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ABSTRACT

Design verification is a process that verifies a
design agalnst a given behavioral description. An
often used procedure is to verify that the design
produces correct resuit for certain test inputs. it is,
however, rarely practicable to cover the Input space
exhaustively. Therefore, a basic question that should
be answered Is that if no design fault has been
detected after certain test cases have been applied,
then how close is the design to a correct design.

In this paper the design to be verified Is viewed as
similar to a communication system In which design
faults are assumed to be the only causes of error. We
also assume that the decision about correctness of
response can be made on the basis of the behavioral
description or with the help of a simulator. The
closeness of a design to the correct design s
estimated Iin terms of how closely its Information
transmission rate matches that of the correct design.
The confidence In the estimate of the Information
transmitting capablily Increases fastest when the
statistical information produced by the design during
test is highest. Hardware and software examples are
given.

1. INTRODUCTION

Design verification is the process that verifies a
design against a given behavioral specification. If the
design could be automatically generated from its
specification there would be no need to verify it (as long
as the process automating design generation is itself
verified!) However, unti! such time as fully automated
design of complex systems becomes a possibility,
design verification in one form or another will continue
to be essential for exposing design errors or gaining
more confidence in correctness.

Formal methods of design verification have been
proposed for both software and hardware designs (see
Elspas et al [1] and Cory & vanCleemput [2] for good
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tutorial articles.) Most notable amongst correctness
proof techniques for programs is the inductive assertion
method based on the work of Floyd [3] and Hoare [4];
Gries [5) provides a good illustrative example. The
technique has also been extended to hardware
verification by using the notion of symbolic execution,
Darringer [6].

Formal methods are at one end of the spectrum,
representing potentiaily powerfui tools with theoretical
underpinnings. However, after aimost two decades of
continual refinements they are still not in wide use;
DeMilio et al [7) argue that they may never become very
popular. At the other end of the spectrum is the
commonly used method of testing a design by verifying
that it produces correct results for certain test inputs.
Several guidelines for test selection have been proposed
(Gc{')od]t-)nough & Gerhardt [8), Howden [9], and DeMillo et
al [10]))

Unfortunately, neither testing nor correctness proofs
guarantee correctness of the design (I7), Gerhart &
Yelowitz [11].) Noting this Duran & Wiorkowski [12] have
proposed a statistical measure of the degree of validity
of a program. The measure is derived from tests which
fail to uncover an error. A similar measure, the expected
number of remaining software errors, can be obtained by
fitting test results to a statistical model for software
error detection proposed by Goel [13l. This model
assumes that the number of errors detected in the
testing interval [0,t] is a random variable distributed
according to a nonhomogeneous Poiason process.

The present paper shares the underlying premise of
[12] and [13] namely that guaranteeing total correctness
of complex systems is an elusive goal. However, by
design verification tests it may be possible to achieve an
arbitrarily high level of confidence. The design to be
verified is viewed as similar to a communication system
in which design faults are assumed to be the only
causes of errors. Simulation results on two examples of
software and hardware, respectively, show that the rate
of increase in the confidence level is greatest when the
statistical information produced by the design during
test is highest.



2. NEED FOR STATISTICAL FORMULATION

Consider the simple example of a two-input OR gate.
tn order to guarantee that it has not been replaced by
any other gate, among NOR, AND or NAND, suppose one
applies three test inputs 00, 01 and 10. [f the outputs of
our design of the OR gate are 0,1 and 1, respectively, we
feel confident that the function implemented is not a
NOR, AND or NAND. But we still cannot guarantee that
the designed gate is not an EXCLUSIVE-OR gate. Thus
we should apply one more test, 11, to make sure that
our design is not an EXCLUSIVE-OR. The tests are
exhaustive now. More complex designs may not be
completely verified even with the exhaustive set of
patterns if the operation is pattern sensitive.

This simple example illustrates that the tests that are
generated for certain fault models may leave many other
faults undetected. For large circuits, exhaustive testing
is impossible. Enumeration of all possible fault models
and generation of corresponding tests is also difficult.
For such cases statistical methods provide a possible
solution.

In statistical testing the presence of a fault
corresponds to a non-zero probability of error in the
result. Thus the fault plays a role similar to that of noise
in a communication channel. We can, therefore, analyze
the verification process using the concepts of
information theory. This viewpoint has been used for
studying statistical test generation for digital circuits
[14].

3. INFORMATION THEORETIC ANALYSIS

In this section we present an information theoretic
analysis for determining the probability of error from a
faulty processor and the confidence in correctness
when no errors are observed. The term "processor” is
used for any information processing hardware or
software.

Communication and Computing. A communication
channel transmits information while a computing device
processes information. By processing we mean that the
supplied information is manipulated and certain relevant
information is extracted. In general, the processed
information is less than the input information.
Throughout this paper the term information refers to the
statistical information as defined by Shannon [15].

Figure 1(a) shows a communication channel which, at
the input, is supplied with information at the rate of H;
bits per unit time (for any specified time units). At the
output H, bits correspond to that portion of the input
information which can be correctly inferred from the
output of the channel. Because of the noise, it is not
possible to receive everything as sent and therefore, H,
is, in general, less than H;. Channel capacity is defined
as [15],

C = max H, )

H;
Next consider an information processor which can be a

digital circuit or a software program. Figure 1(b) shows
an information processor without any fault. lits operation
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Fig. 1 Communication channel and information processor.

is assumed to be free from noise as well and the output
is always correct. Yet, as explained above, the output
H, may be less than the input H; due to the loss of
information in processing. Figure 1(c) shows the same
information processor with a detectable fault. Now the
information output H’, is further reduced because some
of the outputs will be incorrect due to the fault. For a
given input the correct design will produce an unique
output. In the case of a faulty design, only the correct
outputs are supposed to be carrying any information. It
is, therefore, assumed that we have some way to check
the outputs during verification.

In general, the output information of an information
processor depends upon: 1) processor characteristics
and 2) input source (or input pattern generator).
However, the output information capacity of a processor
can be defined, in the same way as for a communication
channel, by Equation (1). This capacity depends only on
the processor characteristics.

In the information theoretic framework we need not
assume absence of memory in the processor. Memory
in the processor will produce outputs that are correlated.
As the separation between two outputs increases, their
correlation reduces. Such correlation also exists in
most information sources which, for example, produce
clusters of symbols forming words and sentences rather
than random letters.

Input and Output Spaces. For a simple
communication channel the input and output spaces
may consist of the letters of the alphabet in some
encoded form. An information source is defined by
assigning some statistical properties to the letters like
their probabilities of occurrence, correlations, etc. Now
consider a digital circuit. Its input alphabet will consist
of all the binary patterns that can be applied to the input
of the circuit. For example, an N input combinational
circuit will have 2¥ patterns in its input alphabet. An
input source or a pattern generator is then constructed



by assigning probabilities to each pattern. The
information generated by this source is [15]
2N
H; =— 3 p; log, p; bits per pattern, (2)

i=1
where p; is the probability of selecting the ith pattern.
For a sequential circuit, the input space consists of
2N+S  pattern sequences where the circuit has N
primary inputs and S memory elements. This is
because each of the 2N patterns can be applied after
setting the circuit to any one of the 25 states. An input
sequence consists of a pattern (one among 2V)
preceded by a pattern sequence that sets the circuit to
a particular state (one among 2%). Often, however, a
pattern in a sequence is applied to the machine whose
state is the same as that left by the previous pattern. In
such sequences, the dependence on the starting state
becomes less and less the longer is the sequence
length.

For a circuit with M output lines, the output space
contains 2M patterns. For any input pattern generator if
the output patterns are produced with probabilities g,,
q.,--then the output information is given by

2M

H, =— 3 q; log, g; bits per pattern . (3)

i=1
Notice that M can be greater than N, i.e, the output
space can be larger than the input space. Yet the
output information H, cannot exceed H;, As an
illustration consider a 3-bit binary decoder with three
input and eight output lines. Even though the output
space contains 2% = 256 patterns, only eight of these
have non-zero probabilities of occurring. Thus H, never
exceeds 3 bits per pattern. In this case H, = H,.

The information output H, will be equal to the output
capacity C as given by Eq. (1) when each output pattern
that can be produced occurs with equal probability.
Thus the 3-bit decoder will produce H, = C = 3 bits per
pattern when each of the eight possible patterns are
equally likely to occur. If a circuit can produce k < 2M
output patterns, then C can also be calculated as

(4)

Information Loss Due to Fault. As pointed out earlier,
in our statistical framework, we define the presence of a
fault by a nonzero probability of error in the output. An
actual fault may be a wrong connection, a wrong type of
gate, sensitivity of circuit to noise, a wrong statement in
software or any other artifact which can produce an
incorrect result. In the case of an output error, the
information loss is equal to the information that would be
required to correct this error. We will assume that of
each bit of information that the output produces, a
fraction « is lost due to a fault.

C =log, k .

Error Probability. We will agssume that the output rate
of the fault-free circuit is R bits per pattern for a given
input source, where R can at most be equal to C. This
rate will be reduced to {(1—a)R under a fauit. The fault-
free circuit can produce 277 sequences of length T,
each with almost equal probability [15]. This is a well-
known result in information theory, also referred to as
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McMillan’s theorem, and its accuracy improves as the
length T of the sequences becomes large. In the
presence of the fault the corresponding number of
sequences will be reduced to 2''""?RT  gGince only
correct outputs are assumed to carry information, we
have

o{1—a)RT

— n—aRT
Prob. {test passed | « } = i 2

(5)

Notice that in the presence of a fault (ie, a«>0) the
probability of correct output (or, equivalently, the
probability of missing the fault) goes to zero as T is
increased. Also, this probability will reduce faster, the
larger the rate R of transmission.

The reduction « in each bit of output information may
be different for different faults. Also, its value may be
dependent upon the probabilities assigned to various
input patterns for test generation. We will, therefore,
treat « as a random variable with the probability density
pl(a). Then from (5), the probability of the circuit
passing the test is obtained as

1

Prob. {test passed} = [ 27°""p(a) da
[o]

Consider the specific case where, before this test was
run, a is assumed to be uniformly distributed in the
interval [0,a,ne,). Then the above equation reduces to

P(T,amax) = Prob. {test passed | a uniform in [0, amq,])

o 2" da
%max 0
A 1—p mefT _ (6)
anaxRT In2
Also,
4—p—RT
Prob. {test passed} = P(T,1) = BT

in the absence of any a priori knowledge about the
probability density p(«) it might be reasonable to
assume that o is uniformly distributed in the interval
[0,1]. With this assumption we proceed to determine the
a posteriori distribution of « given that the circuit passed
a test of length T. Using Bayes’ rule [16], we have

pla | test passed) da

_ Prob. {test passed | o} p(a) da
Prob. {test passed}

Using (5) and the previous result, we get

—aRT
p(x | test passed) = 37_?'3%2—.
This conditional density function decreases

exponentially with « where the rate of exponential
decrease is determined by RT.

The intuitive notion of building confidence in the
design by testing can now be stated more precisely in
terms of the conditional distribution of «. In particular,
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Q(apmax) = Prob. {a < ay,, | test passed}

max

{ p (a | test passed) du

__RT In2

. 2—R‘r { 2—aRT da

i 2—amRT

1—27RT

M

Figure 2 shows a,,, as a function of RT for Q{ay.) =
0.999, 0.99, 09, and 0.5. For a test of length T, the
information rate A can be empirically determined from
the formula:

&
Lim 3,

T—o0 i=1

X T
R — log, — bits per
T og, X bits per test,
where x; is the number of times the ith output occurs
and k is the total number of possible outputs. In
practice, a sufficiently large vaiue of T will give
adequate accuracy. Thus

k

RT=Tlog, T — 3 x; log, x; bits . (8
i=1

Once RT is computed for a test sequence, the value of
amax Can be obtained form Fig. 2. For example, if
AT = 105, with 99.9 percent probability ame i no
greater than 1074, When a,,, is unity we can say that
our design has no apparent relationship to the correct

design.

4. EXAMPLE OF HARDWARE VERIFICATION
An FPLA (Field Programmable Logic Array) was
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Fig. 3 of reference [171.

considered as an example of a hardware design. This
FPLA is described in a table in reference [17] (see
Fig. 3). It has sixteen inputs from which 29 product
terms are generated. The portion of the table that
describes the product terms is a 29 by 16 array (AND
matrix) whose element p;; indicates how the jth input is
used in the ith product term. In particular, p;; can have
any of the three values, H,L or —, referring to
uncomplemented, complemented or not used,
respectively. Similarly, the output is specified by
another 29 by 8 array (OR matrix) whose element,
gy = A if ith product term is included in the jth output,
or g; = - if ith product term is not used in the jth output.
A closer examination of this table reveals that although
the circuit has eight output lines, only ten output
patterns are possible. Thus the maximum information
output is C = log,(10) = 3.32 bits per pattern.

In order to evaluate the eflectiveness of different
types of tests, a Pascal program was written which could
perform the following tasks:

a) Pattern Generation. Two types of input patterns
could be generated by the program. The first type of
patterns were completely random. The input bits were
set to "0" or to "1" depending upon whether computer
generated random numbers in the interval [0,1] were
"less than" or "not less than” 0.5. The second type of
patterns were those that maximized the output
information to 3.32 bits per pattern. First all 2'¢ input
patterns were simulated and classified into ten sets
such that the patterns in a set produced the same
output. Then for generating a test pattern an output was
obtained using a random number generator which
produced an integer uniformly distributed in [1,10). Now



from the input set of this selected output, one pattern
was randomly selected as a test pattern.

b) Simulation. Using the AND and OR matrices as
described above, the program could compute the FPLA’s
output for any given input pattern. If any entries in the
matrices were changed to study a faulty behavior, then
the simulator would compute the output of the faulty
FPLA.

c) Fault injection. The type of faults studied were
assumed to produce an error in a single entry among the
two matrices. The program would first pick an element
in the matrices randomly (using a random number
generator to determine the indices of the element). If
the element belonged to the AND-matrix then its faulty
value would be picked randomly from [H, L, —] such that
it is different from the correct value. Similarly, for the
OR-matrix the faulty value would be picked from [A, ]

For completely random patterns, using Eq.(8), the
information output was obtained as 1.89 bits/pattern.
For each type of pattern, one hundred fault samples
were generated and for every sample fault the pattern
generation was continued until either the fault was
detected or the number (T) of patterns corresponded to
RT = 10,000. At this point if the fault remained
undetected it was checked for redundancy by simulating
all 2'¢ input patterns. If the fauit turned out to be
redundant a new fauit sample was picked and pattern
generation was repeated. The fraction of undetected
nonredundant faults, as observed in this experiment, is
shown in Fig. 4. Notice that for AT = 10,000 maximum
information output patterns left € percent faults
undetected while 10 percent were left by the completely
random patterns. The number of patterns in the case of
maximum information output was T = 10,000/3.32 ~
3,000. With the sames number of random patterns,
since RT = 3,000 X1.89 = 5,670, there were 15 percent
undetected faults. This result clearly shows the greater
efficiency of the maximum information output patterns in
uncovering errors. The fault model that we have chosen
in this exercise corresponds to altering a single entry in
the matrix specification of the design. While such faults
are realistic, there can be many other types of faults
associated with various stages of the design. The
reason for selecting these faults was that they change
the design very slightly and so their detection may be
considered difficult. The theoretical probability of an
undetected fault as computed from (6), is also plotted in
Fig. 4 (solid curves) for various values of a,,. Although
the values of « for these faults appears to be in the
range [0, 0.1], their distribution may not be uniform as
assumed while deriving (6). For example, there may be
a larger number of faults with smaller value of « than
those with larger «. The distribution of « in our
experiment is dependent upon the fault model and may
not be a true representation of a general design
verification process.

Figure 2 shows that for RT = 10,000, we can
consider that « < 0.001. That is, only the faults with a
value of a less than 0.001 might be left undetected.

5. EXAMPLE OF SOFTWARE VERIFICATION

Consider the FORTRAN program [18] that
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characterizes triangles for given integer-valued lengths
(A, B, and C) of sides:

INTEGER A,B,C,D
READ 10,A,B,C
10 FORMAT (4110)
5 IF ((A.GE.B).AND.(B.GE.C)) GO TO 100
PRINT 50
50 FORMAT(1H,"LENGTH OF TRIANGLE NOT IN
1 ORDER')
STOP
IF ((A.EQ.B).OR.(B.EQ.C)) GO TO 500
A=A‘A
B=B'B
c=C"'2
D=B+C
IF (A.NE.D) GO TO 200
PRINT 150
FORMAT(1H ,"RIGHT ANGLED TRIANGLE")
STOP
IF (A.LT.D) GO TO 300
PRINT 250
FORMAT(1H ,"OBTUSE ANGLED TRIANGLE")
STOP
PRINT 350
FORMAT(1H ,"ACUTE ANGLED TRIANGLE")
STOP
IF ((A.EQ.B).AND.(A.EQ.C)) GO TO 600
PRINT 550
FORMAT(1H , ISOCELES TRIANGLE")
STOP
PRINT 650
FORMAT(1H ,"EQUILATERAL TRIANGLE")
STOP
END

100

150
200
250

300
350

500
550

600
650

In reference [18] six tests are given which were derived
from path analysis. It is shown in [10] that these six
tests may not be adequate for detecting errors in the
compound logical expressions. To detect such errors,
three more tests are added and the set of nine inputs is
presented as a stronger test for the program [10]. It is,
however, easy to see that even with these nine tests
there are faults which would not be detected. For
example, if we replace B in statement 5 by C as follows:

5 IF((A.GE.C).AND.(B.GE.C)) GO TO 100

Then all nine tests will produce the correct result from



the faulty program. A new test, A=4, B=5 C=3, will
detect this fault since the faulty program will classify it
as "acute angled triangle" instead of the correct
classification as "Length of triangle not in order.” This
discussion again illustrates the dependence of test

To study the test generation, a FORTRAN program
was written to generate and evaluate the test data. The
program was designed to produce two types of input
data. In the first type the sides of triangles were three
independently generated random integers. The
information output for these inputs as computed from (8)
was 0.84 bits/input. In the second type of test data, an
output was chosen randomly from the six possible
outputs. A set of 3 integers was then generated to
produce this output. For example, if the output was
selected to be "RIGHT ANGLED TRIANGLE", then B and
C were chosen as two random integers such that B = C
and then A was computed from A2=B? 4+ C2 Since
there are six possible outputs, the information output for
these inputs is C = log,(6) = 2.6 bits/input.

A set of thirty faults of the types discussed in [10]
and the one shown above was considered. All thirty
faults were detectable. In a typical pass the program
would randomly sample one fault and then continue to
generate the specified type of input data patterns until
the faulty program keeps on giving the correct result.
Also if the fault does not get detected up to R7T= 10,000
the pass is terminated. Results for 100 fault samples for
each type of patterns are shown in Fig. 5. Theoretical
curves (solid lines) showing the probability of missing a
fault as computed from (6) for various values of a,,, are
also plotted. We notice that the experimental data
agrees only partially with the theoretical curves. As
pointed out in the previous section, this could be
because the vaiue of o for the fauits might not be
uniformly distributed as assumed in the derivation of {6).
It is evident here, even more than the previous example,
that the maximum information output tests are more
efficient.

Even though the abscissa in Fig. 5§ is the number of
inputs (T) normalized by multiplying the information
output rate, the experimental data for the two types of
test data differ very significantly. One possible reason
for this could be the dependence of a for a fault on the
way the inputs are selected. In this case, however, the
increase in information output seems to increase the
effective value of « making the faults more easily
‘detectable. NG fault remained undetected for more than
40 tests. For random inputs, on the other hand (R=0.84
bits/inputs) 4 percent faults were still undetected after
about 10,000 test cases had been tried.

6. CONCLUSION

Using the concepts of information theory, this paper
provides a non-heuristic basis for design verification.
The design faults are characterized by the information
loss they produce in the response of the design.
Similarly the correct design is characterized by the
amount of statistical information in its response. As
more tests are conducted, we increase our confidence in
the correctness of the design by estimating the fraction
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of information that could still be in error. Although a
complete verification is approached asymptotically, the
verification process can be accelerated by selecting the
tests that maximize the information content in the
response of the design under test.

If amax could be estimated independently, the curves
in Fig. 2 can be used to provide an estimate for RT (and
hence for the test length T) for a given level of
confidence. Notice, in this connection, that Eq. (5) has
the form of the reliability function e ™' where the test
length T is analogous to the time parameter t [19]. The
tailure rate X is then equal to aRIn2. Thus, op. May be
estimated from the system constraint on maximum
permissible failure rate.
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