IEICE TRANS. INF. & SYST., VOL.E84-D, NO.6 JUNE 2001

685

[PAPER

]

Scheduling Task In-Trees on Distributed Memory Systems

SUMMARY Tree task structures occur frequently in many
applications where parallelization may be desirable. We present
a formal treatment of non-preemptively scheduling task trees on
distributed memory multiprocessors and show that the funda-
mental problems of scheduling (i) a task tree in absence of any
inter-task communication on a fixed number of processors and
(ii) a task tree with inter-task communication on an unbounded
number of processors are NP-complete. For task trees that satisfy
certain constraints, we present an optimal scheduling algorithm.
The algorithm is shown optimal over a wider set of task trees
than previous works.

key words: scheduling, NP-completeness, task-tree, makespan,
multiprocessors, interprocessor communication

1. Introduction

Tree task structures occur frequently in many appli-
cations where parallelization may be desirable to im-
prove the execution time. Turner [12] argued that a tree
structure is appropriate for large modular programs.
The problem of scheduling any directed a-cyclic task
graph on a fixed number of processors, to minimize
the finish time (makespan) in absence of any inter-task
communication was shown to be NP-complete by Ull-
man [13] and the problem of scheduling any directed
a-cyclic task graph, on an unbounded number of pro-
cessors, where the tasks communicate, was shown to
be NP-complete by Papadimitriou and Yannakakis [10].
One may therefore speculate whether optimal algo-
rithms exist for the corresponding problems involving
trees. In this paper we put this speculation to rest
by providing proofs of NP-completeness for these prob-
lems. We also provide an optimal scheduling algo-
rithm for task trees on multiprocessors systems under
restricted conditions.

Other related NP-completeness proofs concern
minimizing the flow time Y, F; = >~ (f; — ;) of jobs i
in absence of any interprocessor communication times,
where f; and r; are the finish and ready times of i.
Lenstra, Rinnooy Kan and Brucker [9] have shown the
problem of non-preemptively scheduling n unit jobs
with arbitrary precedence relationships on m processors
to minimize flow time to be NP-complete. Sethi[11]
has shown the above problem to be NP-complete when
the precedence relationships form either an in-tree* or

Manuscript received May 11, 2000.
TThe author is with the Department of Computer Sci-

ence and Engineering, Auburn University, Auburn, AL
36849, USA.

Sanjeev BASKIYAR', Nonmember

an out-tree. Other results appear in [6] in the section
on multiprocessor scheduling. Also, almost exhaustive
surveys of parallel machine scheduling research appear
in [5] and [8]. Chretienne [4] has attempted to show the
problem of scheduling task in-trees to be NP-hard when
task duplication on distinct processors is allowed. We
disallow task duplication in the problems of this paper.
Furthermore, the NP-completeness proof in [4] requires
a transformation from an in-tree problem to an out-tree
problem. But such a transformation is not applicable
in a distributed memory multiprocessor environment.
In a task in-tree several tasks output their data to a
single successor whenever their processing is complete,
if necessary simultaneously. In a task out-tree a parent
after completing execution incurs additional time in at
least marking which data must be sent to which child**.

Optimal schedules for restricted task trees appear
in [1]. In [3],[14] there appears a polynomial time op-
timal solution for coarse grain task in-trees—a coarse
grain tree is defined as one in which the minimum of the
execution times of any task in the tree is greater than

‘the maximum of the communication times between any

two tasks. The algorithm in [14] is also shown optimal
for those single spawn fine grain trees** in which all
tasks and all edges have identical weights. In [2] there
is a quadratic time optimal schedule for single level
fork/join trees on unbounded number of processors. In
this paper we present an optimal scheduling algorithm
for task in-trees which satisfy a condition called C* (ex-
plained later in this paper). We show that the schedul-
ing algorithm presented in this paper is optimal for a
wider set of task trees, not restricted to coarse grain
task in-trees, single spawn trees or single level trees.
The organization of this paper is as follows. In
Sect. 2 we define the tree scheduling problem and in-
troduce appropriate notation, in Sect.3 we prove the

*An in-tree is a tree that has a unique node called the
root node which is the successor of all nodes.

**This time is related to theoretical considerations. Use
of multiported memory does not circumvent the problem
since marking is still needed to recognize which data item is
to be routed to which port. Also, broadcasting all data to
all children does not circumvent the problem, in fact, it may
change the problem by requiring extra data communication
on each edge.

***A single spawn out-tree is a tree in which at most one
successor of a non-leaf node can spawn successors; a single
merge in-tree is an inverse of a single spawn out-tree.

686

intractability of scheduling task trees on multiproces-
sor systems, in Sect. 4 we present an optimal scheduling
algorithm for task trees under restricted conditions and
in Sect. 5 we summarize our effort.

2. The Scheduling Problem

We consider a directed in-tree task graph consisting of
nodes representing tasks and edges representing execu-
tion precedences between tasks. A directed edge (¢,)
in the task in-tree from node 4 to node 7 mandates the
execution of node j to begin after the completion of
execution of node 7. Node 7 is then said to be a prede-
cessor of node j. A directed edge from ¢ to j may also
imply a transfer of an amount d;; of data from 7 to j.

The target system is a set of identical processors
which are completely connected. With each processor
is associated an I/O processor that handles the inter-
processor communication for that processor such that
the execution of the main processor is unaffected by
data communication activities. The processor execut-
ing node 7 is represented by F;.

We are given time mappings for all nodes and
edges: i — e; and (4,j) — c¢;i;, where e; represents
the execution time of i and ¢i; represents the time to
communicate the output of ¢ to j; if ¢ and j are mapped
to distinct processors (i.e. P; # P;), ¢;; is non-zero oth-
erwise (P; = P;), ¢;; = 0. The execution of a task
in-tree is complete when the execution of the root node
finishes. A schedule defines the assignment of tasks to
processors, the start times of tasks and identifies the
sending and receiving processors to effect data trans-
fers between two tasks. We are to develop a schedule
that minimizes the finish time of the task in-tree on the
target system.

In addition to those mentioned above, we will use
the following notation throughout the paper to facili-
tate our analysis. Let

o T = (V, F) represent a task in-tree, V is the set of
vertices and E is the set of edges.

o 'R represent the set of real numbers and Z repre-
sent the set of non-zero positive integers.

e 7; represent the ready time of a node i; 1 becomes
ready for execution as soon as the outputs of the
execution of its children are available to it. For leaf
nodes r; = 0.

o | represent the number of leaf nodes in a tree.

e s, represents the time at which the execution of
node i begins; s; > 7.

o f; represent the finish time of 4, f; = 5; + e;.

e i : P, represent “Assign node i to execute on pro-
cessor Fy.”

e i — P, represent “Schedule node i to output its
data to F,.”

e i < j: P, represent “Assign nodes ¢ and j to ex-

q
ecute on processor P,, such that ¢ executes before

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.6 JUNE 2001

Fig.1

A task in-tree.

j'”

(ri);:p, represent the ready time of node ¢ when
node 7 is assigned to processor Pj.

i,7) denote that nodes 7 and j are siblings.

{

e (i,j,k) represent a parent node k with children
{
(.

J
i,7).
i, j) represent a directed edge from node 7 to node
i
o Let M = {1,2,...,m} represent the set of m

completely connected processors; we note that
vieT P, eMe zZt.
e max(a,b) = a if a > b otherwise b.

3. Complexity

In this section we present three important schedul-
ing problems and provide NP-completeness proofs for
them.
Problem (Q1): Is there a non-preemptive schedule
for an in-tree, with integral node execution times and
no data communication between any two nodes, using
at most m processors, where 1 < m < [such that the
finish time ¢t < K, where K € 277

We shall show that (Q1) is NP-complete.
Proof: The proof follows a reduction from the Bin
Packing Problem which is NP-complete. Consider the
task in-tree of Fig. 1. The Bin Packing Problem [6] can
be stated as follows. Given a finite set U of items each
with integral weights, is there a partition of U into dis-
joint sets U1, Us, ..., Uy, such that the sum of weights
of the items in each U; is K or less? Considering each
item of the set U to be a leaf task, and their weights to
be node execution times and m the number of proces-
sors, the Bin Packing Problem reduces to Q1. O
Problem (Q2): Is there a non-preemptive schedule
for a task in-tree, with integral task execution times
and arbitrary data communication along edges, using
at most m processors, where 1 < m < [, | being the
number of leaf nodes in the in-tree such that the finish
time ¢ < K where K € ZT7

We shall prove that (Q2) is NP-complete.
Proof: The proof follows a trivial reduction from
(Q1). If in (Q2) the communication times along all
the edges are set to zero, it becomes (@1) which is NP-
complete. O
Problem (Q38): Is there a non-preemptive schedule
for an in-tree, with integral node execution and data

BASKIYAR: SCHEDULING TASK IN-TREES

communication times, on an unbounded number of pro-
cessors with finish time ¢ < K, where K € Z17

We shall prove that (@3) is NP-complete.

Proof: The proof follows a reduction from (Q2). Any
optimal schedule, with arbitrary number of processors
at hand, must not only examine schedules employing
m > | processors but also those employing m < [pro-
cessors, since the latter may yield shorter finish times
as shown below.

Let b, e, f, g, h-and ¢ be integers representing arbi-
trary leaf tasks in Fig. 1. Let r}c = max(ri+e;+cip, rot
eg+Cop, Tg—1t €1+ Co-1 g, Tg+EG Tgr1+Eg11+
Cg41 k' "+ Tn + €n + Cni) be the ready time of task k
when [processors must be employed—tasks ¢ and k&
when assigned on the same processor give optimal rfc.
Let 7"56_1 =max(ry +e1 + g, 72 + €2 + Copy -, Th—1 +
€b—1+ Cb—1 k70 + €y b1 + €41 + Co1 Ky, Tpo1
€f1+Cf 1 k,Tytep,Trp1terr1+Cri1 gy oy Tntent
¢nk) be the ready time of task k when [— 1 processors
must be employed—tasks b, f and k are assigned on the
same processor. Let set S; = {1,2,...,n} — {b, f, k}
and 7, + e, + cpp, = maxy, s ({r; +€; + cju}) where
p € S1. From the above expressions, we deduce that
rimt <k if v+ e+ cpp < max(ry + ey, 7p 4+ e, 7y +
g + Cgr) < max(ry +ep + Cop, 75 + €5 + Cpp, Ty +€g) OT,
max(ry + ep + Cpk, Tg + €9 + Cgr) < max(ry + ey, 75+ €5)
which is feasible T. Therefore, a schedule employing [—1

" processors may yield a shorter finish time than one em-
ploying ! processors or more (any schedule employing
m > | processors can be replaced by one employing
m = | processors with equal or shorter finish time).
Next, let set So = {1,2,...,n}—{e, h,4,k} and ry+e,+
Cqk = maxy, ., ({rj+ej+cji}) where g € Sy. Again, let

JjE€Se
-2
r, - =max(ri+ei+cig, Tateg o,y Teml T Coy +
Cee1 ksTe T €esTett + €etl + Cetl by " "y Th—1 T €Ep_1+
Ch—1 ksTh + €p,The1 + €ny1 + Chpt kyr o0, Ti1 + €1 +

Cim1 ki TiF €4 Tl T €41+ Cip1 ky -y T+ €n +Cpi) be
the ready time of task & when [— 2 processors must be
employed—tasks e, h, i and k are assigned on the same
processor. Again, from the above expressions, we ob-
serve that 752 < 7% if max(ry+eq -+ Cqn, rg+eg+egr) <
max(re+ee, 7n+ep, T +¢;) which is feasible, and there-
fore a schedule employing | — 2 processors may give
a shorter finish time than one employing ! processors.
(The feasibility has also been illustrated in Sect. 3.1 by
a concrete non-trivial example.) Now, since b, e, f,
g, h and ¢ are arbitrary leaf tasks, the above result is
extensible to schedules employing [—-3,1—4, -- -, 1 pro-
cessor(s). By restriction the result applies to arbitrary
task in-trees.

Therefore, an algorithm for Q2 must find an op-
timal schedule employing m < ! processors as well as
an optimal schedule employing m > [processors. Thus
a solution to any instance of Q2 is available iff a so-
lution to any instance of @3 is available. But Q2 is
NP-complete, therefore (8 is NP-complete. O

687

Node weight

\(3

155 130

(10) (N

Edge weight

10 48 10 29%

O 6 0 ©

(10) @ (30) (40)

Fig.2 Example task in-tree.

Furthermore, we observe that the problems in [13]
and [10] mentioned earlier, are reducible to problems

(Q1) and (Q3) because:

1. An instance of the problem of scheduling a directed
a~cyclic task graph without inter-task communica-
tions on a fixed number of processors that is ob-
tained by removing appropriate edges in the graph
to form a tree is identical to problem (Q1).

2. An instance of the problem of scheduling a directed
a-cyclic graph with inter-task communications on
an unbounded number of processors that is ob-
tained by removing appropriate edges of the graph
to form a tree is identical to problem (Q3).

3.1 Example

In this section we develop schedules for a non-trivial ex-
ample task in-tree (of depth 3) shown in Fig. 2. First we
develop an optimal schedule, called Schedule A, which
is constrained to use m > [processors. Next, we de-
velop another schedule, called Schedule A/, which can
only use 1 < m < [processors. Let the finish times
using Schedules A and A" be denoted by ¢ and ¢ re-
spectively.

3.1.1 Schedule A

This schedule must have at least [processors simulta-
neously active at some time during the course of ex-
ecution. The properties of a tree guarantee that at
any point during the execution of the task in-tree at
most [tasks can be ready for execution. Therefore,
any schedule that employs more than [processors can
be replaced by one that employs [or fewer processors,
yielding the same or lower finish time. Therefore, we
develop Schedule A using | processors.

tThe inequality r]l;l < rk is also satisfied if max(r, +
€6, Tf + €5, 7g +€g+ Cgrp) < Tp + €y + cpr < max(ry + ey +
Cok,Tf§ + €5 + Cr,Tq + €g). Also, assignments to [— 1 pro-
cessors, lother than the above may be feasible, which give
Tk: < Tk

688

We assign 1: Py, 2: Po, 3: Ps, 4: P,. Next, we
separately examine the schedules in which nodes 5 and
6 execute on the same and different processors.

Case 1: P; # Ps. The finish time will be minimal if we
schedule a parent node to execute on a processor that
executes one of its children because doing so overlaps
the computation with communication along one edge.
Since ro +e9 4+ o5 > 11 + €1 +c15, b Po,1 — P
Then r5 = max(ry + ey + c15,72 + eg) = max(0 + 10 +
10,0+ 2) = 20. Since 74 + €4 + 46 > 73 + €3 + c36, 6:
P4,3 — P4. Then Tg = max(m -+ e4,73 + ez + C36) =
max(0 + 40,0 + 30 + 10) = 40. Since r5 + e5 + ¢57 >
T + eg + cor, 71 Po,6 — P». Then 7y = max(ry +
es5,T6 + €6 + cg7) = max(20 + 10,40 + 7+ 130) = 177.
Also, fr =r7+ey =177+ 3 = 180.

Case 2: P; = P;. In an optimal schedule the processor
that will execute both nodes 5 and 6 should be one

of P,...,Py. The following analysis chooses such a
processor.

Since ro+ea+cos >r1+e1+cis, (15)5:p, <(75)s:p- (1)
Also, choice of 5: Py; 5: Ps does not alter rg. (ii)
Next, since r4 + €4 + ca6 > 73 + €3 + 36, (T6)e:p, <
(TG)G:Ps . (111)
Also, choice of 6: P3; 6: Py does not alter ;. (iv)

From results (i)—(iv) we conclude that either 5, 6: P, or
5, 6: P, will give the minimum r7. Below we examine
the two possibilities.

Case 2.1: 5,6: P,. Here, r5 = max(ry +e1 + ¢15,72 +
es) = max(0 + 10 + 10,0 + 2) = 20. Also, rg =
max(ry + €4 + Ca6,73 + €3 + c36) = max(0 + 40 +
29,0 + 30 + 10) = 69. We choose 5 < 6: P, over
6 < 5: Py, since it yields the lower finish time of the
two. Then 77 = max(rs + es,76) + €5 = max(20 +
10,69) +7=76. Also, fr =r7+e; =764+3=79.

Case 2.2: 5,6: Py. Here, ry = max(r; +ej +c15,72 +
es + co5) = max(0 + 10 4 10,0 + 2 + 48) = 50.
Also, 7¢ = max(rs + e3 + ¢36;74 + €4) = max(0 -+
30 + 10,0 4 40) = 40. We choose 6 < 5: P, over
5 < 6: Py, as it gives the lower finish time of the
two. Then ry = max(rs + eg, 75) + e5 = max(40 +
7, 50) 4+ 10 =60. And, f7; =77 +e; = 63.

From cases 1, 2.1 and 2.2 we conclude that, ¢ = 63 for
the optimum schedule employing I processors.

3.1.2 Schedule A’

Let us now consider the following assignment which
uses only three processors: P;, Py and Ps.
Assign1: P1;2<4<6<5<7: Py;3: P5;1,3 — Ps.
Then, r5 = max(ry + e1 + ¢15, 72 + €2) = max(0 4+ 10 +
10,0+2) = 20 and g = max(rz+e3+css, max(fz, r4)+
e4) = max(0 + 30 4+ 10, max(2,0) + 40) = 42. So, f7 =
fates+eg+er=42+1047+3 =62 Thus, t = 62.
We observe! from the results in Sects.3.1.1 and
3.1.2 that ¢ < ¢.

IEICE TRANS. INF. & SYST., VOL.E84~-D, NO.6 JUNE 2001

Fig.3 Task in-tree referred in schedules S and 5.

4. Optimal Schedules for Special Binary Task
In-Trees

In this section, we develop an optimal schedule for bi-
nary task in-trees that satisfy certain criteria. Let us
consider the binary task in-tree shown in Fig.3. We
will proceed by developing two schedules for the sub-
tree (4, f, k): Schedule S and Schedule S". Schedule S is
constrained to use distinct processors to execute sibling
tasks while Schedule S is constrained to use the same
processor. Let the ready times of any node ¢ under S
and S’ be represented by r; and r;. First we outline
Schedule S.

Schedule S
Assign 7 and j to distinet processors (P; # Fj).
If r; + e+ city > 75 + €5 + ¢j, then
j — P; //Schedule F; to send its output to F;.
k: P, //Assign k to execute on P;.
Then, r = max(r; + e;,r; + €; + ¢jx) (= z, say)
else
i— P; //Schedule P; to send its output to F;.
k: P; //Assign k to execute on P;.
Then, r, = max(r; + e;,7; + €; + i) (= y, say)
endif
end S

The constraint in Schedule S guarantees that a proces-
sor is available to execute a task as soon as the task
is ready for execution, i.e. Vier 7; = 8;. It is easy to
see that under the condition that sibling tasks must be
executed on distinct processors, Schedule S is optimal
for the task sub-tree (4,7, k). In Schedule S, if the as-
signment under the condition r; +e;+ci = rj+e;+cjk
were not optimal the only other assignment is the one
in the else part. But under the condition r; +e; 4+ ¢ >
ri+e;+cig, € = max(rite;,rj+ejteir) < riteit e
and y = max(rj +€;,7; -+ €; + ¢;) > x. Therefore, the
assignment in the if part gives a shorter schedule length
than the else part. The proof for the optimality of the
else part is symmetrical.

In Fig.4, we present Procedure MinMakespan

t'This is also true for task trees other than the one in
Fig. 2. As we will observe later, many task trees within the
set of task trees for which Condition C' is not satisfied, fall
within this category.

BASKIYAR: SCHEDULING TASK IN-TREES

which is based upon Schedule S. Under the require-
ment that distinct processors be used to execute sibling
tasks, Procedure MinMakespan optimally schedules any
binary task in-tree in O(n) time, where n is the number
of nodes in the task tree.

Let us now consider Schedule S'. Below we outline
Schedule S'.

Schedule S
//Assign all of 4, j and k to a single processor.
If r; < T; then
i<j~<k: P, //Schedule i to execute before j
Then, r;c = max(s; + e, r;) + e
else
j=1t=<k P; //Schedule j to execute before i.
Then, r, = max(s;. +ej,7) + e
endif
end S’

Under the condition that sibling tasks must be exe-
cuted on the same processor, Schedule S is optimal for
the task sub-tree (i, 7, k) since it considers all possible
assignments. In Schedule S/, unlike in Schedule S, we
use start times s; and s;. instead of ready times r; and

7

r;, since it is quite possible that s; > ’/‘;. As an ex-
ample, when a single processor executes more than one
leaf node f, s/f > r;c since ry = 0 for leaf f. As another
example, consider Fig.3 in which if ¢ were assigned to
the processor executing ¢, namely P,, and the execu-
tions of @ and b and their subsequent outputs of data to
P, complete before the execution of node ¢ completes,
then s; > 7.

Now, if for every node k, of a tree, r, < 1
(hereafter called Condition C), Schedule S is optimal.
Therefore, MinMakespan is optimal for task trees sat-
isfying Condition C. Now, using MinMakespan we can
determine Ve 7 polynmially but we can not evaluate
Vier 7, in polynomial time—if we could, (Q3) would
not be NP-complete. Therefore, we can not determine
in polynomial time whether C' holds. The following
discussion introduces a new Condition C* which can
be evaluated in polynomial time.

We observe,

’ . ’ ’
7, =min(max(s; + e;, 7;)

+ ej,max(s; + ej,T;) +e;)
E F

> min(max(r;+ei, 7";) +ej, max(r;» +ej, ’r;) +e;),

. ’ 4 .
since Yiers; >, (i)
G

Let Ry = min(max(r; + e;,7;) + e;,
H

max(r; + e;,7;) + €;) (ii)

Let Vierr; < R; be called Condition C*. Below we

689

Procedure MinMakespan

//Inputs: T, a task in-tree as described before. A set of pro-
cessors M = {1,2,...,m}, ready times r; for all leaf nodes
7.

//Definitions: Functions LeftChild, RightChild operate on any
k € T, such that LeftChild(k) = left child node of k if one
exists, otherwise nil. RightChild(k) = right child node of
k if one exists, otherwise nil. Leaf(k) iff LeftChild(k) =
RightChild(k) = nil.

//Outputs: (i) Vier P : 4 — M such that P; represents the
processor to which node ¢ is assigned (ii) Vier s; (iii) A
schedule of interprocessor communications.

static n+0
if i # nil then
i LeftChild(i)
J— RightChild(i)
MinMakespan (i)
MinMakespan(j)
if Leaf(i) then
n—n+ 1, Pj+n
else
if r; +e; + ¢ > 75 + €5 + ;i then
Jj — P; //Schedule P; to send its output to P;.
k:P; //Assign k to execute on P;.
Then, ry = max(r; + e;,7; + ej + ¢jx)
else
i— P; //Schedule P; to send its output to P;.
k: P; //Assign k to execute on P;.
Then, r, = max(r; + e;,7; + €; + cig)
endif
endif
endif
end MinMakespan

Fig.4 Procedure MinMakespan.

prove by induction that if C* holds, C' holds.

For any leaf 1 € T, r; < r; is satisfied because the
ready times of leaf tasks are zero in both Schedules §
and S

Next, for siblings ¢ and j of any subtree (3,7, k),
if v, < 7‘; and r; < 7“],», we show that for the parent

node k, r, < T‘;C too. Using r; < r; and r; < 7“;- in
Egs. (i) and (ii) we get, G < E, H < F. Using Lemma
1 (below) in Egs. (i) and (ii) we get Ry, < 7 --- (iii).
From Condition C* for node k, we have 7, < Ry ---
(iv). From (iii) and (iv) we have, ry < ry.

Therefore by induction Ve r; < 7’;, which is Con-
dition C. O

Thus, for task in-trees for which C* holds, Min-
Makespan provides an optimal schedule in O(n) time.
Lemma 1: If p = min(¥,F), ¢ = min(G, H) and
G < FE, H< F then ¢ <p.
Proof: Consider the case when F < F'.
We have p = F.
HTG<H¢g=G=q< E=qg<p.
HG2Hg=H=q<F=9q<E=g<p

The proof for £ > F parallels that for E < F. O
Lemma 2: Condition C* holds if maxy(; jyew cij <

690

minviev €;-

Proof: We have, R, = min(max(r; + e;,7;) +
ej,max(r; + e;,7:) + e;). We show that when r; +
e; + ca > T + €j + ¢ (say, condition (i)) C* holds.
Under condition (i), from Schedule S we have, 7p =
max(r; + €;,7; + e; + ¢jx) - BEq. (i). Using e; > cjk
in condition (ii), we have r; +e; +¢e; > r; + €; -+ Cjk
(say, condition (ii)). Therefore, Ry = min(r; + €; +
ej,max(r; + e; +e;, 75+ €;)) - - - Eq. (ii). The first term
of Eq. (ii), 7; + €; + €; is greater than the first term of
Eq. (i) and it is also greater than or equal to the sec-
ond term of Eq. (i) by virtue of condition (ii). Again,
the second term of Eq. (ii) is greater than ry since using
e; > ¢;r in Eq. (1) we have ry, < max(r;+e;,7j+e;+e;).
Therefore, Ry > 7.

By symmetry, the proof when r; +¢€; +cjr > 13 +
e; + c;x parallels the proof above. O
Lemma 3: Schedule S is optimal for binary coarse
grain trees.

Proof: In a coarse grain tree, maxy(jjer Cij <
minviev €;. The condition in Lemma 2 includes the
above condition. Therefore, Schedule S is optimal for
coarse grain trees. O

We now show, using the example below, that C*

holds for some fine grain trees too.
Example 1: Consider the task in-tree in Fig. 5 which
is not coarse grain. In this task in-tree, the minimum
task execution time of 2.5 is less than the maximum
inter-task communication time of 3.5. Below we show
that Condition C* holds for this tree. We assign nodes
4,5, 6 and 7 on distinct processors called Py, Ps, Fs,
andP7. Wehaver4:R4:r5:R5:r6:R6:
T — R7 =0.

Now, since r4-+es+cqn < 75-+e5+cs2 (i.e. 0-+2.5+
2.1 < 0+3.9+2.2), we assign 2: Ps and 4—Ps. Then,
ro = max(rs + es,74 + €4 + ca2) = max(0 + 3.9,0 +
2.5+ 2.1) = 4.6. Also, Ry = min(max(rs + e4,75) +
es, max(rs + e5,74) + €4) = €4 +e5 = 2.5+ 3.9 = 6.4.
‘We observe, 79 < Rs.

Again, since 1 + eg + cg3 > 77 + er + cr3 (ie.
0+4.14+3.5>0+3.1+2.1), we schedule 3: Fs, 7—Fs.
Then, rs = max(re + es, 77 + €7 + ¢r3) = max(0 +
41,0+ 3.1+ 2.1) = 5.2. Also, R = min(max(re +

(5]

(4.9)

23) (3.9 (CRY) @n

Fig.5 FExample fine grain task in-tree.

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.6 JUNE 2001

eg,77) + er,max(ry + e7,r6) +es) = 4.1 +3.1 = 7.2
Here too, r3 < Rs.

Since ro +eg +co1 < 13+ €3+ c¢31 (1e 46+ 3.1+
1.9 < 5.2+ 4.9 + 2.9), we schedule 1: P3,2—P;. Then,
r1 = max(rs + e3,Te + ez + co1) = max(5.2 +4.9,4.6 +
3.1+ 1.9) = 10.1. Also, Ry = min(max(rz + ez, r3) +
e3,max(r3 + e3, r9) + €2) = min(max(4.6 4 3.1,5.2) +
4.9, max(5.2 +4.9,4.6) + 3.1) = 12.6. Clearly, 1 < R;.

Therefore, we observe that for all nodes ¢ of the
task in-tree, r; < R;. Therefore C* is satisfied for the
task in-tree of Fig. 5. g

An example where the condition maxy(; jyerg Cij <
miny;cy €; in Lemma 2 holds is a task in-tree whose
node execution times are non-zero positive integers and
the inter-task communication times are either zero or
unity, i.e. Viere; € Z% and V(; jyerci; = 0 or 1. Al-
though restrictive, problems satisfying the above cri-
teria may not be that uncommon. For instance, the
communication times can be constant over all edges if
the data communicated is small, particularly in mes-
sage passing multiprocessors when the times to initiate
and terminate a communication may exceed the actual
data transfer time and more so if data is sent in packets.
Thus, the communication time upto & certain amount
of data transmission can be constant. Furthermore, in
many instances the node execution times and the data
communication times can be scaled to satisfy the above
criteria.

5. Conclusion

We have shown three important scheduling problems
to be NP-complete. We have also developed an opti-
mal schedule for restricted task in-trees on completely
connected [processor systems, where [is the number
of leaf nodes of the task tree. This schedule is not
only optimal for coarse grain trees, but for all trees
which satisfy condition C*. The scheduling algorithm
has been shown to be optimal over a wider set of task
trees than previous works. The problem (Q1) is more
fundamental than the problem in [13] mentioned earlier
because with progress of execution in the task in-tree
the number of ready tasks decreases and gets closer to
the number of processors available, such may not be
the case in a directed a-cyclic task graph.

References

[1] S. Baskiyar, “Architectural and scheduler support for
object-oriented programs,” Ph.D. Thesis, University of
Minnesota, 1993.

[2] P. Chretienne, “Task scheduling over distributed memory
machines,” Proc. International Workshop on Parallel and
Distributed Algorithms, North Holland, 1989.

[3] P.Chretienne, “A polynomial algorithm to optimally sched-
ule tasks on a virtual ideal dtributed system under tree-
like precedence constraints,” European J. Operational Re-
search, vol.43, no.2, pp.225-230, 1989.

BASKIYAR: SCHEDULING TASK IN-TREES

[4]

12]

(13]

14

P. Chretienne, “Tree scheduling with communication de-
lays,” Discrete Applied Mathematics, vol.49, no.1-3,
pp-129-141, 1994.

T.C.E. Cheng and C.C.S. Sin, “A state-of-the-art review of
parallel machine scheduling research,” European J. Opera-
tions Research, North-Holland, 1990.

M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity, W.H. Freeman and Company, pp 238-241, 1991.

A. Gerasoulis, S. Venugopal, and T. Yang, “Clustering task
graphs for message passing architectures,” Proc. ACM Int’l.
Conf. on Supercomputing, pp.447-456, 1990.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, “Re-
cent developments in deterministic sequencing and schedul-
ing,” A Survey in Deterministic and Stochastic Scheduling,
eds. M.A .H. Dempster et al., 1982.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker, “Com-
plexity of machine scheduling problems,” Annals of discrete
mathematics, vol.1, pp.343-362, 1977.

C. Papadimitriou and M. Yannakakis, “Towards an
architecture-independent analysis of parallel algorithms,”
SIAM J. Computing, vol.19, 1990.

R. Sethi, “On the complexity of mean flow time schedul-
ing,” Mathematics of Operations Research, vol.2, pp.320—-
330, 1977.

J. Turner, “The structure of modular programs,” Commun.
Ass. Comput. Mach., vol.SE-4, pp.254-258, May 1978.

J. Ullman, “NP-complete scheduling problems,” J. Com-
puter System and Sciences, vol.10, pp.384-393, 1975.

T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks
on an unbounded number of processors,” IEEE Trans. Par-
allel & Distributed Systems, vol.5, no.9, pp.951-967, 1994.

Sanjeev Baskiyar received the B.S.
degree in Electronics and Communica-
tion Engineering from the Indian Institute
of Science, Bangalore and the M.S.E.E.
and Ph.D. degrees from the University
of Minnesota, Minneapolis. Currently he
is Assistant Professor in the Department
of Computer Science and Engineering at
Auburn University, Auburn, AL. His work
experience includes working as an Assis-
tant Professor at Western Michigan Uni-

versity, as a Senior Software Engineer in the Unisys Corpora-
tion and as a Computer Engineer in the Tata Engineering and
Locomotive Company, Jamshedpur, India. His current research
interests are in Task Mapping onto Multiprocessors, Computer
Systems Architecture and Real-time and Embedded Computing.

691

