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Problem Introduction

• Attempt to detect lane markings using a 
3D lidar to prevent unintended lane3D lidar to prevent unintended lane 
departures
Sho ld be capable of adapting to changing• Should be capable of adapting to changing 
road conditions

• This requires a calibrated lidar
• Often requires known excitation, 

surveyed points, or precise structures
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Motivation

• We can save lives.
In 2008 52% of all high a fatalities• In 2008 52% of all highway fatalities 
occurred from unintended lane 
depart redeparture 
• Nearly 20,000 deaths

• In 2006 it was 58%, comprising nearly 
25,000 deaths

• In short: more fatalities than any other 
crash type occur due to single vehicle
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crash type occur due to single vehicle 
road departures
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Background: Previous Work (LDW)
• [23] J. Kibbel, W. Justus, and K. Furstenberg. 

– Uses Ibeo, Large ROI 10-30m and ±12m, and uses 
histogram for detection.  No truth metric provided, but 
provides detection rates varying from 16-100%, 
Averaging at 87%Averaging at 87%.

• [13] K. Dietmayer, N. Kämpchen, K. Fürstenberg, J. Kibbel, W. 
Justus, and R. Schulz. 

O i l ROI 0 30 d 12– Once again uses a large ROI 0-30m and ±12m.  
Truth metric was driving straight for short periods of 
time and estimating lane width, accurate to 0.25mg ,

• [24] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai. 

– 6-layer lidar, uses a polar histogram. No truth data, 
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but notes it works best on asphalt, and worst on 
concrete. Rain has an adverse affect on detection
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Contributions

• Development of a novel lane extraction 
method that is based on a MMSE to anmethod, that is based on a MMSE to an 
ideal lane
Meas re of LiDAR position compared to• Measure of LiDAR position compared to 
RTK GPS and surveyed lane markings
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Background: Previous Work (Att)
• [37] Toshihiro Tsumura, Hiroshi Okubo, and Nobuo Komatsu. 

– Calibrate uses prior surveyed points
• [5]  Matthew Antone and Yuli Friedman. 
• [7] Frank S. Barickman. 

C lib t i k t i t t– Calibrate using known geometric structures 
• [38] Zhenqi Zhu, Qing Tang, Jinsong Li, and Zhongxue Gan. 

Calibrates using known motion of robotic arm– Calibrates using known motion of robotic arm
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Contributions

• Development of a 3D LiDAR calibration 
and attitude determination schemeand attitude determination scheme.

• Capable of calibrating “quickly”
• Capable of determining attitude with sub-

degree accuracy.
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Background : What is a LiDAR ?

• LiDAR : Light Detection and Ranging
Similar in concept to sonar or radar b t• Similar in concept to sonar or radar, but 
uses light instead of sound or 
electromagnetic a eselectromagnetic waves

1D 2D 3D
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LiDAR : Reflectivity

• LiDAR provides distance as well as 
reflectivity known as echo widthreflectivity, known as echo width

• Lines are detected on the premise that 
the are of high reflecti it than the road’sthey are of high reflectivity than the road’s 
surface
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Hardware Overview

• 3D LiDAR
– 4 layers4 layers
– 3.2° vertical field of 

view

• Mounted on roof rack 
of vehicle
– Resolution of 1.6 

inches at lane 
markingsmarkings

• Operates at 10Hz 
with 0.25° resolution
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with 0.25 resolution
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Calibrating the Lidar

• Calibrate the height, 
yaw, pitch, and roll ofyaw, pitch, and roll of 
the LiDAR. 

• Allows us to 
compensate for 
LiDAR mounting

• Determine resolution 
at lane markings
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Assumptions of Calibration

• Vehicle is on a planar surface 
Road Garage Hanger Factory Floor– Road, Garage, Hanger, Factory Floor

• Vehicle is capable of performing a pure 
it hpitch maneuver

• Vehicle is equipped with forward looking 
3D LiDAR that can measure the planar 
surface 

• LiDAR remains fixed on the vehicle once 
calibrated
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Assumptions Continued

• All LiDAR 
measurementsmeasurements 
originate at the same 
physical location

• Operating in the NED p g
frame

• Standard SAE YPR 
rotation order
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Algorithm Overview

• Develop an equation to describe the Euler 
angles relating the LiDAR measurementsangles relating the LiDAR measurements 
to a vehicle on a level plane.
LiDAR data ill be collected on a static• LiDAR data will be collected on a static 
vehicle in steady state.

• LiDAR data will then be taken on a 
dynamic vehicle and compared to the 
steady state data to estimate vehicle 
motion and/or calibration parameters
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Determination of Yaw

• Rotation about Z-axis
• Yaw cannot be• Yaw cannot be 

determined directly
• Must have additional• Must have additional 

dynamic
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Determination of LiDAR Pitch

• Rotation about Y-axis
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Determination of LiDAR Roll

• Rotation about X-axis
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Determination of LiDAR Pitch 
& Roll :: Calibration Phase

• Because all points originate at the same location, we 
have an over determined system. 
– Note: pitch and roll are not a function of yaw.

Samuel Ginn College of Engineering 19



Determining LiDAR yaw

• The yaw is the relative yaw between the 
vehicle and LiDAR not global yawvehicle and LiDAR not global yaw.

• Vehicle must undergo a pure pitch 
d namicdynamic.
– Hence if the LiDAR and vehicle’s axes are 

aligned ith the ehicle’s there sho ld be noaligned with the vehicle’s there should be no 
change in roll during this maneuver.

We compare a pitched scan and static• We compare a pitched scan and static 
scan to determine this relative yaw
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Determination of Vehicle Pitch 
& Roll

Vehicle Pitch Vehicle Roll
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Perform some math
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Determination of Vehicle Pitch 
& Roll

• Note: Function of LiDAR yaw
U i il d• Use similar procedure. 
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Determination of relative yaw

• Note: yaw is now reduced to LiDAR pitch 
and roll measurementsand roll measurements.

• Setting the static vehicle roll calculation 
and the pitched ehicle roll calc lationand the pitched vehicle roll calculation 
equal to one another, yields:
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Considerations

• Singularities
Cannot report meaningful data if pointed– Cannot report meaningful data if pointed 
straight down

• Larger separation the better• Larger separation the better
– Due to numerical issues and noise, the LiDAR 

measurements should have a largemeasurements should have a large 
separation to guarantee the best results 
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Computing a Solution

• Unscented Transform used for error 
propagation estimation and propagationpropagation estimation and propagation.
– See thesis for details

K l filt d f d t i i th fi l• Kalman filter used for determining the final 
result.
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Test Procedure: Static

Calibration:
(same for static and

Attitude Testing:
(same for static and 

dynamic)
• 50 Static Scans taken

• Vehicle Position on 
flat level ground50 Static Scans taken

• Vehicle was then 
driven and the brakes

flat level ground
• Vehicle underwent 

induced pitch and rolldriven and the brakes 
applied to induce 
vehicle pitch

induced pitch and roll 
maneuvers.
– Vehicle change in

• 50 static and one 
pitched scan of the 

– Vehicle change in 
pitch = 1.46 °

– Vehicle change in
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brake test compared
Vehicle change in 
roll = 2.75 °
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Truth & Comparative system :: 
Septentriop

• 3-antenna GPS 
systemsystem

• Provides vehicle 
pitch, roll, and yaw in p , , y
Euler angle form.

• Accurate to ~0.6 ° for 
our given baseline
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Comparison to Septentrio: Static

Pitch: Roll:
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Results Vehicle: Static
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Test Procedure: Dynamic

Attitude Testing:

• Vehicle put through a 
i f d iseries of dynamic 

maneuvers to induce 
vehicle pitch and rollvehicle pitch and roll

• Data analyzed only 
when in the maneuverwhen in the maneuver 
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Comparison to Septentrio: Dynamic

Pitch: Roll:

Samuel Ginn College of Engineering 32



Results Vehicle: Dynamic

– MSE Pitch = 2.054°
– MSE Roll = 0.4617°

– Avg Error Pitch =0.78°
– Avg Error Roll = 0.31°

– Average Processing 
time per scan = 0 06stime per scan  0.06s

– Average Calibration 
time = 2.26s
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Results – Considerations

• Data was post processed
No tr th method sed for determination of• No truth method used for determination of 
calibration success

• Error is merely comparative not absolute
– Septentrio only accurate to ~0.6°
– No test performed to determine the accuracy 

of the Septentrio's mounting on the vehicle
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Detection Overview

• Bound the Search 
AreaArea

• Generate an ideal 
scan to match actual 
lane markings

• Find the MMSE 
between the ideal 
scan and an actual 
scan

• Window the data
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• Filter the data
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LiDAR Data Overview

• Ideal scan has distinct 
peaks, and consistentpeaks, and consistent 
road surface 

• Data to side of road 
noisy, but resembles 
lane markings
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Creating an Ideal Scan 

• Spikes represent the 
increase in reflectivityincrease in reflectivity 
of the lane markings

• Flat area represents p
road’s surface

• Window found lanes
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NCAT Testing

• Mean error : 0.1252m
V f 0 0362• Var of error: 0.0362m

Avg. Lane Width 
Error (m)

Std of Error (m) Detection (%)
Error (m)

Highway 0.075 0.233 94.7
Yellow & White 0.042 0.272 81.7
G l S f 0 129 0 215 97 4
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Gravel on Surface 0.129 0.215 97.4
Grass Bordering 0.169 0.329 76.86



Conclusions - LDW

• Lane extraction algorithm does not appear 
to be effected by changes in lightingto be effected by changes in lighting.

• Error prone to grass and rain.
• Accurate to within the width of a lane 

marking
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Conclusions - Calibration

• Capable of determining vehicle pitch and 
roll to within sub-degree accuracyroll to within sub-degree accuracy

• For meaningful calibration : vehicle’s axes 
m st be aligned ith planemust be aligned with plane

• Highly non-linear problem
• Computationally complex
• Larger change in pitch dynamics the betterLarger change in pitch dynamics the better 

for calibration
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Future Work

• Determine how non uniform plane can be 
to yield accurate resultsto yield accurate results
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Questions or Comments?

Image from: http://richardwiseman.files.wordpress.com/2009/05/question-mark3a.jpg
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