Thursday, 1/14/21

Simulating Dynamic Systems in MATLAB Simulink

Example: given AX + Bx + Cx = f(t) (1) modelling a second order linear

dynamic system

Realize that x = [ % dt, which can be represented pictorially as:

x(t) =

fdt > x(t)

Rearrange (1) so that: ¥ = %f(t) — ga'c — %x (2)

This form is very easy to implement in a simulation diagram using integrators

Begin with a chain or integrators representing all states:

#(t) —> fdt

x(t)

f dt — x()

Then add a summing junction and feedback terms:
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This can be built in MATLAB Simulink where the 1/s block is used for the integral

block

Example: 2X¥ + 0.25x + 8x = u(t — 1)
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Simulink model of the simulation diagram
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Setting Initial Conditions:

Click on the integrator block and select the initial condition for the signal output by

that integrator:
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Block Parameters: Integrator]
Integrator

Continuous-time integration of the input signal.
Parameters

External reset:  none

Initial condition source: | internal

Initial condition:

E

[ Limit output

[ wrap state

[] show saturation port
[ show state port

Absolute tolerance:

|auto

[ 1gnore limit and reset when linearizing
Enable zero-crossing detection

State Name: (e.g., 'position’)

J Cancel Help

Apply
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Bringing Simulink Data into the MATLAB Workspace
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“To Workspace” blocks added to get data into Matlab Workspace

Setting the parameters for each “To Workspace” block:

" Sink Block Parameters: To Workspace *
To Workspace
Write input to specified timeseries, array, or structure in a workspace. For menu-based
simulation, data is written in the MATLAB base workspace. Data is not available until the
simulation is stopped or paused.
To log a bus signal, use "Timeseries" save format.
Parameters
Variable name:
[x |
Limit data points to last:
|inf |
Decimation:
1 |
Save format: |Array -
Save 2-D signals as: | 3-D array (concatenate along third dimension) -
Log fixed-point data as a fi object
Sample time (-1 for inherited):
|.o1
J Cancel Help Apply
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Then after running the simulation, you can process the Simulink data in the
workspace or via an m-file.

Example: plot(x,xd)
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This is a plot of x-dot vs. x. It is called a phase plot and is very useful in analyzing

dynamical systems.

Hand out Homework 1:
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Review of Second Order Dynamic Systems
Consider systems of the form: AX + Bx + Cx = f(t)
Example: mechanical spring-mass-damper system: mX + cx + kx = f(t)

Often convenient to analyze using Laplace Transforms: ms?X(s) + ¢sX(s) +
kX(s) = F(s)

hen X F(s) /m F(s) /im F(s) /m "
Then X(s) = = = where:
(s) 52+s%+% S2+52¢wo+w3 sz+s%+w(2,’

o 1s the natural frequency
Q 1s the quality factor
C is the damping ratio

F(s) /
finally, x(t) = L1 [—2¢
SZ+SE+E
=0 or Q — oo : undamped system
0<{<1orQ— o>Q>"%:underdamped system
{=1or Q="%: critically damped system
£>1or Q<" : overdamped system

{=Q=0.707 : maximally flat response (no resonant peak in the frequency
domain)

Example. Consider this system with w, = 1 rad/s:

Simulink model shown on next page with a step response:
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Output y(t) for Q = 1, underdamped. Observe the “ringing” at the resonant
frequency.
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y(t) for Q = 1, but response run for 25s to observe decaying ringing.

y(t) for Q = 0.5, critically damped response.
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y(t) for Q = 0.707, maximally flat response. Observe a slight overshoot with a
reasonably fast response time.
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State Variable Modelling

Y(s) _
F(s) ms2+cs+k

) . 1 k )
Obviously: ji(t) = - f(£) = -¥(8) = 2.3(D) (1)
Define the state variables:

Let x, () = y(t) and x,(¢) = y(t)
Then:

%1 () = x2(t) and X, (t) = J(¢)

Therefore (1) becomes: X, (t) = % f) — %xl (t) — %xz ()

Example: G(s) = , a second order system

Now the dynamical system can be represented in matrix form:

x1(t)] [xl(t)
xz(t) —— ——|lx2(t)
x1(t)
x5 (1)

This is a very useful way for representing dynamical systems, and it is very
applicable to numerical processing techniques. The general matrix form is:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

f®

y© =1 0] [

This is also applicable to higher order systems, systems described by multiple
differential equations, and even nonlinear systems.

The state-space representation is a mathematic model of a physical system
consisting of the input u(t), output y(t) and state variables X(t) related by first order
differential equations. The term “state space” refers to a dimensional space where
the axes are the state variables. Therefore, the state of the modelled physical
system can be represented as a vector within that space.
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