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Abstract. Controllabilities and detectabilities for a line in a digital circoit are defined as
absolute probabilitics while ohservabilities arc defined as conditional probubilities. For exact
computation of these probubilities, a divide-and-conquer technique is developed in Lerms of
subcircuits covering the oniginal circuit. The subcircuits, ealled supergates, completely enclose
gl reconvergent fanouts. Computation of probabilities requires conditional computations
within supergates with specific Jogical value assignments to reconvergent fanout inputs,
Clombining the conditional values weighted with carresponding assignment probabilities gives
the total probability, Detectability computation is direct and does not require the generation
of an exclusive-or function or the insertion of auxiliary gates as needed in other methods that
convert the detectability prablem into a cortrollability problem. Techniques are suggested for
limiting computational cffort in circuits with very lurge supergates where appreximate
computation smay be desirable.

Keywords. CAD, detection probability, random-pattern tcstability, superpates, testability
Measures.
1. Introduction

In order 10 determine the testabitity of a digital circuit, we ask two questions:
How difficult is it to generate tests for this circuit? and how many test vectors will
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be required? Both questions are related to the effort of testing and the answers
must depend on the structural complexity of the circuit. The answers will be most
useful if they are obtained before test generation, far, if the effort of testing were
unreasonably high, testability improvements could be incorporated. Testability
analysis attempts to find quantitative answers to these seemingly qualitative
problems.

Previous work

Most of the work on (estability analysis has been reported during the last two
decades. Stephenson and Grason [31] defined testability measures. For every
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node in the circuit, they defined two quantities, comrollabitity and vhservability,
as indicators of comtrolling and observing that node. Thesc parameters, with
values between 0 and 1, were computed for all nodes in the circuit using the
functional behavior of the modules. Signal carrclations due to fanouts were
neglected and the testability of a node was defined as the geometric mean ol its
controllability and observability. Atiempts at interpreting the resuits mel only
with limited success. ITowever, this work showed that testability analysis tools are |
possible [12). '

The first popular CAD (ool for testability analysis was SCOAP, developed by
Goldstein [10,11}. It provided several improvements over the previous work. Firsl,
the analysis was performed at the gate level instead of the register-transfer level.
This made SCOAP results easier o rclate to the faults that are commonly
modeled at the gate level. Secand, Goldstein recognized that the controllability of
a signal may be dependent on the specific logic value. For cxample, it is easier to
control the output of an AND gate to 0 than to 1. Separate O- and 1-controllabili-
tics were, therefore, defined. In all, three combinational and three sequential
measures are computed by SCOAP for each node in the cireuit. Numerical values
of thesc measures range between 2ero and infinity and are assumed to represent
the effort required in controlling/observing the node. Higher values denote
greater effort. Third, the analysis complexity was kept almost lincar in the
number of nodes by neglecting signal correlation. This, however, became the
stumbling block for SCOAP since signal correlations caused by reconvergent
fanouts are the main reason for difficulties of test generation. Analysis of SCOAP
results has shown its potential in identifying circuuts that arc difficult to test
although the results are not always reliable {1]. Production-level CAD tools have
been developed for use in VI.SI design [29]. Several other algorithms that {all in
the same class a8 SCOAP have been reported in the literature [4,7.16].

There are two main problcms with SCOAP-like testability mecasures. First, a
certain arbitrariness in the definition of controllability and observability mea-~
sures makes calibration difficult. SCOAP can compare the testability of 1wo
circuits but can not tell how testable a given cirenit is. Second, the assumption of
independence of signals produced by the same fanout limits accuracy. These
problems have led (o the use of probabilistic definiton of testability.

Parker and McCluskey {19-21] developed procedures for computing signal
probabilities in digital circuits. In their approach, the probability ol a signal
assuming a value 1 is computed from a Boolean cxpression for that signal written
in terms of primary input variables. Fault detection probability is obtained as the
1-probahility of the exclusive-or function of the good and the faulty outputs. Fife
[9] additionally defined a transmission probability for each linc as the probability
of sensitizing a path from that line to a primary output. Hc computed the
detection probability as the product of transmission probability and the ap-
propriate signal probability. The computation of these probabilities, in the
presence of reconvergent fanouts, required an almost exhaustive simulation.
Other anthors have called this transmission probability as observability. Savir
showed thal the derivation of detectahility by multiplying controllability and
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observability could produce incorrect results [22]. Jam and Agrawal, in their work
on statistical fault analysis [15], defined separate 0 and 1 observabilities for cach
line. They also defined observabilitics as conditional probabilities. For example,
the O-observability of a line is the probability of observing that linc at a primary
output given the value on the line is 0. Thus, 0-observability can be muitiplied to
the U-controllability to obtain the joint probability of setting the line to 0 and
then observing it which amounts to the detection probabilily of stuck-at-1 fault
on the line. We will [urther explain these definitions in Section 2.

Parker and McCluskey's wark led to several applications of probabilistic
analysis [2,17,18,28]. Complexity of symhbolic computation for large circuits,
however, restricted its applicability. ‘This motivated the later work on numenc
and approximate methods. Savir et al. {24], formulated a cutting algorithm in
which every fanout line is cut and initizlized to a controllability range [0,1]. The
modified network thus becomes free from reconvergent fanouts and all controlla-
bililigs can be obtained. The price paid for this computational tractability is that
for certain signals only loose upper and lower bounds on controllability can be
obtained, Brplez devised a probabilistic testability algorithm. COP {5], and
showed that reasonable accuracy could be obtained in some cases by neglecting
signal correlation.

Recently, accurate methods f{or analyzing very large circuits have rcceived
atltention. Bass and Grundmann {3} showed that in a combinatonal network,
when just the inputs involved in producing reconvergent fanout signals are set to
0 or 1, all other signals in the network become mutually independent. Thus exact
computation can he done for cases with partially enumerated inputs. In the
present work, we cover the circuit by smaller blocks and use this technique in
each block. Our blocks, called supergates, completely include reconvergent
fanouts. Based on this covering, we derive algorithms to exactly compute detec-
tion probabilities. These algorithms avoid taking exclusive-or between the good
and the faulty circuits [19] or inserting auxiliary AND pgates as suggested by Savir
et al. |24]. Only when a circuit includes very large supergates, approximation
would be neccssary. We present several heuristics for approximations.

Quutline of paper

To avoid confusion we state definitions of probabilistic testability in Section 2.
We define controllabilities and detectabilities explicitly as probabilities. Observa-
bilitics arc shown to be conditional probabilities that can be derived from
controllabilitics and detectabilities.

As mentioned abovc, we use a divide and conquer approach ta compute these
probabilitics from supergatcs. In general, a supergate is defined as a subcircuit
with possibly many inputs but just one output. In Section 3 we describe a
minimum cover of the circuit in terms ol supergates.

Once the circnit is covered by supcrgates, signal controllabilities can be
computed in several ways:
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(1) The Parker and McCluskey method [19] is applied 1o signals within a
supergatc while the controllabilities between the supergatcs are carried in the
numerical form.

{2) The Parker and McCluskey method is applied to supergates with only the
inputs producing reconvergent fanouts kept in the symbolic form while other
inputs are given their numerical controllability values.

(3) A numeric computation is carried out for cases generated by assigning
logic values 1o the fanout signals at the supergate input. Exact computation of
controllabilitics, conditional to input assignments, is straightforward [3]: when
cascs are appropriately combined, total controllabilities are obtained.

We adopt the third approach in Scctions 4 and 5. In Section 5, we give
methods for computing exact detectabilitics. Detectability computation requires
separate procedures for fanout stems and non-fanout signals.

The time complexity of the exact methods depends on the size of the largest
supcrgatc in the cover. ln circuits where reconvergent struclures includc large
portions of the circuil, approximations may be necessary. In the approximations
discussed in Section 6, short reconvergent fanouts are treated exactly while the
correlation between signals that reconverge after a large number of levels is
neplected. Such approximations allow a smooth tradeoff between computational
complexity and accuracy.

2. Probabilistic testability measures

Definition 2.1, The J-controflability (U-contrallability) of a line is the probability of
a 1 (0) on that ling when a random inpul is apphied to the circuit.

We will denote the 1- and O-controllabilities of a line & as C1(k) and CO(k),
respectively. In general, random inputs means that the input vectors can occur
with any assigned probabilitics. However, when all input vectors are assigned
tqual probability then 1-controllability of a line is the fraction of 1's in the truth
table of the line function. Tt is also called the line syndrome (23]

Definition 2.2. The /-detectability (O-detectability) of a line is the probability of
detecting the stuck-at-1 (stuck-at-0) fault on that line when a random input is
applied to the circuit.

We will denote the 1- and O-detectabilities of line kK as DL(k) and DO(k),
respectively. For equiprobable inputs, these are the fraction of O’s and 1’s in the
truth table of the function realized on that line from which a path is sensitized to
2 primary output. Detectabilities are compound measures that can be expresscd
in terms ol controllabilitics and observabilities as follows:

DI(k) — CO(k)BU(k) (1)
DO(k) = C1(k)Bl{k) @
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Fi Oy,
(LINE FUNCTION) (ROGLEAN DIFFERENCE)

TESTS FOR & stuck-at-0 TESTS FOR k stuck-st-1
Fig. 1. Vean diagram showing relationship between Boolean difference and detcctubilinies.

where BO(k) and B1(k) are the probabilities of observing the line k given that it
was set 1o 0 or 1, respectively. These conditional probability definitions of a line's
observability differ from the traditional definitions [24] based on the Boolean
difference [25]. However, for cquiprobable inputs the two are closely related, as
we will show using the Venn diagram in Fig. 1. The disk F, includes the
minterms of the function of the primary inputs realized on line k and the disk 03,
includes the minterms of the Boolean difference of the primary output with
respect to fine k. We will use | £ | and | D, | to denote, respectively, the number
of minterms in ¥, and P,. The waditional delimtion of linc observability is
simply the syndrome of Dy, ie, Dy /2", where n is (he number of primary
inputs. It represents the fraction of input vectors for which the state of line &,
whether zere or one, can be semsitized to the primary output. On the other hand,
DO(k), the probability of detecting a stuck-at-zero fault on line k, is the fraction
of input veclors that sct linc & to one and sensitize it 1o the primary output. Thus

|F,NnD,l | Rl 1AND]
) r ) am = - . A
DO(k) 57 5 A
= C1{k) - B1(k){by definition, sec Eqn. 2).
Therefore,
| Fk N Dk1
Blk)s - " o
(k)=

Simlarly, it can be shown that

In comparison, the traditional observability, from the Venn diagram of Fig. 1,
is the sum of zero and onc detectabilities, DO{k) + Di(k). With this definition, it
is passible that for a linc k, B(k), C1(k) and CO(k) are all rclatively high and
yet its zero {(or onc) detectahility is very low berause of a very small overlap
between the disks D, and F, (or ). This phenomenen, explained naturally by
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our conditional definition of observabilities, appears anomalous [22] for the
traditional definition.

3. Supergates and maximal supergates

The difficulty of problems in testing of combinatorial logic can he traced
larpely to a single culprit: the correlation of signals on recconvergent lines duc to
common fanout stems. For example, random-pattern testability analysis would be
a rather simple single-pass process if the circuit had no reconvergent stems [23].
Ou the other hand, if correlated signals do reconverge at a gate, it is not always
necessary 1o trace the whole subcircuit on which the pate output depends, in
order to arrive at line signals which arc mutually uncorrelated. As an example, in
Fig. 2(a), the two inputs Lo gatc 8 carry correlated signals from the fanout stem s,
but we need to go back from gatc 8 only upto the output of gate 5 before the line
signals on input 2 and the output of gate 5 become topologically indcpendent.
Iis simple observation forms the basis for the definition of a supergate below.
First we need a graph representation of the circuit and some basic definitions
from graph theory [13].

For a combinatorial logic network N, we will consider an equivalent represen-
tation in the form of a directed graph G(V, E). called the circuit graph whose
aodes arc: the primary inputs, funout points, the primary outputs, und the gates
in N: and whose edges represcnt the connections in N, oriented in the direction

MAXIMAL SUPERGATES

(=)

@D,

AT "‘3?)-’5*'@
.olY

FONRC @&
@ {b)

Fig. 2. An examplu of a circuit with reeovergent fanouts and some of its supergates: (a) cireuit and
its supergates, (b) graph representation.
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signal flow. As an example, the circuit gruph of the network in Fig. 2(a) is shown

in Fig. 2(b). Notice that each line (inctuding the fanout branches) in the circuit is

represented uniquely by an edge (drawn by a solid or a dashed line) in the graph.

We say, that node i is an immediate predecessor of node j if (4, j) is an edge in

the circuit graph; node i is a predecessor of node j if there is a directed path (of

length 3 1) from / to j. Two nodes are said to be topologically independent if they
do not have a common predecessor,

Let V¥’ be a subset of the node sct V. Then the induced subgraph G'(V'. E’) of
G(V, E) is Lhe graph whose vertex set V7 is a subset of } and whose edge set £’
includes all the edges of E restricied to the nodes in V', Thus, an induced
subgraph is completely determined by its vertex set. Let X = (7, f) be an edge in
the circuit graph and let R( X) be the set which includes { and all its predeces-
sars. We will denote R( X)) us the reaching set of X. Then the cone of X, denoted
as C(X), 13 the mduced subgraph (of the circuit graph) whose vertex set is the
reaching set R(X). The subcircuit corresponding 10 the cone C(X) completely
determines the signal value on line X. Intuitively, for the supergate of line X, we
are looking for the smallest subcircuil of the cone of X whose inpuls are
wpologically independent. The same idea is captured preciscly in graph theoretic
terms by the following definition:

Let X = (¢, ;) be an edge in the circuit graph G(V, E). The supergare of X,
denoted by SG( X), is the induced subgraph of the cone of C( X)) whose vertex set
V' satisfies the fallowing conditions:

{a) # and its immediate predecessors, i any, are in V7.

(b) Let v be a node such that an immediate predecessor of ¢ is also in ¥'. Then.
alt immediatc predecessors of v are in SG( X).

{c) For ¢very pair of nodes v and w in V* neither of which have any predcecs-
sors in SG( X), the sets of all predecessors of v and w in the circuit graph are
mutually disjoint.

(d) V' is a minimum vertex sct satisfying the above properties.

From the definition it is obvious that the supergate of every edge X 1s umque.
The edge (or line) X is called the euwrpur of the supergate SG( X).

. Example 1. For the circuit in Fig. 2(a) assume that we want te find the
supergate of the output line of gate 8. In the circuit graph (Fig. 2(b)), this line 15
represented by the cdge Y =(8, 9). Thus the supergate is a subgraph of the cone
C(Y). By condition (a} of the definition, nodes 8, s, and r must be included in
the supergate. However, 1f SG(Y) contained just these three nodes. neither node
s nor ¢ will contain a predecessor in §G{Y) (since the induced graph will contain
Just two edges: (¢, 8) and (s, 8)) but will have common predecessors (nodes 3. 4.
and 5) in the original circuit graph. This will violate condition (¢). It can be
verified that, as a misimum, node 6 must be included to satisfy condition (c).
However, now by condition (b} we must also mclude node 2 since one of the
immediate predecessor of node 6, namely node s, is alrcady included in the
supergate. At this point it is seen that the first three conditions are satisfied. Also,
from the argument it is obvious that no subset of the vertices chosen thus far will
satisfy the first three conditions of the definition. Thus, the supcrgate of tine ¥ is
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the induced subgraph with the vertex set {8, s, 1, 6, 2}. This is shown by solid
lines in Fig. 2(b} and the corresponding subcircuit is shown as SG(Y) in Fig.
2(a). We note that the superset {&, s, 1,6, 2,5, 3,4} will also satisly the first
three condition but it is not the smallest such set and hence violates condition (d}.

The procedure described in the example can be formalized in the form of an
algorithm which assumes that, in a preprocessing step, each line in the circuit has
been labelled with the set of primary inputs in its cone of influence [27].

From hereon, because of the simple one-to-one correspondence between the
lines in the circuit and the edges in the circuit graph, we will interchangeably talk
about the supergate as either a subgraph or the corresponding subcircuit.

Lemma 3.1. If Y is an internal edge in SG(X) (that is. ¥ is neither X nor an
edge connected to an input node of SG( X)) then SG(Y) is properly containcd in
SG(X).

Proof. Let the edge ¥ — (i, j), where, [ and j are nodes in SG( X) and { is not
an input node. Since the cone of ¥ in SG(X) is a subgraph of SG(X) it is easy
to see that conditions (a), (b}, and (c) in Lhe supergate definition must be satisfied
for the nodes in the cone. Thus, the cone must be at least as large as the superpate
of Y. This completes the proof. O

Consider the set of supergates for all the lines in a circuit. Remove from this
collection every supergate which is properly contained in another supergate. The
remaining supergates will be called maximal supergates of the circuit A collection
of supergates is said to cover a circuit if each line in the circuit is cither the
output of a supergate or included in a supergate. A cover is said to be minimal if
no subset of it is also a cover, It has been shown [26] that

(1) The minimum cover of single-outpul circuil is uniyue and consists of only
(and all) the maximal supergates. This minimum cover is actually a partition of
the circuit, that is. the supergalcs in the cover are vertex-disjoint (see Fig. 2(a)).

(2) The minimum cover of a multiple-output circuit is also unique and
includes only maximal supergates w.r.t. individual primary outputs. However, a
maximal supergate w.r.l. some primary ontput may be excluded from the caver if
it is properly contained within another maximal supergate. Further, the maximal
supergates in the unique cover need not be mutually vertex-disjoint. Thesv
differences from the single-output case are iHustrated by the [ull adder circuit
shown in Fig. 3. For the SUM output there are two maximal supergates, denoted
as SC(SUM) and SG(HALF_SUM) in the figure; the carry output has only ane
maximal supergate, SG(CARRY). The unique minimum cover of the circuit is
defined by the supergates SG(SUM) and SG(CARRY ) since SG{HALF_SUM )
is included in SG(CARRY). Also, the two supergates in the cover are not
vertex-disjoint since they share the NAND gatc marked with an asterisk in the
figure.

(3) The unique micimum cover of a multiple-output circuit can be found by an
algorithm with the time complexity O(g?), where g is the number of gates in the
cireuit,
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SGHALF SUM)
- SGICARRY)
— SG(5UM)

-‘D)‘ 5 Sur

s —
Q— CARRY
h‘7—- pd
7

MAXIMAL SUPERGATES
Fip, 3. A multi-output circuit with supergates shown for some lines. Maximal supergates (which
may overlap) form an unique cover.

The input nodcs of the supergate SG( X)) (that is, the nodes with zero indegree
in SG(X)) will be denoted as J( X'). Thesc will be partiuoned into twao classes: (i)
fanour inpurs TF{X) which have at least two directed paths in §G( X) to node /.,
where X = (i, j) (thus, at least on¢ of the edges in each path must correspond to
a fanout stemy); (b) all others which will be calied non-funout inputs and denoted
as INF(X). As an example, for the supergate SG( X) 1n Fig. 2 node 5 is a fanout
input (being a fanout stem in SG{ X)); node 2 is also a fanout input because stem
¢ provides two paths to node 9. Nodc 1 is the only non-fanout input of SG( X).
This partitioning of supergate inpwts will be shown 1o play a crucial role in
determining the complexily of our ¢omputations,

4. Controllability computation

It can be easily verified [24] that for any nodc whosc cone contains no
reconvergent fanout, the controllubility calculation is a straight-forward one-pass
process involving only the lines in the cone. Thus we will only consider calcula-
tion of controllability for the output line X of a gale al which one or more
fanouts reconverge. Let TF(X) = { ¥y, ¥3...., ¥, ). Where # is greater than 0. We
will make the inductive assumption that the controllabilities of all the inputs of
5G( X) are known,

One way to determine supergate output controllabilily is to derive a symbolic
expression for the output in terms of the input probabilities of that supergate [20].
Such symbolic expressions tend ta he hulky even for supergates of maderate size.
We, therefore, describe a numerical procedure.

Consider an assignment ol binary values to the fanout inputs represented by
the vector 4, = (a,, a,,..., a,). For cach such assignment we make a single pass
through SG(X) from inputs to outputs. First, the controllabilities of the non-
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fanoul inpui lines are known by the inductive assumption; for a fanout line y, we
assume its a ~controllability 1o be 1. Next, for the gates connected only to the
maximal supergate primary inputs we compule output controllabilities using
independence of signals at the node inputs. Formulas for this computation are
straight-forward and are available in the literature [24]. The controllabilities of
other nodes are similarly determuned 1n a breadth-first fashion assuming signal
independence. Eventually, we will compute the 1-controllability of X. This is the
conditional controllability of X when the assignment A, is made 10 the Tanout
inputs. We will denote this by C1,{ X).

T.emma 4.1. The one-controllability of a line X is

CHX)= ¥ CL(X) Prob(4,)
all 4,

where,
Prob(4,) = Prob( y, = a;) Prob(y, = a,)... Prob{y, = a,)

is the product of the known a,-controllabilities of the fanout inputs. assuming
independence among y’s that foltows from the definilion of SG(X).

The lcmma can be proved by considening the Shannon expansion of the line
function about the fanout inputs. Fach term in the cxpansion is non-zero for
precisely one assignment of binary values to the fanout inputs. The probability of
a specific assignment A4, is Prob(4,). Given the assignment, C1,(k) is the one
controllability of line &, hence Prob(4,}- C1,(k) is the contribution 1o the one
controllability of line k by all input patterns with A4, assigned to fanout inputs.
The contributions due to different A,’s can simply be added because they come
from mutually disjoint sets of input vectors.

Lemma 4.2. Let Y be an internal line in the supergate SG{ X). Assume C1(X)
is computed according to Lemma 4.1. Let C1,(Y) be defined as the conditional
ont controllability of ¥ when the assignment A, is made to the fanout inputs.

Then
CUY)= Y CL(Y)Prob(4,)
Ml A,

The significance of this lemma is that with very little overhead it is possible to
obtain the line controllabilitics of internal lines of a supergale at the same time
that its output controllabilities are being computed. An example illustrating the
use of these lemmas appears later.

Computational procedire

The computational procedure has two majar steps: (1) finding the minimum
cover of the circuit in terms of its maximal supergatcs, and (2} finding the line
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Table 1

Superpale data (4=bit ALLI}

Supergate Supergate Number of
number stze fanout iaputs
1 68 nodes 14

2 51 nodes 13

3 26 nodes 10

controllabilities of the maximal supergate using Lemmas 4.1 and 4.2. For the
second step. the maximal supergates are processed in a breadth-first fashion
starting (rom the primary inputs (this ensures that the line controflabilities of all

(e)

Fig. 4. Computation of conditional controllabilitics: (a) example cirguit with minimum cover by

manimal supergates, (b} conditional 1-controllzhilities in SC (13) when linc 7 is assigned 1. (¢)
conditional 1-controllabilitics in $G (13) when line 7 is assigned Q.
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Table 2
Controllability calculation

L

8 o 10 u 12 13
CUL) e vw0 1 1 1 1/2 1/2 1/2
CU L) e =1 1/2 1/2 172 3/4 5/8 11/16
cuL) S/8 3/8 5/8 11/16 19/32 41 /64

the inputs of supergate are known before its output controllability is determined
as required by Lemma 4.1).

As already mentioned, the first step can be carried out in at most Q(g?) steps,
where g is the number of gates in the circuit [26). The second step requires as
many sweeps of the supcrgate as the number ol patterns applicable to its fanout
imputs which is exponential in the number of fanout inputs. Bach sweep itself
requires time proportional to the number of gates in the supergate. Thus large
supergates with many [anout inputs would be very expensive for controllability
computation. As an ¢xireme example, Table 1 summarizes data from running the
supergate procedure on the 4-bit ALU (74181) (3} Approximations to the above
procedure are suggested in Section 6 for circuits with a rich reconvergent fanout
structurc.

Example 2. Figure 4(a) shows a logic circuit used as an example in the
literature [24). Also shown in the figure is the minimum cover of the circuil
consisting of two maximal supergates. Input probabilities are assumed to be 1/2
corresponding to cquiprobable inputs. The computation complexity, in gencral, is
independent of this assumption; we could have just as well assumed any arbitrary
input probabilitics. The supergate SG(7) will be processed before SG(13). Since
SG(7) has no fanout inputs, C1(7), which is the same as C1(s), is determined to
be 3/4 directly from the gate input probabililies.

At this point we know all the input probabilities of SG(13) which has only
siem 5 &s its fanout input. According to Lemma 4.1 we sct stem s in turn to O
and 1, in each case setting other input probabilities Lo their known values (1/2
since they are all primary inputs.) The computation for the two cases is shown
respectively in Figs. 4(b) and 4(c). Thus according to Lemma 4.1

C1(13) = (3/4)(11/16) + (1 /4)(1/2) = 41 /64,

‘T'he one-controllability af other lines in SG(13) can be determined by Lemma
4.2. The complete computation is summarized in Table 2.

5. Detectability computation

Once line controliabilities are known it is sufficient to consider computation of
either line detectabilities or line observabilities since these two measures arc casily
rclated to each other by eqgns. (1) and (2).
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All the proposed methods of computing line observabilities {or detectabilities)
from the circuit structure involve approximations and thus lead to errors [6,15)
The crrors can be positive or negative and can occur for reconvergent fanout
stems as well as non-stem lines [14]. They can be attributed to two distinct classes
of simplifications: (1) the observability of a line through a chain of gates can be
found hy considering the gates independently, and (2) the ohservability of a
reconvergent fanoul stem is a fixed function of i« branch ohservahilities. In the
following section we reproduce STAFAN’s rules and point out by means of a
simple example how errors are introduced in the computed values of obscrvabili-
ties / detectabilities for nonstem lines. These errors come about due to the first
simplification noted above. We show how they can be avoided for an exact
computation of non-stem detectabilities. In the next section, a similar plan is
followed for stem-line computations.

Computation for non.stem lines

Consider STAFAN’s approximations [15] for a two-input AND gate with input
lines 2 and 4 and output line ¢. Observing 4 zero value on line a requires that
line 5 should be set to 1 and the 0 on line ¢ should be observable. That is,

BO(a) = B0O(c) Prob(b=1|a=0)
= BO(c)[Prob(h =1, a=0)/Prob{a = 0)]
= BO(c)[ C1(p) — C1{e)] /CO(a). (3)
Thus, by cqgn. (1)
Di{a) = C0(a)BO(a)
= B0(c)[C1{p) — C1(c)]

=m(c>[—————““20‘(c‘§““) ] (4
Similarly.
Bl{a) = B1(¢) Prob(b=1|a=1) = B1(«)C1{(c)/C1(a). (s)
Hence by eyns. (2) and (5)
DO{a) = C1{a)Bl(a) = Bl{(c)Cl{c) = DO(c). {68)

These and similar derivations for other basic gate types are summarized in
Table 3. The expressions [or the primary-output detectabilities follow directly
from the fact that both the zero and one observabilities of the primary ouiputs
are one by definition. Unfortunately, the expressions given in Table 3 do not
always yield correct detectabilities for non-stem lines. The source of the error is
to be found in eqns. (3) and (5) from which the detectabilities were derived. In
eqn (3) BO(«) is obtained by multiplying two probabilitics, B0(c) and Prob(b =
1{a=0). This assumes that these two probabilities correspond to independent
events, not always a valid assumption. Consider the circuit shown in Fig. 5(a) and
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Table 3
STAFAN cules for detectability computation

AND . OR NOT  Primary output -

c-ah c—ath c=a a

co(b) - €O(¢)

b o) -—————
b{a) O(c) D)(:)[ C1(e) Ditey  Cia)
pitay  DUe) QB -CUe) | pye DOy €Oa)

Co(e)

assume equiprobable inputs. The exact controllabilities of the lines in the circuit
can be Jound by the method described in Section 4. These are shown in the first
two rows of Table 4. The last two rows of the table show line detectabilities
computed according to the rules of "Table 3.

Line b, a reconvergent stem, will be considered in the next section. Line a 15
observable al g whenever b 15 1. Therefore, A0{a) = Bl(a) - 1/2 and thereforz
DY(a) = D0(a) =) /4 by eqns. (1) and (2). However, our computation, in the
table. incorrectly gives Di(a)=17:- ladeed, since the circuit is so simple, the
entries in Table 4 can be readily checked by exhaustive means, It will be found
that the only other error occurs in DI{c) which should be 0 (i.e. the fault ¢
stuck-at-1 is not detectable).

In analyzing the cause of error in computing D}(a), we note that eqn. (3)
assumecs independence of BO(e) and Prob(b = 1| a = 0), hut the observability of
line e depends on the signal value on line f which is the complement ol the signal
value on line b. The STAFAN rules correctly take account of signal correlations

PR
8 _T 2 g2
—D07 0

Fig- 5. Exact detectability computation for non-fecovergent lines: (a) ap example drcuit, (L))
l-cantrollabifities when B =0, (c) 1-controllabilitics when B8 = 1.
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Tauble 4

Non-stem detectabifitics for circnit in Fig. 5(a) using STAFAN formulas

T a b : 4 . ! 2
co 172 1,2 1,2 1,72 3/4 12 1/4
1 1/2 1/2 1/2 1/2 1/4 1/2 3/4
Do 1/4 1/4 1/6 1/4 1,2 /4
Dl 17127 1/12¢ 1/2 1/4 1/4 174

¥ denotex erroncous values.

between the lines at the input of the same gate, e.p., signals on lines ¢ and [ are
correlated due to the common influence of b; their detectabilities are correctly
computed. However, correlations extending beyond the inputs of a single gate,
e.g., while computing D1(a) or D1{c¢). are ignored by STAFAN.

In summary, what prevents the use of simple rules for detectability computa-
tion in a single backward sweep of the circuit is no different from what prevents
the use of simple forward-chaining rules for controllability computation; the
culprit in both cases is signal correlation in the eircuil. In Section 4, we presented
an exact technique for controllability computation which avoided signal correla-
tions by assigning fixed binary valucs to fanout inputs of a supergate. We will use
the same idea in proposing an exact method for detectability computation for
non-stems.

Consider 3 (wo-input AND gate, with inputs a and #, and ovtput ¢, embedded
in a supergale. An input pattern to the supergate is obtaincd by a combination of
deterministic and probabilistic procedure: a binary pattern A4, is applied to
fanout inputs and each non-fanout line is set to one with a probability equal Lo its
one-controllability. For an arbitrary line k in the supergate we define its
conditional 1-detectability (conditional O-detectability) as the probability of detect-
ing the fault “k stuck-at-1" (“k stuck-at-0") at the output of the supergate when
such an input pattern is applicd to the supergate inputs. Notationally, we will use
D1,{k) and DO,(k) to represent these conditional detectabilities. Further, condi-
tional obscrvabilities, from eqns. (1) and (2), are given by:

D1, (k) |
BO.(K) = o iy
Bl (k)= M .
' C1,(k)

Onee the fanoul inputs of the supergate are fixed, the two input lincs of the AND
gate depend only on mutually disjoint sets of (non-fanout) supergate inputs. Thus
the signals on the two inputs to the AND gate arc independent and the
STAFAN's detectability rules given in Table 3 will yield correct answers for
conditional computation. Thus, for the AND gate,

DO,{a)=D0,(c)
Dl,‘(a) = D]_'.(c) m_%)o_(gll(f)
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Tuble 5
Exact detectabilities for the circuit in fig. 5(a)

a b ¢ d ¢ f B
Loy P 1/2 0 0 0 1 1
Clyny 172 1 1 1 1/2 0 1/2
Dloas 0 U 1 o} 0 0
D1,_, 172 0 0 1/2 172 1/2
DO, _q 0 i} 0 U 1 1
Do, _, 1/2 1/2 1/2 1/2 Q 1/2
DO 1/4 1/4 1/4 1/4 172 3/4
D1 1/4 0 1/2 1/4 1/4 1/4

Similarly, the rules for OR, NOT, and primary output given in Tuble 3 can be
easily adapted for conditional computations.

Theorem 5.1. Let & be 2 non-reconvergent line in a supergate and let D0(k) and
D1(k) tepresent its zcro and one detectabilitics, respectively, at the supergate
output. Then

DO(k)= Y DO, (k)P(A,)
ull A,

Dl{k)= Y D1,(k)P(4,)

all 4,

where, P(A,) is the probability of applying pattern 4, to the fanout inputs of the
supergate, This theorem can be proved using the Shannon expansion in the same
way as Lemmas 4.1.

Retuming to our example of Fig. 5, the conditional detectabilities can be
computed from Figs. 5(b) and 5(c}. Assumning line g (o be a primary output the
results arc tabulated in Table 3.

from Theorem 5.1, for example, DO(a)= Dl(u)—(L/2+ 0X1/2)=1/4,
which is verified by noting that only onc of the four input patterns detects each of
the faults: “a stuck-at-0™ and “a stuck-at-1", Note that BO(a) = D1(a)/C0a)
= 1/2. Thus non-stem line observabilities can also be correetly computed.

Computation for reconvergent stems

It is attractive to think of cxtending the above method to determine the
detectabilities of reconvergent stems in a backward trace of the circuit. ‘Lo carry
out this plan we should be able to define the detectabilities of a stem as a
function of its branch detectabilities. Unfortunately, it is not possible to ignore
the detailed circuit topology and cxpress even good bounds on a stem’s detecta-
bility in terms of its branch dctectabilitics alone. For example, it can be shown
that the stem detectability may exceed the maximum of its branch detectabilities
or that it may be strictly less than either the minimum or the union of the branch
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detectahilities [14]. The solution proposcd in this paper is (o calculate the stem
detectabilitics in a forward trace of the maximal supcrgates, overlapping the
computation with that for line controllabilities, The procedure may be thought of
as a probabilistic analog of single-fault simulation,

Let s be a reconvergent fanout stem in a supergate and lel a binary pattern A,
be applied to the fanout inputs of the supcrgate. From the definition of fanout
inputs in Section 3, it follows thal the value on siem 5 is uniquely determined by
A,. For an arbitrary line & in the supergate, we comsider the probabilitics of
disjoint events of sensitizing k 10 0 and 1 values from s. These will be called,
respectively, conditional zero-semsitization and conditional one-sensitization of k
[rom s, or symbotically, S;(s, kq) and 5,(s, &y)- Tf % has only even-parity or only
odd-parity inversion paths from s, onc of these probabilities will be zero but, in
general, both probabilities must be considered.

Theorem 5.2. Let S,(s, k,) denotc the conditional b-sensitization of a line k in
the supergate from the stem s, wherte & is either G or L.

(a) For a two-input AND gatc with inputs m and n and output p:
S,(S, Pb) = si(s' mb)[(:11(") - Sl(S, ’nl.)
+8,(s, ) CL(m) = Sits, my)]
+ Si(-'* m,)8,(s. n,)
(b) For a two-input OR gatc with inputs m and n and output p:
Si(s' pb) = S'-(.)', ”’lr)[cot(n) - Sl'(s‘ ”u)]
+8,(s5. n,)[CO,(m) - S,(5, mg)]
+8,(s, m,)S;{s, n,)
(¢) For a NOT gate with input m and outputl p:
S,(s. ps)=Si(s, m3)
A proof of the theorem appears in the Appendix. Here we provide an intuitive
justification. Part (¢) Is trivial while (b) is the dual of (a) hence it is enough to
consider only (a). How can a stem value be scnsitized to the output of an AND
gate from its inputs? We¢ can distinguish three mutually disjoint cases, each
representing one term of the expression in Part (a): the stem value 15 sensitized
through input m alone, through input n alone, or simultancously through m and
n. In the first case, input n should be a non-sensitized 1, an event with the
probability Cl,(n) — Si(s, m). It is clear that this event is independent of
sensitizing the stem valuc to the input m (since the circuit is acyclic). hence the
two probabilitics can be multiplied to accurately define the probability for the
first case. The second case is symmetrical. Finally, it is easy to see that if the

sensitized values on inputs m and n are opposite, simultaneous sensitization to
the output is not possible. On the other hand, if the sensitized input values are
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Tablz 6
Computauon of stem sensitization
X
o b P d e f -4
b=1 €1, (x) 1,2 1 1 i 172 0 1/2
CO,(x) 172 0 0 o 172 1 1/2
S,(b, xp) 0 0 0 0 1 1/2
S,(b, &) - 1 1 1 1/2 U [\
b=0 Cl,(x) 1/2 9 0 0 0 1 1
C0,(x) 1/2 1 1 1 1 v} (4]
S.(bh. x4) - 1 1 1 1/2 0 U
S (b x;) - Q o] 0 0 1 1/2

alike then the output will be sensitized with the same value. This explains the last
term in the cxpression.

Next, suppose the output line of a supergate is x. For a stem s, it is possible to
determine its conditional sensitizations to line x by Theorem 5.2. The stem’s
observabilities at x are obtained by appropriately combining these conditional
sensitizations as indicated in the following theorem:

Thevrem 53. Let s be a recanvergent stemn in a supergate and let Z, (N,) be the
subset of patterns on the fanout inputs of the supergate which cause a zero (one)
10 appear on s. Then

() DO(s)= X [Si(s, xg) + S(s, x)] P(4,)
A€Z,

(b) D1(s) = 2 !Si(s» xy) + 85, xl)]P(Ax)
AN,

A proof of theorem can again he given by considering the Shannon cxpansion
of the supergate ouiput about the fanout inputs. The argument is similar to that
used in the proof of Lemma 4.1,

Example 3. We will apply Theorems 5.2 and 5.3 to compule the detectabilities
of the stem b in Fig. 5(a). The sicps of the computation are summarized in Table
6. The two halves of the table represent conditional computation as indicated by
Theorem 5.2, for the two cases b= 1 and b = 0, respectively: these will be used 1o
compute DO(b) and Di(h) at the primary output g according to Theorem 5.3.
Thus, from the top half of Table 6,

DO(b) = [S;(b, g5) + S,(b, 5,)] Prob(b=1)
=[1/2+0]1/2=1/4
Similarly, from the lower half of Table 6,
D1(b}= [S.r(b’ o) + Si(b. g,)] Prob(b = 0)
={0+1/2]1/2=1/4
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clz i
. {0,0)
0 ©0) (0.0
A=0_ g
g=0 (4]
0 ! o

12
(12,0
12
{120
12
1 50 (1,0)
A=1 l ":) 12
B9 ——>(;§, 2.0
a P—(0,0) W
(0.0) ¢ 12.0)

()
Fig. 6. Exact 1-detactability cotmputation for recovergent stem . The three cases. (2), (b) and (e},
correspond 1o the possible input assigoments producing 1 at 5. The nuwmbers inside parentheses are
0 and 1 sensitizations from 5. The numbers outside parentheses are 1-controllabilitics.

Example 4. Consider the carry-logic circuit of Fig. 6(a). It is easily verified that
the supergate of the varry output is the whole circuil with 4 and B as the fanout
inputs. For ¢ach linc  in the network, we show the sensitizations S;(s, ko) and
S:(s, k) as an ordered pair within parenthescs. Also shown for line & is C1 (k).
Stem s is 1 for three combinations of values on A and B: 00, 01, and 10. Figures
6(2)-6(c) show the conditional scnsilizations (obtained from Theorem 5.2) and
1-controtabilitics for thc three cases. Each of these combinations occurs with
probability, £(4,}=1/4, therefore

Di(s)=[(1+0)+(1/2+0) + (172 +0)](1/4) —1/2.

6. Approximate computation

In the worst case, the supergate for a node may include all the primary inputs
as fanout inputs, ¢.g., the first supergate for the 4-bit ALU mcntioned in Section
4. In such cases, the exact controllability procedure outlined above becomes
equivalent to an exhaustive true-valuc simulation of the supergate, that is, the
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computational time is exponential in the number of primary inputs and linear in
the size of the supergate. In this section we illustrate two ways of reducing the
time complexity to manageable proportions while sacrificing some accuracy m the
computed results. The first is based on a heuristic and the second involves
sampling, For simplicity, only controllability computations are illustrated.

Heuristic approximalion

For two nodes in a circuit graph we define the distance as the number of edges
in the shortest path between the nodcs; single input nodes (mverters or buffers)
may be ignored in computing the distance. Let 7 be an intcger used as a
parameter of the heuristic. We restrict the supergate compu tation to the subgraph
in which no node is farther than a distance 7" from the supergate output.

Tntuitively, we will be considering the effect on the supergate output of all
reconvergent fanouts within a distance threshold T from 1t but ignore others
which are more “global™ in scope. At one extreme, when the distance threshold is
unity. cach node will be assumed 10 carry independent signal, as in Goldstein’s
analysis [10]. At the other extreme, when the threshold value exceeds the
maximum supergate depth, all calculations will be exact.

Example 5. Consider again the circuit shown in Fig. 4(a). Its circuit graph is
shown in Fig. 7. Figure 8(a) shows the supergates SG(12) and SG(13) determined
for this circuit when the threshold value is either 1 or 2. For either threshold value
the reconvergence of the stem s at 12 or 13 is ignored so the supergate in cach
case includes just the node and all its inputs. The resulting 1-controllability of
cach node is as shown. However, when the threshold s increased to 3 (Kig. 8(b))
the reconvergence is picked up for node 12 but only partially for node 13. The
controllability values for node 12 will therefore be computed exactly and for node
13 upproximately. The values 1n brackets in Fig. 8(b) arc conditional controllabil-
itics. Finally, for the threshold value of 4 all computations become exact. Figure
8(c) summarizes these resulis for nodes 12 and 13 and shows the error in
controllability values in each case.

it is worth noting that while more nodes ussume their exact controllability
values as the threshold is increased, the convergence to exact value for an
individual nodc may not bc monotonic. This is evident in the increased error
magnitude for C1(13) in Fig. 8(¢)-

Fig. 7. Graph representation of circuit in Fig. 4.
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1118

73128 '
73““ 656/1024
® ) ©
@

Controllabliity Error
Threshold
civz)  c1(13) | C1(12) c1(13)
1 7an28 6591024 |-3H28 31024
2 79126 658/1024 | -3/128 31024
3 18732 173288 a 9/256
4 1922 41/84 a [+]

(¢}

Fig. &. Supergates for node 12 and 13 of the circuit in Fig. 4 with restricied distance threshold
heuristic: (a) threshold =1 or 2, (b) threshald 3, (c) computed controllabilities.

A Pascal propram was written implementing the distance threshold heuristic.
As the distance threshold was increased, the accuracy of the computed probabil-
ities improved. The root-mcan-square error (averaged over all circuit nodes) was
found to decreasc monotonically with inceasing threshold, For a large threshold,
the program computed exact probabilities. It is interesting 1o observc the in-
fluence of supergate size on computation time. The results for an 880-line circuit,
C880 [30)], appear in Table 7. The much smaller average size of a supergate
compared to the 4-bit ALU (Table 1) is worth noting, as also the shallowness of
supergates represcnted by relatively small average depth.The circuit C880 has 60
primary inputs and 26 primary outputs. The maximal supergate cover of the
circuit was found 10 contain 99 supergates. All but 9 of these had fewer than
three fanout inputs and depth smaller than four. The average error seitles down
to a stable value after a distance throshold of 3. On the other hand, the
compuiation cost rises expanentially with the distance threshold.

The basic idea of the above heuristic is to definc a distancc measure between a
pair of signals in the circait. Other definitions of the distance function may also
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Table 7

Distance threshold heuristic (circuit CRE0)

Distance Supergate Statistics Controllability

threshold Number of Average Average no. c_omputation
suptrgates depth of nodes time
bu'.'”-l'gd ey p noaes (nomaﬁzcd)

1 383 U Yoo 2,90 1000

2 64 1.26 3.64 254

3 163 132 5351 7.38

4 141 1.45 6.88 23.47

] 134 1.63 8.19 43,67

[

127 163 B.99 7854
* 1.00 =576 CPU s on VAX /11-780,

Table 8
Computational error vs, sample sze (4-bit ALU)

Sumple siae

10 5 100 1000
r.m.s, &rror 0.103 0.052 ' 0.046 0.011
max, ereor 0.300 0.140 0.145 0.036

std. dev. 0.073 0035 (.030 0.007

he used. For example, a distance function may be based on the set of primary
inputs in the cone of influence of a line {27],

A sampling technigue

Another alternative to exuct computation involves sampling of the space
defined by the fanout inputs to a supergate. We assume that the primary input
controllabilities are known so it is possible to generate a sample of fanout inputs.
Only a small sample of assignments indicated in Lemma 4.1 is tried. The
weighled sum in Lemma 4.1 must, however, be normalized by dividing the sample
probability into the result, Sampling may be restricted only to cases where the
number of fanout inputs of a superpate exceeds a certain threshold value.

In an experiment the sampling technique was used 10 computc the controllabil-
ity values. The effect of sample sizc on the accuracy of computation in the 4-bit
ALU circuit can be scen in Table 8. We note that a sample of as small as 50
patlcrns on the fanout inputs can provide quite accurate results,

7. Conclusion

We have defined controllabilities, detectabilities, and obscrvabilities as prob-
abilistic measures of circuit testability. Supergate cover allows exact computation
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of these quantities with reduced effort. In case of detectabilities, it is necessary 1o
treat non-reconvergent lines differently from reconvergent stems. The detectabil-
ities of Lhe latter are computed in a forward trace through the circuit along with
all the line controllabilities. Then, the primary output detectabilities are initial-
ized and a backward trace determines the detectabilities of non-reconvergent
lines.

The concept ol supergates introduced in this paper is crucial 1o the analysis,
We have analyzed the supergate structure of single and multiple output circuits
and shown that the covering of the circuil in terms of maximal supergates is
unjque in both cases. Finding such cover has the worst-case time complexity that
1s quadratic in the number of nodes in the circuit graph. A distinet feature of our
approach is that both the exact and approximale analyscs arc possible within a
common framework, with time complexities ranging from exponential to linear in
circuit size. Experimental resulis show that reasonable accuracy may be achicva-
ble even by linear algorithms.
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Appendix

Proof of Theorem 5,2,

As explained in the intuitive argument following the statement of the theorem,
we need Lo consider only Part (a) with b == 1. The following notation will be used:

X =(x,, x3...., x,): Input vector to supergate.

k{X): function of supergate inputs realized on line k (abbreviated to &

whenever there is no ambiguity.)

s: stem line of supergate whose detectability is desired.

k(s, X): function of s and supergate inputs realized on line &k (abbreviated Lo

x; to determine x, consider the modified supergatc in which the subcircuit

feeding s has been removed and s is made an additional input to the

supergate.)

[A£{X)],: Restriction of k when binary pattern A4, is assigned to the funout

inputs; the resultant function depends only on the non-fanout inputs.

[x(s. X)];: Restriction of ¥ when A, is assigned as above and the (binary)

value on s in the original circuit resulting from the assignment is appled 1o

input 5; the resulting function depends caly on the non-fanout inputs.

k" =(dx(s, X)/ds): The Boolean difference of k w.r.L s.
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| £ | = (nmumber of true minterms of f( X))/2": The syndrome of Boolean func-
tion f{X).

Lemma A.L [k( X)], = [£(s. X)],
The proof is immediate from the definitions.

Lemma A.2. Under the assumption that all input patterns to a supergate are
equiprobable,

((3) S,(-fs k2)=l[k“’1i|‘
(6) S,{s, ko) =|[ke’] ]

Proof of Lemma A2. The Boolean difference x’ represents the condition of
sensitizing § to line &. Thus, the Boolean function [k«x’]; represents the condition
of sensitizing a 1 to line k& from s when A4, is applied to funout inputs. The
syndrome of this function is then equal to S(s, k,) under the cquiprobable
assumption as statcd abhove. A similar proof can be given [or (b).

For the two-input AND gate, we will use m. », and p to denotc the line
functions of supergate inputs X; the corresponding line functions in the modified
circuit (after deleting the subcircuit feeding s and making s an inpul) will be
denoted by p, #, and = respectively. Note thut p —mn and 7= py.

From Lemma A2

S(s. m)=llp=’l.l
Now from the theory of Boolean differences [25]
' =(ur) =pr' Oprapy’
Therefore,
[pr]i=[mapy’], ® [map's], ® [map'y'},.
Consider the first term
|rmnp’}; o {m] [n)i 1] [0}
From Lemma Al, [m], ={x],, hence
[”ml""]/= [m];[n]:[¢]; = [m'”"]:'
Similarly, [mnp’v]; = [mng’],, hence
lon’l.=[mnv’]. @ [mny’]; @ | map’»’],
=l{mn(r'@p’)), @ [map'y'],.
Now, v ®@p' =v' ® ;1-’, therefore
(o], = [mnv], @ [nos’], @ [mnp'v'] .
The three terms on the right hand side are disjoint, hence,

S.(s, py) -f[pﬂ'],]=|[mn7]‘| +Hmn?]ll + [ mnp'v’] ).
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Since, under the assignment of pattern A, the signals on lines m and n become
independent, we have

S{s, py) = Ilm]ill["”_,l‘
Note that
Cl.(n)={[n],1 =|[n(y'@7)]‘,i =i{nv'},] +H,,;;']j

=S, (s. n) +Hn7]

+[[m] 1]+ [ me ) Bl L (A)

i

Therefore,
[7#],| = €. (n) = 5,(5. my).

Simitarly, {[mp'];| = C1,(m) — S,(s, m,).
When these subsritutions are madc on the right hand side of Eqn. (A.1). we get
the desired resull.
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