint of the line is added to the point pool.

Black: Bounding Polynomials

Yellow: Previously Estimated
Lane Marking

Blue: Desired Current Frame
Lines

Red: Undesired Current

Frame Lines

Samuel Ginn College of Engineering 15



Least Squares Polynomial
Interpolation ahldth o
« Each lane is modeled with a polynomial equation:

y =ax*+bx +c

« Least squares polynomial interpolation is used to
generate the coefficients of the model

B=("H"f'y

where .
1 % 1 " V1
1 %2 7% Y2
f= = : y=| : f=Ilc b dal
1 Xn-1 xn—lz Yn-1
1 le X 2 - yn -
n

Samuel Ginn College of Engineering 16



Kalman filter
e Kalman filter

— Reduce erroneous lane marking estimates

— Measurement update corrects coefficients
using the coefficients from the 2"d order
polynomial interpolation

)A(:[aL b ¢ az by CR]

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 17



Lateral Distance Calculation

AUBURN

- Lateral distance Is calculated when a lane
marking is found

<—b +\/4ay + b2 — 4ac>
d.-=n a

—b — +/4ay + b? — 4ac
m=n< J4ay )
2a

a,b,c: coefficient of the estimated polynomial model
y: image row for measurement
n: conversion factor

The conversion factor serves as the conversion from image to world space

W w = width (m) of a typical lane
n=-— p = pixel count of the lane (image space)

p

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 18



Heading Calculation Aﬁ

* Heading Is determined based on
— Vanishing point of measured lane markings
— Vanishing point of the camera

I':)1 Horizon Line (@] P P2

M,

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 19



Heading Calculation sl

] N

horizon €, br
0 Y
=, <0P tan 7) ;
=t p
Y = tan OP,
dr C,
d
OP: distance (pixels) from r fr
center point to vanishing point

OP:2: distance (pixels) from
center point to image edge Image plane

@: visual angle 0
Y. heading angle Il
l

Bird’'s eye view of road

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 20



Performance in Varying Environments ¥

_ Clt AUBURN

N

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 21
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Performance in Varying Environments

Dusk Night Rain Dusk Rain Night
Average Absolute Error (m) 0.2379  0.0307 0.0327 0.0512

RMS Error(m) 0.4214 0.0401 0.094 0.1253
std of Error 0.3526  0.0402 0.0887 0.1149
var of Error 0.1243 0.0016 0.0079 0.0132
% Detection 0.4801 0.9 0.1808 0.1947

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 22



Experimental Results AL

 Test Run
— Hyundai Sonata driven around the right lane
— NCAT test track
— RTK GPS truth data

Truth Lateral Distance vs. Calculated Lateral distance
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Heading Results

0.15~
Two “spike”
regions are
the curves 0.1r
of the track
0.05
!

Heading (rad)

-0.05

-0.1

——True Heading

— Calculated Heading

GPS and Vehicle Dynamics Lab
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Time(ms)

True Heading vs. Calculated Heading

Samuel Ginn College of Engineering
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Vision/INS/Velocity Integration

AUBURN

 Various problems can hinder lane detection
— Environment
— Eroded lane marking lines
— Objects on road

* |Integration of other sensors can provide
lateral distance Iin the road when camera
vision faills

« Extended Kalman filter used for sensor fusion

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 25



Vision/IMU/Velocity Integration

Uz |

ATLTRLIR
Vision System Inertial System
 GPS used for velocity
 Wheel odometry, radar, etc. can also be used
GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 26



Road Frame

AUBURN

s

« Road Frame

— Positive x-axis
pointing down
the road on the

right lane
marking

— Y-axis points

perpendicularly

to the right
— Z-axis points
down and

perpendicular to
the road plane

Samuel Ginn College of Engineering
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States

] N i'iii i’

e State vector

5C\z[py Uy by P bl/J]T

p,: lateral distance
v,: longitudinal velocity
b,: longitudinal acceleration bias

Y: yaw
b, yaw rate bias

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 28



Time Update — Nonlinear equations

Uz |

ALUBLUR

* |nputs:

- : yaw rate

- Ajong- longitudinal acceleration
» States included are

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering

29



Equations of Motion ..ol

] N I E

* Propagation of states through time
— Runge-kutta approximates solution
— Noise is assumed to be zero

Px = Vx Sin(y)

Uy = al.ong — blong
.blong. =0
Y=9—by
bl/) =0

« Time update can use the heading and longitudinal velocity to
estimate the location of the lane markings
* m: pixels shifted in image space
» r: radians per pixel shift

v, SinyY dt 2q
m =
n w

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 30



Time Update
 New coefficients of lane
model for lateral motion

horizon
/ === Prior to shift
b oS = Slope shift
@ / pe shi
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Measurement Update

AUBURN

 Measurement Update

— Correction of states with camera and velocity
(from GPS) measurement

— Correct for drift from IMU

— Measurements
 Lateral distance (camera)
« Heading (camera)
 Longitudinal velocity (GPS)

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 32



Vision/IMU/Velocity Experimental A

Results pLEE

* New test run
— Approximate straight road conditions of a
highway

— Taken at night under low light conditions
— Faded section in first half

— Double lane change maneuver in second
— IMU: Crossbow 440 IMU

— Speed: 30 mph

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 33



Lateral Position Estimate Aﬁ

Estimated Lateral Distance vs. True Lateral Distance

—— Estimated Lateral Distance
— True Lateral Distance

1

=
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T

|
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Time(s)

5s — 20s: faded lane markings
25s — 30s: double lane change

4/15/2011GPS and Vehicle Samuel Ginn College of Engineering 34



Heading Estimate Ag

Estimated Heading vs. True Heading

01r

—— Estimated Heading
——True Heading
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Conclusions

* Two systems are presented for estimating
lateral distance in the lane
— Vision only
— Vision/IMU/Velocity

» Experimental results were compared with

truth data to verify the vision/IMU
algorithms. Lane model estimation was

verified through observation.

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 36



Future Work

AUBURN

* Future work
— Real time implementation of vision/IMU system

— Extension of system to curved roads using
coefficients to compensate for non-inertial frame

— Compensation of lateral lane measurement on
curved roads due to forward movement

GPS and Vehicle Dynamics Lab Samuel Ginn College of Engineering 37
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Lane Detection, Calibration,

and Attitude Determination
X With a Multi-Layer Lidar for
Vehicle Safety Systems

Jordan Britt :Auburn University
Dr. John Hung :Auburn University
Dr. David Bevly :Auburn University

Dr. Thaddeus Roppel :Auburn University
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Overview : Lane Detection

AUBURN

* Problem Introduction

* Motivation

« Background

* Proposed Method

* Testing

* Results

* Conclusions

* On to attitude determination

Samuel Ginn College of Engineering 2



Problem Introduction Ag

« Attempt to detect lane markings using a
3D lidar to prevent unintended lane
departures

» Should be capable to adapting to changing
road conditions

From www.iteris.com

Samuel Ginn College of Engineering 3



Motivation

AUBURN

« \We can save lives.

* In 2008 52% of all highway fatalities
occurred from unintended lane
departure

* Nearly 20,000 deaths

* In 2006 it was 58%, comprising nearly
25,000 deaths

* In short: more fatalities than any other
crash type occur due to single vehicle
road departures

Samuel Ginn College of Engineering 4



Background: Previous Work

AUBURN

[23] J. Kibbel, W. Justus, and K. Furstenberg. Lane estimation and
departure warning using multilayer laserscanner. In Proc. IEEE
Intelligent Transportation Systems, pages 607-611, September 13-
15, 2005.

— Uses Ibeo, Large ROI 10-30m and 12m, and uses histogram for detection. No truth metric
provided, but provides detection rates varying from 16-100%, Averaging at 87%.

[13] K. Dietmayer, N. Kadmpchen, K. Firstenberg, J. Kibbel, W.
Justus, and R. Schulz. Advanced Microsystems for Automotive
Applications 2005. VDI-Buch. Springer Berlin Heidelberg, 2005.

— Once again uses a large ROI 0-30m and 12m. Truth metric was driving straight for short
periods of time and estimating lane width, accurate to 0.25m

[24] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai.
Multi-channel lidar processing for lane detection and estimation. In
Proc. 12th International IEEE Conference on Intelligent
Transportation Systems ITSC '09, pages 16, October 47, 2009.

— 6-layer lidar, uses a polar histogram. No truth data, but notes it works best on asphalt, and
worst on concrete. Rain has an adverse affect on detection

Samuel Ginn College of Engineering 5



Contributions

AUBURN

* Development of a novel lane extraction
method, that is based on a MMSE to an
ideal lane

 Provide truth measurements in the form of
high accuracy GPS

Samuel Ginn College of Engineering 6



Background : What is a LIDAR ? Aﬁ

* LIDAR : Light Detection and Ranging

« Similar in concept to sonar or radar, but
uses light instead of sound or
electromagnetic waves

+ o
%

last value first value

scanning angle 180°

Samuel Ginn College of Engineering 7



LiDAR : Reflectivity '

» LIDAR provides distance as well as
reflectivity, known as echo width

* Lines are detected on the premise that
they are of high reflectivity than the road’s

surface
U(t) echo A echo B echo C

detection threshold

1

1 I
0 A g VB te We
I I ' » d
0 da dp dc

Samuel Ginn College of Engineering 8



Hardware Overview s

* |Ibeo ALASCA XT

« 3D LIDAR

— 4 layers
« 3.2 vertical field of view

« Capable of . 25

resolution (varies with
scan angle)

 Data taken at 10Hz
 Multi-echo receivers

Samuel Ginn College of Engineering 9



Mounting

« Mounted on roof rack
of vehicle

— Scans 1.7m In front of
vehicle

— Height of approx 1.5m

— Pitched approximately
-22

— Resolution of 1.6
Inches at lane
markings

Samuel Ginn College of Engineering 10



Calibrating the Lidar

« Calibrate the height
and pitch of the
LIDAR.

* Allows us to
compensate for
LIDAR mounting

 Determine resolution
at lane markings

hx = prcos(f +ap ). i =0°

Oxy = —Yo, +arctan(( X, cos(X,, —Y,,) - Y, )/ X/ sin( Xy, —

Samuel Ginn College of Engineering

Ya,)) —00° ;= 0°

Uz |
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Detection Overview e...;..of

 Bound the Search
Area

« Generate an ideal
scan to match actual
ane markings

 Find the MMSE
petween the ideal

scan and an actual
SCan Courtesy: Google Images

 Window the data
 Filter the data

Samuel Ginn College of Engineering 12



Bounding the Search area ﬂ

AUBLUR

« Choose a bound to
search for lanes
within

 Chosen so that
wherever the vehicle
IS In lane, it will see
the lane markings

* Initially assumes a
standard lane width of

J - VW
LW — ==
1 2 Angle Bound = arctan ( 2 ) e = 0°
P

Samuel Ginn College of Engineering 13



An ldeal Scan Pl

| 1234 |

Width  **[ ]

] 1 | |
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Non-ldeal Scan

Uz |

AUBLR
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Creating an Ideal Scan

AUBURN

« Spikes represent the
Increase In reflectivity
of the lane markings :

* Flat area represents 5
road’s surface

Echo Width
w

0 5 10 15 20 25 30 35 40
Angle (Deg)

Samuel Ginn College of Engineering 16



Match the ideal scan to actual data

AUBURN

* Average the
reflectivity in front of
the car to generate
the flat portion of the
scan

* Increase this average
oy /5% to generate
ane markings

« Hence the ideal scan
changes depending
on the surface

0 5 10 15 20 25 30 35 40
Angle (Deg)

Samuel Ginn College of Engineering 17



Match the ideal scan to actual data

AUBURN

* Allow size of the ideal scan to change size
from some minimum lane width to some
maximum lane width

 Find the MMSE of the ideal scan to the

real data over the entirety of the search
space

* Repeat for each layer

Samuel Ginn College of Engineering 18



Match Ideal scan to data ﬂ

AUBURN
] T T I I T I I T T
sk i
Echo | i
Width
Al i
Jw ) 50 %0 x 0 n m % a0 100
Echo Width Horiz Angle (Deg)
B Ideal Lane
Il Scan Boundary

a=%r g b=tl+ Winin

Ya=0" {ﬂ-l-wmum}":"mfr min{b¥rrs) B )
lane = min ( \/2 ('HLSH: YLB+k)

Samuel Ginn College of Engineering 19



Narrow the Search: Windows Ag

« Window is a4 bound

around where lane
marking was found

« Simply narrows the
search space

 If no lane marking is
found for two scans
resume the origional
search space

* |n case of conflict
choose closest
window

Samuel Ginn College of Engineering 20



Filtering the Data
» Weighted average of L and R distances
are computed

* These distances are then used to compute
the distance from the center of the lane

 Finally, this distance is filtered using a
single state Kalman filter to smooth data

Samuel Ginn College of Engineering 21



Testing
* Driving at NCAT test track, and comparing
reported LIDAR position to a surveyed

map of the track.

 Driving on various roads with know lane
width, and comparing estimated lane width
to actual lane width as in [23] and [13]

Samuel Ginn College of Engineering 22



NCAT Testing

AUBURN

e Mean error : 0.1193m
e Var of error: 0.0536m

Lane Position

—

o

Position From Center (m)
I

- Lidar
~ —RTK
_3 . ! !
0 50 100 150 200

Time(s)

Samuel Ginn College of Engineering 23



Lane Width Estimations
1. Highway
2. Double yellow on L, solid white on R
3. Gravel on road surface
4. Grass closely bordering roadway
Table 3.3: Results of Scenario Tests
Avg. Lane Width Error (m) | Std of Error (m) | Detection (%)
Scenario 1 0.075 0.233 04.7
Scenario 2 0.042 0.272 81.7
Scenario 3 0.129 0.215 07.4
Scenario 4 0.169 0.329 76.86
Samuel Ginn College of Engineering 24



Comparison to Literature

AUBURN

 [13] claimed by driving perfectly straight,
their system was accurate to within 0.25m,

— The presented algorithm is accurate to 0.12m
» [23] Lane width estimation, maximum

error was 0.24m with a minimum detection
rate of 16%

— The presented algorithm maximum error was
.269m with a minimum detection rate of 76%

Samuel Ginn College of Engineering 25



Sources of Error

» Grass closely bordering roadway
» Sunlight directly shinning on LIDAR
* Dead bugs

 Rain

Samuel Ginn College of Engineering 26



Conclusions

AUBURN

* Lane extraction algorithm does not appear
to be effected by changes in lighting.

 Accurate to within the width of a lane
marking

« Capable of extracting both solid and
dashed lane markings

Samuel Ginn College of Engineering 27



LIDAR Calibration and Attitude
Determination

AUBUR
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Overview

AUBURN

* Problem Introduction

* Motivation

» Background

 Hardware Overview

* Assumptions

* LIDAR Calibration

* Vehicle Attitude Estimation
* Results

» Conclusions

Samuel Ginn College of Engineering 29



Problem Introduction T
 Determine how the LIDAR Is mounted In
relation to the vehicle’s axes.

* Determine vehicle pitch and roll.

Samuel Ginn College of Engineering 30



Motivation

AUBURN

e |tIs critical to have sensor measurements
aligned properly to vehicle, especially for
LDW, E-Braking, ACC

» Determination of vehicle roll relative to the
roadway could aid In roll-over estimation
and prevention.

Samuel Ginn College of Engineering 31



Background: Previous Work

AUBURN

[37] Toshihiro Tsumura, Hiroshi Okubo, and Nobuo Komatsu. A 3-d
position and attitude measurement system using laser scanners and
corner cubes. IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 604-611, 1993.

— Calibrate uses prior surveyed points

[5] Matthew Antone and Yuli Friedman. Fully automated laser range
calibration.

[7] Frank S. Barickman. Lane departure warning system research
and test development. Transportation Research Center Inc., (07-
0495), 2007.

— Calibrate using known geometric structures

[38] Zhenqi Zhu, Qing Tang, Jinsong Li, and Zhongxue Gan.
Calibration of laser displacement sensor used by industrial robots.
Optical Engineering, 43(1):12-13, 2004.

— Calibrates using known motion of robitic arm

Samuel Ginn College of Engineering 32



Background : LIDAR Attitude

AUBURN

* Many calibration and LIDAR attitude
estimation algorithms rely on:

— Beacons
— Scanning objects with known geometry
— Previously mapped environments

» Often not feasible for quick or in the field
calibration
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Contributions

AUBURN

* Development of a 3D LIDAR calibration
and attitude determination scheme.

» Capable of calibrating “quickly’

» Capable of determining attitude with sub-
degree accuracy.
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Assumptions

AUBURN

* Vehicle Is on a planar surface
— Road, Garage, Hanger, Factory Floor

* Vehicle Is capable of performing a pure
pitch maneuver

* Vehicle is equipped with forward looking
3D LIDAR that can measure the planar
surface

 LIDAR remains fixed on the vehicle once
calibrated

Samuel Ginn College of Engineering 35



Assumptions Continued

Uz |

AUBUR

 Vehicle and lidar
operating in the NED
coordinate frame

 All LIDAR
measurements
originate at the same
physical location

 All rotations assume
right-nanded
convention

Samuel Ginn College of Engineering
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Senor Used ot

e IBEO ALASCA XT
— Automotive Grade LIDAR

— 4 layers at diverging vertical angles
— Data collected at 10Hz with 0.25 resolution

— All points originate at same location

Samuel Ginn College of Engineering 37



Algorithm Overview =

* Develop an equation to describe the Euler
angles relating the LIDAR measurements

to a vehicle on a level plane.

 LIDAR data will be collected on a static
vehicle in steady state.

* LIDAR data will then be taken on a
dynamic vehicle and compared to the
steady state data to estimate vehicle
motion and/or calibration parameters

Samuel Ginn College of Engineering 38



Determination of Yaw

* Yaw cannot be
determined directly

 Must have additional
dynamic

e Rotation about Z-axis

Samuel Ginn College of Engineering

x|

ALUBLUR
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Determination of LIDAR Pitch

Uz |

AUDBLUR
* Rotation about Y-axis
z,
I
7
Samuel Ginn College of Engineering 40



Determination of LIDAR Roll

Uz |

AUBUR

 Rotation about X-axis

Samuel Ginn College of Engineering
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Determination of LIDAR Pitch A
& Roll :: Calibration Phase SO OR

« Because all points originate at the same location, we
have an over determined system.

— Note: pitch and roll are not a function of yaw.

NEDIidaroame
i 0 0 cos(8) 0 —sin(@)][cos () sin(y) 0][*n
=10 cos(¢) sin(cﬁ)” 0 1 0 ”—sin@p) cos (1) 0‘ [}h‘
0 —sin(¢) cos(gp)llsin(6) 0 cos(f) 0 0 11 LZn

D, tidar = — sin(8) x,, + sin(¢) cos(8) v, + cos(¢) cos(0) z,

(sin(@) y, + cos(¢) z, — sin(p) y; — CGSEfﬁ’JZl)

0,, = tan?
' X — Xy

913 == tall_l

(sin(¢) y; + cos(@) z; — sin(¢p) y; — Cﬂsw’jzl)

\ X3 — Xy

(z3 —z)(x, —xy) + (2, — 2,) (x5 — xlj)
(V1 =y ) (g —x3) + Oy —v3 ) (x; — x4)

P1213 = tan~! (
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Determining LIDAR yaw

AUBURN

* The yaw Is the relative yaw between the
vehicle and LIDAR not global yaw.

* Vehicle must undergo a pure pitch
dynamic.
— Hence if the LIDAR and vehicle’s axes are

aligned with the vehicle’'s there should be no
change in roll during this maneuver.

* We compare a pitched scan and static
scan to determine this relative yaw
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Determination of Vehicle Pitch A
& Roll ATBUR
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Perform some math

MTTTTIIET,

N.] feos(d) 0 —sin()]'[L O 07
E.l=| 0 1 0 [ﬂ cos({) Sin(ﬂ]
D, sinf1) 0 «cos(d) ] l0 —sin(¢) cos(d)

7!

1 0 0 cos(@) 0 —sin(6)][ cos(y) sin(psi) 0 T,
* ([ﬂ cosl¢g) Siﬂ(@ﬁ] [ 0 1 0 ] [—sin (W) cos(y) {]D [ ’n]
0 —sin(g) cos(g)llsin(8) 0 cos(d) 0 0 1 z
D, = sin(4) (sin(y) (~z,sin(¢) + y, cos(¢))
+ cos(y) (—x, cos(8) — v, sin(¢) sin(#) — z, cos(¢) sin(ﬁ':]:]) Dy = —zg; sin(@) + ¥y, cos(@) + 244 sin(@) — yy4 cos (@)
+ cos(4) [sin[(] (v, sin(¢) sin(8) sin(y) + x, cos(#) sin(yr) Eyy = —zg3 sin(@) + 244 5in(@) + vz cos(p) — vy4 cos(p)
+ y_cos(@) cos(y) + z_ cos(¢) sin(8) sin(y) — z_sin(¢) cos(y))
+ cos({) (v, sin(g) cos() — x,, sin(8) + z,, cos(¢) cos(8)))
A, = —v, sin(@) cos(F) + x, sin(f) — z; * cos(¢) * cos(theta) + z, cos(¢) cos(F)
+ vy, sin(¢) cos(8) — x, sin(F)
B, = yysin(¢) cos(#) — x5 sin(f) + z; cos(¢) = cns[ﬁ] v, sin(¢) cos(#) + x, sin(F)
— z;c0s (¢)cos (6) = —x4, cos(f) + z,, cos(¢) sin(f) — vy, sin(@) sin(8) + v,, sin(¢) sin(f) + x,,cos(F
D, = —z,sin(¢) + y, cos(¢) + z, sin(¢) — ¥, cos (qh] —z, Cgs(gb] sin(8)
E, = —zsin(¢) + z,sin(¢) + v, cos(@) — v, cos(g) H, = z3; cos(¢) sin(#) + v,5 sin(¢) sin(8) + x45 cos(f) — z,4 cos(¢) sin(F)

6) - 6
6, = —x, cos(8) + 2, cos(¢) sin(8) — v, sin(¢) sin(8) + , sin(¢) sin(8) £ L mg) (&)~ x1z cos(é)

— z, cos(¢) sin(#)

A, = —vy, sin(@) cos(B) + x4, sin(f) — z,, = cos(¢) = cos(theta) + z,, cos(¢) cos(F)
+ v, sin(¢) cos(8) — x,, sin(F)

B, = yagsin(¢) cos(f) — x45 sin(f) + 25 cos(@) = cos(F) — vy, sin(¢) cos(f) + x4, sin(F)
— z,,c08 (¢)cos (8)
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Determination of Vehicle Pitch
& Roll AUBURN
* Note: Function of LIDAR yaw
* Use similar procedure.

cos({) A;; + sin(¢) (cos(y) Dy + sin(y) 511))

A1z, = tan™? ( cos(y) G, — sin(yp) D,

cos({) By; + sin(¢) (cos(y) Ey4 + sin(y) Hll))

Ay133 = tan™* ( cos(y) Hy; — sin(y) Ey4

cos() (BoG, — A,H,) + sin(yp) (=B, D, + A,E,) )

— tan™?!
C11221133 (CDS(U’J)E (D,H, — E;G,) + sin(y)? (=G, E, + H,D5,)
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Determination of relative yaw
* Note: yaw Is now reduced to LIDAR pitch
and roll measurements.

» Setting the static vehicle roll calculation
and the pitched vehicle roll calculation
equal to one another, yields:

lﬁ»’ o1 ( {:BEGE _HEHE)ED1H1 o El'{;l] - (8161 _‘q:LHﬂ(Dsz o EEGE] )
E_BIDI Iy ‘qlElj{:DEHE o Ez Gz] - (_Bz Dz + Az EE]ED1H1 o El'{;l]
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Considerations

AUBURN

* Singularities

— Cannot report meaningful data if pointed
straight down

» Larger separation the better

— Due to numerical issues and noise, the LIDAR
measurements should have a large
separation to guarantee the best results
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Computing a Solution

AUBURN

* Unscented Transform used for error
propagation estimation and propagation.

— See thesis for detalls

« Kalman filter used for determining the final
result.
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Testing
* Laboratory testing

— Benign environment with highly controlled
maneuvers

* Vehicle testing (static)
— Vehicle undergoes induced maneuvers

* Vehicle testing (dynamic)
— Vehicle undergoes driving maneuvers

Samuel Ginn College of Engineering 50



Test Setup: Laboratory
* 5 DOF Jig created

— Simulates LIDAR pitch & roll, vehicle pitch &
roll, and a yaw between them.

— Hallway floor used to simulate planar surface.

* Relative angle measured using US-
DIGITAL inclinometers (0.1 ) accuracy

* Preformed tests with a calibration scan
and then a series of (vehicle) pitch and
(vehicle) roll maneuvers
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Test Results

et
» Total of ~200 tests preformed

* 50 LIDAR scans are analyzed at each test
point

» 20 unique calibration points
* Pitch varies between 352.5 and 340.8

 Roll varies between 0.1 and 337.1
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Pitch Errors

Delta Pitch

10 |
- Truth
—Estimated
5 |
(0p)
O
= W
(D)
a
_5a
1% 5 10 15

Test Number
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Roll Errors AR R

Delta Roll
-330 w L
=Truth
—Estimated
n -340
(D)
D
(@))
(D)
0O 350
s 5 10 15

Test Number
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Results: Laboratory =
 Results accurate to
within 0.1 possible

Error Distribution

 However after 200  *° BRoll Error
tests the average BPitch Error
error was: g0
—Pitch =1.6 2
—Roll =1.78 Q

0 2 4 6
Error (Deg)
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Test Procedure

Calibration: Attitude Testing:

* 50 Static Scans taken . \/ahicle Position on

* Vehicle was then flat level ground
driven and the brakes

. : * Vehicle underwent
applied to induce

iInduced pitch and roll

vehicle_ pitch maneuvers.
» 50 static and one — Vehicle change in
pitched scan of the pitch = 1.46

brake test compared _Vehicle change in

roll = 2.75
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Truth & Comparative system ::

Septentrio =

e 3-antenna GPS
system

* Provides vehicle
pitch, roll, and yaw in
Euler angle form.

* Accurate to ~0.6 for
our given baseline
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Pitch Comparison to Septentrio ﬂ

Pitch:

Pitch Data

= Lidar
- Septentrio

N

Pitch (degq)

G

15 20 25

Roll (deg)

AUBUR

Roll:

Roll Data

= Lidar
== Septentrio

Ul
e

15 20 25
Time(s)
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Results Vehicle(static)

AUBURN

— MSE Pitch = 0.1129

. — Error Histogram
MSE Roll = 0.7855 . Ewortisog
co- | Pitch Error
I Roll Error

— Avg Error Pitch =0.28
— Avg Error Roll = 0.68

Instances

— Average Processing
time per scan = 0.26s

— Average Calibration
time = 66s

Error (Deg)
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Test Procedure

Calibration: Attitude Testing:

* 50 Static Scans taken ., \/ahicle put through a

* Venhicle was then series of dynamic
driven and the brakes maneuvers to induce
applied to induce vehicle pitch and roll
vehlcle_ pitch - Data analyzed only

50 static and one when in the maneuver

pitched scan of the
brake test compared

Samuel Ginn College of Engineering 60



Dynamic Testing:

e e B M A e S R e P R

S

T

%v—.-,’w'_ - i

- . .
o, P, P T g | - s - y =
- e s - g 2 [P W P I
il - Lo lmdn a et e i i el i PR ORGP SN B
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Pitch Comparison to Septentrio ﬂ

AUBUR
Pitch: Roll:
Pitch Data . Roll Data
4l | —lidar | =—lidar
=== Septentrio ol = Septentrio |

Pitch(deg)

26 28 30 32
time(s)

time(s)
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Results Vehicle(static)

AUBURN

— MSE Pitch = 2.054
— MSE Roll =0.4617
Error Histogram

— Avg Error Pitch =0.78 150 e

(1(e} rror
— Avg Error Roll = 0.31 2 100, | HHRl Error
— Average Processing

time per scan = 0.06s
’ . E)6 -4 -2 0 2 4

— Average Calibration Error (Deg)

time = 2.26S
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Results — Considerations

AUBURN

- Data was post processed

 No truth method used for determination of
calibration success

* Error is merely comparative not absolute
— Septentrio only accurate to ~0.6

— No test preformed to determine the accuracy
of the Septentrio's mounting on the vehicle
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Conclusions

AUBURN

» Capable of determining vehicle pitch and
roll to within sub-degree accuracy

* For meaningful calibration : vehicle’'s axes
must be aligned with plane

* High
e Com

y non-linear pro

putationally com

» Larger change In pitc
for calibration

nlem
nlex

N dynamics the better
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Future Work

AUBURN

* Determine how non uniform plane can be
to yield accurate results
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Questions or Comments?

AUBURN
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Use of Vision Sensors and Lane
Maps to Aild GPS-INS under a

Limited GPS Satellite
Constellation

John Allen

AUBURN
UNIVERSITY Work Funded by FHWA
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Outline

Prior Work/Contributions
Motivation

Background

Lane Map

6DOF Filter Setup and Results

Limited GPS Satellite Observabilty and
Results

AUBURN



Motivation

Research has shown that nearly half of
traffic fatalities occur due to an unintentional
lane departure.

— Lane departure warning (LDW)
systems may prevent many of these
accidents.

— Current LDW systems use only vision
sensors.

GPS based navigation filters are prone to
failure in urban environments.

Goal of this thesis is to present a method of
combining vision measurements and vehicle
constraints to maintain observability of a
GPS based navigation filter when only 2
GPS satellites are visible.

An Extended Kalman Filter is used to
combine measurements from a GPS
receiver, LIDAR, camera, and IMU.

— The navigation coordinate frame used
Is a Cartesian coordinate frame based
off a waypoint map.

i

AUBURN

UNIVERSITY

SAMUEL GINN
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Background

« Typical navigation filter setup

— Filter is based in a navigation
coordinate frame

— IMU measurements are given
in the body coordinate frame
and must be rotated into the i
navigation coordinate frame. A

— Update measurements are
given in the navigation
coordinate frame.

 Vision measurements are not /
given in the navigation coordinate “ > j
frame.

AUBURN

SAMUEL GINN
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Background

* If measurements are not
given in the navigation
coordinate frame, they
can be rotated and
translated to the i

navigation coordinate A
frame.
* This will not work for a i
lane position
measurement o

AUBURN

SAMUEL GINN
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Background

» First approach was to
construct a navigation
filter with a navigation
coordinate frame

pased on the way-

noint map. RN

- |deally, we would like R TN
to add lane position ° Nk
measurements to T
4

typical types of
naV|gat|On f||ters ECEF Coordinate Frame ‘



Rotation 2D

« 2D rotations are N
based on one rotation 5

 Rotation is about an
axis that Is = |
perpendicular to the
2D coordinate frame

E_.;ff,}-f;._ cos(d) sin(ﬂ}]
(L) |—sin{8) cos(8)

AUBURN



Rotation 3D

i 02 > | -
I' I' jll
A 01
93 jl'l
I 02 | 01
» j v' kll kv" kl"
03 k
jl
— 0 077e; 0 —5;0[eg 55 0 CpCq CpS5q —5,
L i _ _
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Rotation and Translation

 Coordinates from 2
different coordinate
frames can be
mapped into each

other. A
=+ = =
Top = Ca lTap — Tag
Fe = capf 4 ja
ap = CpTpp +Tap o
<~ -
2B _ B oa o< >

E,_,:’ﬂ: — E'E-E}}'E AUBURN



Track Survey

* In order to use GPS to measure lane position, an
accurate map of the lane must constructed.

« For our project, we surveyed the NCAT test track in
Opelika, AL.

| AUBURN

UNIVERSITY

Google Earth

SAMUEL GINN
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Track Surve
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Track Map

Plot of NCAT Test Track in North,East Frame of Reference

[ [ [ [
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Track Map

« RTK GPS used to
survey the track

 RTK provides a very
accurate base line
between base station
and rover

« Survey should be saved
as base-line vectors
from a marked location
In order to prevent
global biasing Golgle

R

AUBURN

UNIVERSITY
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Track Map

« Along with waypoint positions,
road attitude is needed

« Attitude represents rotation
from the ECEF (navigation)
coordinate frame to the Road
(measurement) coordinate
frame

« Road coordinate frame

— X axis points in the from AN =
last waypoint passed to B TN
next waypoint vz

— Y axis points right when A
facing direction of travel |

— Z axis points down with
respect to the X-y plane ECEF Coordinate Frame

SAMUEL GINN
COLLEGE OF ENGINEERING



Track Map

« Can be thought of as 4 Euler rotations (longitude,
latitude, road heading, and road pitch)

— Longitude and Latitude can be determined from
waypoint positions

— Road heading and pitch can be determined by
waypoint geometry.

« Wish to determine the 3 Euler angles that correspond to
the 4 known rotations

*a

_:|.
Ts 1 P d’r,l
Map Database =| : : :

“a —
Torm  Pm Gpm

AUBURN



6 DOF Filter Setup

« States: position, velocity,
attitude, accel/gyro
biases, clock drift/bias

« Navigation coordinate
frame is the global
(ECEF) coordinate frame

« GPS measurements are
given in the global
coordinate frame

— | 2= g = =
I—[T‘Eb Vo @ F b

T
, COt cot]

IMU
Measurements
u
\ X
IMU —>
Mechanization
A
Global Position /
And Velocity » Kalman . IMU
Measurements Filter Corrections
IMU
Measurements
u
\ X
Pseudorange IMU >
and Doppler Mechanization
Measurements 7y
. —»|GPS Ranging # Kalman |—» IMU
SV ephemeris 7 -
Processor Filter Corrections

A

A




6 DOF Filter Setup

Adding lane map results in the

ability to use measurements in — -
. S orange easurements
the road coordinate frame hd Dopelan »
* Vision is used to measure I = X
position INn one axis SV ephemeris| —|CPS Ranging Mechanization
rocessor A
* Height above the road is '
Constant a”OW|ng L Vision t »Visli:n Ranging | K:!;;nan =C IMU
., easurements rocessor nier orrections
measurement of position i 7
In another axis =
Map > Vehlclg
Constraints
A

AUBURN

SAMUEL GINN
COLLEGE OF ENGINEERING



Vision\Height Measurement Update

g = d €,C €5 —5
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Vision\Height Measurement Update
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Test Setup

- All test was done at the
Nation Center for Asphalt
Testing (NCAT) test track in
Opelika, AL

« 2 Lanes
1.8 mile oval

« 8 degrees of bank in
the turns

~Google

AUBURN

UNIVERSITY

SAMUEL GINN
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Test Setup

Results obtained by post
processing real data.

All data was collected at
the NCAT test track

Equipment Used:

— Septentrio GPS
receiver

— Crossbow 440 IMU

— IBEO ALASCA XT laser
scanner

— Logitch QuickCam Pro
9000
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UNIVERSITY
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Results
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Results

Estimated Total Velocity
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Lane Position (m)

Results

Estimated Lane Position
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Results

Availability of differential
GPS or vision
measurements will result in
lane level accuracy.

« Standalone GPS can
not achieve lane
level position without
the aid of vision

Longitudinal position
remains accurate as long
as GPS is available.

* Vision can be used
to maintain lane
position with no
GPS, however, this
will result in
longitudinal position
drift

Error (m)
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Observabilty Analysis

11 States

These equation assume a
steady state attitude

G=gravity vector expressed Iin
navigation coordinate frame

u=IMU input

u,-u,=accelerometer inputs

states
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Closely Coupled (4 Observations)
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H Tightly Coupled (2 Observations)
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Observability Analysis (2 Observations)

. . 0O 5 -866 0 0 0 00010
Elevation Azimuth 0 o o 0 5 860000 1
SV1 60° 90° y_|0 —866 -5 0 0 0 00010
o o 100 0O 0 -86 -5 00001
SV2 S0 30 0 1 0 0 0 0 00000
0O O 1 0 0 0O O0O0OOO
NO X axis position or X axis
velocity information is C
rovided by the GPS e
P : y : OBS=| CA® rank(obs)=10
observations. This causes
a loss of observability. &
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Observability Analysis (2 Observations)

Elevation Azimuth
SVvi1 45° 0°
SV2 45° 180°

No y axis position or y axis

velocity information is
provided by the GPS

observations: however, the
system is still observable

because the vision
measurements provide
information in the y axis.
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NCAT Test Track
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Results

Elevation | Azimuth

SV5 19° 63°

SV9 16° 151°
SV15 80° 100°
Sv18 38° -80°
Sv21 52° -39°
SV26 44° 47°

Sv27 25° 129°
SV29 49° 148°
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Estimated Total Velocity

Results
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Results
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Conclusions

It is possible to use measurements in a coordinate frame
that is not aligned with the navigation coordinate frame.

This technique can be applied to any situation where the
measurement coordinate frame and navigation coordinate
frame do not align.

Using an accurate map along with vision based lane
position measurements will improve global accuracy in 2
dimensions.

It is possible to have a fully observable navigation filter only
using 2 GPS satellites as long as supplemental
measurements are provided. Using only 2 GPS satellites
will result in more estimate error than using a full GPS
satellite constellation.

Effects of satellite geometry will increase as the number of
GPS observations used decreases.
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Future Work

Use multiple waypoint maps to create a filter that
can track lane changes and track the current lane
the vehicle resides

Use DSRC ranging, visual odometry, and road
signature maps to further improve robustness

Develop maps that incorporate road bank

Develop maps that are equation based instead of
way-point based.

Use of SLAM or other techniques simultaneous
positioning and mapping.
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