

Special Session: Survey of Test Point Insertion for
Logic Built-in Self-test
Yang Sun, Spencer K. Millican, and Vishwani D. Agrawal

Department of Electrical and Computer Engineering, Auburn University
341 War Eagle Way, Auburn, AL 36849-5201

yzs0057@auburn.edu, millican@auburn.edu, agrawvd@auburn.edu

Abstract–This article surveys test point (TP) architectures and test
point insertion (TPI) methods for increasing pseudo-random and
logic built-in self-test (LBIST) fault coverage. We present a history
of TPI approaches, including TPI for increasing stuck-at fault
coverage, compressing test patterns, detecting path delay faults,
and reducing test power. We discuss some known weaknesses of
TPs and explore research directions to overcome them.
Index Terms–survey, test points, test point insertion, built-in self-
test, path delay test, pseudo-random test

I. INTRODUCTION
Modern electronics in critical and high-assurance

applications (e.g. self-driving cars, aerospace, and medical
devices) have strict reliability requirements. Since defective
devices create economic loss or catastrophic loss-of-life,
manufacturing tests must be credible in detecting and preventing
faulty behavior. Tests are also required in the field after
manufacturing to detect post-delivery defects, (i.e., soft errors).

Logic built-in self-test (LBIST) [1] is commonly used for
both manufacturing tests and post-manufacturing reliability
checks [2]. LBIST uses on-chip stimulus generators, i.e. pseudo-
random pattern generators (PRPGs) [3], [4] to stimulate circuits
inputs and set circuit states while circuit outputs and states are
observed. When complementing conventional test methods (i.e.,
ATPG), LBIST can significantly increase fault coverage while
decreasing test application time. LBIST is useful in field test.
With embedded LBIST, devices become testable with minimal
functional interruption by saving the circuit state, applying test
enable/disable signals, and then reloading the circuit state to
resume the normal function.

A major challenge for LBIST is detecting random pattern
resistant (RPR) faults [5]. RPR faults manifest in logic with
many inputs when few input combinations can excite certain
logic paths, and therefore pseudo-random tests often fail to
excite and observe RPR faults. The prototypical example of an
RPR fault is the output of a large logic gate. For example,
probability of the output of a 32-input AND gate being logic-1
and exciting a stuck-at-0 fault is 0.532 (presuming all AND gate
inputs are equally likely to be logic-0 or logic-1), which implies
more than one billion pseudo-random patterns may be needed to
excite the fault. Under the presence of RPR faults, applying
LBIST becomes a time and power consuming process.

To detect RPR faults, many technologies have been
proposed to improve the type of patterns applied, either through
weighted random pattern testing [6]–[13] or PRPG reseeding
[14]–[22]. Although useful, these methods require extra
hardware to generate weights, require significant computation to
calculate seeds, or require significant memory and hardware to

store and apply seeds. Although still used in modern designs,
some applications that have restricted hardware resources and
nuanced environments cannot apply such methods, whilst others
still need additional fault coverage with such methods.

An alternative method to improve LBIST performance is
modifying circuits with test points (TPs). TPs change circuit
values or observe values in a circuit, thus making the detection
of RPR faults easier. Test point insertion (TPI) techniques find
high-quality TPs locations which improve fault coverage or
reduce the number of test patterns. Since the concept of TPI was
proposed by Hayes and Friedman [23] in 1974, numerous
algorithms have appeared to improve TPI performance. These
methods can be placed into one of three categories based on how
testability is measured: fault simulation, approximate testability
measures, or multiple measurements. TPs can also be used in
analog circuits, e.g., fault diagnosis and analog testing [24], [25],
or to improve ATPG results [26], but present survey focuses on
TPs for digital circuit LBIST.

II. TP ARCHITECTURES

A. TP implementations
TPs are circuit modifications which change or observe

circuit functions during test but do not change the circuit
function when disabled [23], [27]. Conventional TPs are
categorized into two types [28]: control TPs and observe TPs (as
shown in Figure 1(a), (b), and (d)). Control TPs are typically
implemented using OR gates for control-1 TPs or AND gates for
control-0 TPs (and NAND/NOR gates can be used at the output
of inverters). During test, a test enable pin forces lines to their
controlled values [29]. While not under test, this test enable pin
is disabled and the circuit function does not change. The goal of
control TPs is to increase the probability of exciting faults in a
circuit and to make faults easier to observe by creating
propagation paths to circuit outputs. Observe TPs change circuit
observability by inserting fan-outs to circuit outputs, which
makes faulty values on lines easily observed [30].

The source of test enable and the output for observe points
can either be a pin or a scan latch. Although test enable is most
often modeled as a pin, implementing it as a circuit pin is
impractical given the high cost of circuit pins. Instead, outputs
and inputs of scan latches typically provide additional TP
“pins”. A large circuit with many TPs and (latch-implemented)
TP pins may require significant area overhead. There are
numerous articles on reducing TP pin/latch area overhead while
using TP pins selectively to increase fault coverage. The
following sub-section surveys these.

2020 IEEE 38th VLSI Test Symposium (VTS)

!

978-1-7281-5359-9/20/$31.00 ©2020 IEEE

!

Although effective for increasing stuck-at fault coverage,
both control and observe TPs have their detriments; hence, TPI
must carefully select TP locations and types. Since a control TP
forces the line to ‘0’ or ‘1’ when active, the controlled line can
only be a single value when the TP is active. This prevents one
stuck-at fault on the line from being excited. Additionally, active
control TPs block the transmission of excited faults through the
controlled line. Although observation TPs do not block faults
like control TPs, observation TPs cannot detect RPR faults that
are difficult to excite.

In contrast to control TPs, inversion TPs use inversions to
change line values during test [31]–[35]. Inversion TPs are made
with XOR gates and a test enable pin (shown in Figure 1(c)):
when the test enable pin is active, the XOR gate becomes an
inverter; otherwise the XOR gate acts as a buffer. In contrast to
conventional TPs which force lines to values, inversion TPs
invert signal probabilities, i.e., if a line has an 80% probability
of being logic-1, the line will have a 20% probability of being
logic-1 with an active inversion TP. Because active inversion
TPs do not force a single value, both stuck-at-0 and stuck-at-1
faults can be excited on active TP locations. Additionally, faults
can propagate through inversion TPs to circuit outputs (unlike
control TPs which block faults from propagating through) [35].
However, inversion TPs add more propagation delay, power,
and overhead compared to control TPs [35], [36]. Additionally,
RPR faults may require values to be forced to optimally increase
fault coverage [35], which inversion TPs cannot perform.

B. TP selection architectures
Although TPs can significantly improve fault coverage, they

can create significant area overhead, which in turn increases
production costs and reduces yields due to larger die areas and
fewer dies per wafer [37]. One study found chip area increased
by 2.68% when using logic BIST, and TPs constituted 43% of
this area increase [38]. It is therefore important to reduce the area
overhead of TPs while keeping LBIST fault coverage high.

To reduce TP area overhead, some methods proposed
sharing flip-flops or other existing circuit signals to reduce TP-
controlling hardware [28], [31], [38]–[42]. [28] and [39]
proposed sharing a single flip-flop for multiple test enable
signals, which reduced the number of flip-flops that were
required to implement control points. [38], [41] found more than
half of TPs inserted were control points, so replacing dedicated
test enable flip-flops with existing functional flip-flops reduced
area overhead: suitable functional flip-flops can be found in the
fan-in region with the shortest distance from the control TPs.
Additionally, the test enable signals were only active in the test
mode since the test enable signal is generated based on latch

value combinations that can never appear in the functional
mode. [40] proposed a self-drive TP, which used test enable
signals created from gate outputs already existing in the circuit,
which eliminated the test enable signal generation. Similar to
[40], [31] used pre-existing signals for test enable without the
need for extra registers. [42] utilized controllability don’t-cares
to generate TPs activation signals instead of a global test enable
signal, which generated test enable signals locally and allowed
TPs to be randomly activated: these controllability don’t-cares
are constant values in the functional mode, such as circuit states
accessible only through scan, and thus can only change values
in the test mode.

Other studies proposed reducing the number of TPs needed
through various means. [43], [44] partitioned circuit tests into
multiple phases, and sub-sets of control TPs were activated
during certain phases. This provided greater control over the
interaction between control points and helped reduce the total
number of TPs needed to obtain adequate fault coverage.

III. TEST POINT INSERTION ALGORITHMS
TPI algorithms iteratively select TPs from a list of

candidates. In each iteration, they select a TP that increases the
fault coverage the most without violating other constraints, such
as, fault coverage, power, delay, etc. Optimal TP placement in
circuits with reconvergent fanouts is a known NP-hard problem
[45], [46] and, therefore, most TPI approaches use heuristics to
select TP locations.

Many TPI algorithms proposed in the literature perform the
following steps to insert a single TP. First, fault simulation or
approximate testability measures identify RPR faults. Second,
candidate TPs are evaluated for their impact on fault coverage.
Third, the TP with the highest positive impact on fault coverage
is inserted into the circuit. This process repeats until reaching the
number of desired TPs or achieving some pre-designated
threshold for estimated fault coverage.

A. TPI using simulation
Using fault simulation to find undetected faults and then

inserting TPs to detect these faults is a straightforward method
of TPI. [47] inserted control TPs on gate outputs where faults
were not excited while inserting observe TPs at the input of gates
which blocked propagation. [48] used backward path tracing
[49]–[51] on undetected fault sites and used control TPs to
sensitize a path to the fault.

Several methods [43], [44] used probabilistic fault
simulation to guide TP placement combined with greedy
heuristics. Probabilistic fault simulation performs regular logic
simulation to find signal probabilities and faults which are
propagated in the circuit, and then uses these probabilities to
predict the probability any fault will be detected at a given
location [44]. [44] used this method combined with a divide-
and-conquer technique: probabilistic fault simulation was
performed in phases, and at the end of each phase, TPs were
inserted to target faults with the lowest detection probability.
[43] improved memory usage and TPI CPU time whilst
marginally sacrificing TPI accuracy: instead of using logic
simulation to determine all faults which can be detected on each
circuit line (and the probability of each fault being detected), a
representative of all faults at each fan-out location is chosen in
order to reduce the number of faults to consider during TPI.

TETE
a) Control-0 b) Control-1

TE
c) Inversion d) Observe

Figure 1: Illustrated here are the logic-level implementations of
control, inversion, and observe TPs.

!

!

B. TPI using approximate testability measures
Fault simulation accurately quantifies fault coverage, but its

computation complexity (in terms of CPU time and memory) is
infeasible for modern circuits: to overcome this, numerous
studies replace fault simulation with approximate testability
measures, such as SCOAP [52] and COP [53]. SCOAP [52] is a
linear complexity algorithm (relative to the number of logic
gates in a circuit to analyze) which estimates the number of
circuit inputs needed to force a logic-0/1 on a line, defined as
controllability. Using these values, SCOAP can estimate the
observability of a line, which is the number of inputs that must
be set to propagate a faulty value on a line to an observable
output. SCOAP also includes the depth of a line in a circuit in
its controllability and observability estimations. Alternatively,
COP [53] predicts the probability a line will be logic-0/1 and the
probability of a line’s value will be observed at a circuit output
presuming random stimuli is applied to circuit inputs. COP
values can directly predict the probability of fault detection:
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for stuck-at-0 faults and
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∗ 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for stuck-at-1 faults.
Controllability and observability measures can therefore be used
to identify hard-to-control and hard-to-observe locations in a
circuit, and they can be used to predict the current fault coverage
(with or without a TP) of a circuit without performing fault
simulation: TPs can then be inserted based on this information.

Compared against exact fault simulation, testability
measurements take substantially less time to calculate but loose
accuracy for circuits with many reconvergent fanouts. However,
experiments have suggested approximate testability
measurements can be accurate enough for use in TPI for large
designs [54]. Therefore, many TPI methods from literature [54]–
[59] use a cost function to estimate a TP’s quality, with a typical
example [55] provided below: 𝐹𝐹 is a set of faults, and 𝑃𝑃𝑑𝑑𝑗𝑗 is the
probability the fault 𝑗𝑗 is detected (calculated using COP).

𝑈𝑈 =
1

|𝐹𝐹|
�

1
𝑃𝑃𝑑𝑑𝑗𝑗∀𝑗𝑗∈𝐹𝐹

Cost functions such as 𝑈𝑈 are used as indicators of circuit
testability, and many TPI algorithms attempt to maximize such
cost functions during TPI. In this example, the value of 𝑈𝑈
changes when a TP is inserted, and the difference in 𝑈𝑈 before
and after a TP is inserted is called actual cost reduction (ACR)
[55]. Gradient calculations [55] can select TPs with the largest
ACR, but the computational complexity of finding the ACR for
every TP is too high and unpractical for modern circuits [54].
Therefore, the concept of a cost reduction factor (CRF) was
introduced to approximate ACRs [59]. The algorithms which
use CRFs and ACRs typically perform as follows: first,
controllability and observability are calculated using an
approximate testability measure, e.g. COP or SCOAP; second,
the CRF for each TP in a candidate set is calculated, discarding
TPs with CRF below a given threshold; third, the ACR for
remaining candidate TPs is calculated; lastly, the TP with the
largest ACR is inserted.

For evaluating a TP by cost function, various studies use
nuances to either select superior TPs or reduce TPI CPU time.
[56] selected TPs whose impacts on timing slack and fault
coverage were smaller and larger, respectively, than given
thresholds. [54], [57] proposed hybrid cost reduction: after a TP

was inserted, faults were divided into two subsets, and only
those with a large change in 1 𝑃𝑃𝑑𝑑𝑓𝑓� had their 1 𝑃𝑃𝑑𝑑𝑓𝑓� value
recalculated using fault simulation (with other faults being
calculated by testability analysis); the rationale for this is that
large changes in a CRF may be inaccurate. [58] proposed three
strategies for accelerating CRF-based algorithms: remove TPs
with redundant TPI-effective regions (i.e., regions where the
same controllability (for control TPs) or observability (for
observe TPs) are changed), choose the TP with the highest CRF
(i.e., do not calculate ACR), and reduce candidate TPs by
selecting the first TP found to reduce the cost function (instead
of calculating the ACR or CRF for all candidate TPs).

Beyond COP and SCOAP, other methods use
additional/alternative cost functions or introduce additional
constraints. [28], [60] identified RPR faults using COP and
created fault sectors: RPR faults were sorted by ascending logic
levels, then control TPs targeted faults in ascending order and
observation TPs targeted faults in descending order. This
prevented the targeting of same fault by multiple TPs, which
reduced the number of TPs required. [61] used test counts (TCs)
to complement COP-based TPI: the TC of a line is the fewest
number of tests that must pass through the line such that all faults
in its fan-in cone will be tested, and TPs were selected in order
of the most tests which must pass through the TP location. [26]
proposed several cost functions using one or multiple test
analysis measurements (COP, SCOAP, or TC): TPI was split
into multiple stages, where each stage selected a cost function to
target the currently the hardest test problem, namely, finding
tests for RPR faults, reducing test vectors, or a combination of
the two. [62], [63] used pre-TP COP controllability and
observability as an input feature to an artificial neural network
which predicted the quality of a TP. [64], [65] used an efficiency
equation for TPs, which evaluated the size of a TP fan-out/fan-
in cone-of-influence and the number of undetected faults in this
cone. This information then helps select the TP with the highest
efficiency. An estimation metric approximates the final area
overhead and test coverage without TP insertion and synthesis.
[66] proposed a new conditional testability measure to overcome
COP’s inability to account for reconvergent fan-outs, thus
increasing the accuracy of calculated cost functions.

Some methods incorporate non-fault coverage information,
such as, timing violations, into cost functions [56] or efficiency
equations [65], as discussed in the following section.

C. TPI using multiple measures
Some approaches utilize both fault simulation and testability

measures to increase TP quality [67]–[69]. [67] reduced test
vector counts and test generation time by considering layout and
timing information for observe TPs. The cost function (see
Section III.B) of an observe TP was the product of the total
number of independent faults (i.e., faults which cannot be
simultaneously detected by any single pattern) in the fan-in cone
of the observe TP (which was found through fault simulation)
and the minimum number of controlled primary inputs needed
to propagate the independent faults to the TP location (estimated
using SCOAP). [68], [69] performed COP and fault simulation
to calculate fault testability, propagated faults, and faults
blocked by control TPs: the cost function of control TPs is based
on the controllability of blocked faults and that of observation
TPs is composed of the observability of unobserved faults.

!

!

IV. MODERN TARGETS FOR TPI

A. Path manipulation to increase path delay fault coverage
A path delay fault (PDF) [70] occurs when any path’s delay

exceeds a circuit’s designed clock speed, and the PDF models
defects which cause cumulative propagation delays along a
circuit path that exceed the circuit’s specifications. Unlike stuck-
at faults, PDFs involve operational features as well. Thus, a PDF
exists only within a certain range of operational clock periods.
A PDF test uses a set-up vector to create the precondition for a
transition and a second trigger vector to initiate the transition.
Specialized test hardware, using a clock period greater than the
operational clock period loads a set-up vector and then applies a
trigger vector, but the operational clock period must follow the
trigger vector in order to capture a transition along the path
under test. If the target output has not changed from its value
after the set-up vector, then the circuit is faulty.

There are three problems associated with PDFs, which are
problems TPs have attempted to address. First, the number of
paths (and number of PDFs) in practically-sized circuits is too
large for test tools to handle [71]. Second, the number of tests
needed to detect all PDFs is too large [72]. Third, many PDFs in
practical circuits are not testable [73]. To remedy this, TPs can
divide full paths into sub-paths, thus making paths easier to test
and reducing the number of paths [74]. Additionally, it is easier
to generate tests for shorter sub-paths [74].

TPI methods have incorporated these observations into cost
functions, which represent the number of paths in a circuit, i.e.,
the TP that reduces the total number of paths in the circuit is
iteratively chosen [74]–[76]. [75] selected TPs using the cost
function above. [74] added an additional constraint to the above
cost function, i.e., clock speed of the circuit under test: if a TP
reduces the longest path in the circuit, the clock speed during
test can be increased, thus decreasing test application time. [76]
targeted non-robust-dependent faults of functionally
sensitizable paths [77], thereby reducing the fault set and hence
the number of TPs.

B. Power reduction during test
The power consumption of digital systems is considerably

higher in a test mode compared to functional modes. This is
because during normal circuit operation, a relatively small
number of flip-flops change value each clock cycle, whilst in a
test mode, a much larger number of flip-flops will change
values, which results in excessive switching activity and current
spikes [78]. Especially during self-test, power dissipation
increases since random patterns can cause many nodes to switch
[79]. If the peak power during test is too large, 𝑉𝑉𝑑𝑑𝑑𝑑 drop or
ground bounce can cause false-failures or device damage.

Some studies [78], [79] inserted TPs to reduce power
consumption during test, but TP placement was restricted to flip-
flop outputs. [79] used modified shift registers which suppress
activity at the output during shift operations: by adding NOR or
NAND gates to the outputs of latches controlled by a test enable
pin, latch outputs were forced to known values and thus did not
cause circuit switching. [78] proposed inserting TPs into a
conventional full-scan circuit to keep peak power during scan
below a given limit without decreasing fault coverage (with TPs
being inactive during the capture cycles): a subset of scan flip-
flop outputs were forced to 0 and 1 during scan. First, cycle-by-
cycle simulation identified which scan cycle’s power

consumption was greater than the specified limit. Second, an
event-driven, selective trace simulation procedure [80]
estimated the power reduction for every latch when its output
was forced to 0 or 1, then latches were iteratively forced to
reduce power consumption.

C. Considering the timing impacts of TPs
Inserted TPs may cause circuit timing violations which break

proper circuit operation [37], and resolving these timing
violations may require several tedious design iterations. Many
attempts have been proposed [56], [81]–[83] to insert TPs to
increase fault coverage without creating new timing violations.
In [56], [83], timing analysis was performed before TPI to
identify paths with small timing slacks, then TPI was performed
after removing candidate TPs which reside on such paths. [81]
performed TPI without any constraints, then timing analysis was
performed to remove TPs which caused timing violations. [82]
performed TPI at RTL-level (instead of the typical logical netlist
level), which means TPs were inserted before logic synthesis to
avoid later design iterations.

For timing or delay test, LBIST often involves at-speed
application of pseudorandom patterns. Possible activation of
non-functional false paths or multi-cycle paths may cause a good
circuit to fail during test. We use timing analysis to ether suitably
reduce the LBIST clock frequency [84] or identify circuit
responses for masking during test [85]. The timing analysis must
account for the TPI related logic modifications as well.

V. THE FUTURE OF TPI
TPI has been explored extensively since 1974 [23].

Numerous proposed methods improved existing approaches or
targeted nuanced issues. The testability of circuits and potential
for using LBIST have been consistently improving.

However, as logic circuits become ever-more complex
(despite the theoretical presence of “Moore’s Wall”) new
problems will appear and the performance of TPI methods will
need to improve further. First, few studies have touched the
impact TPI has on power (or how to use TPI to reduce power
without restricting TP placement to latch outputs), thus power
will be an attracting topic in the future, especially since low-
power applications are in high demand for consumer. Second,
most TPI studies only target one or two problems, but many
design issues (timing, area, power, and testability) directly
conflict with each other, and addressing several of these issues
simultaneously requires nuances to be addressed. A noteworthy
challenge is the security issue created by TPs [86]. Third, with
rapid technology developments, modern circuits have millions
of components and the computational complexity of TPI is
growing at a rate faster than the size of the circuits to be analyzed
[62]. Additionally, more TPs need to be evaluated and inserted
to increase fault coverage to acceptable levels in these large
circuits, thus current TPI heuristics (and other DFT algorithms)
will need significantly more time to meet fault coverage
requirements. Given most TPI experiments in literature are done
under old benchmark circuits, e.g., ISCAS’85 [87], ISCAS’89
[88], or ITC’99 [89], the ability of established heuristics to
perform on larger, modern circuits need to be studied, as do new
computing paradigms that can break the “heuristic wall”.

!

!

VI. REFERENCES
[1] B. L. Keller and T. J. Snethen, “Built-in Self-Test Support in the IBM

Engineering Design System,” IBM J. Res. Dev., vol. 34, no. 2.3, pp. 406–
415, Mar. 1990.

[2] P. H. Bardell and W. H. McAnney, “Self-Testing of Multichip Logic
Modules,” in Proc. Intl. Test Conf. (ITC), Philadelphia, PA, USA, Nov.
1982, pp. 200–204.

[3] E. B. Eichelberger and E. Lindbloom, “Random-Pattern Coverage
Enhancement and Diagnosis for LSSD Logic Self-Test,” IBM J. Res. Dev.,
vol. 27, no. 3, pp. 265–272, May 1983.

[4] I. Pomeranz and S. M. Reddy, “3-Weight Pseudo-Random Test
Generation Based on a Deterministic Test Set for Combinational and
Sequential Circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 12, no. 7, pp. 1050–1058, Jul. 1993.

[5] E. J. Mccluskey, “Built-In Self-Test Techniques,” IEEE Des. Test
Comput., vol. 2, no. 2, pp. 21–28, Apr. 1895.

[6] D. Xiang, X. Wen, and L.-T. Wang, “Low-Power Scan-Based Built-In
Self-Test Based on Weighted Pseudorandom Test Pattern Generation and
Reseeding,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 25, no.
3, pp. 942–953, Mar. 2017.

[7] H.-J. Wunderlich, “Multiple Distributions for Biased Random Test
Patterns,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 9,
no. 6, pp. 584–593, Jun. 1990.

[8] F. Brglez, C. Gloster, and G. Kedem, “Hardware-Based Weighted
Random Pattern Generation,” in Proc. Intl. Test Conf. (ITC), Washington,
DC, USA, Aug. 1989, pp. 264–274.

[9] M. Bershteyn, “Calculation of Multiple Sets of Weights for Weighted
Random Testing,” in Proc. Intl. Test Conf. (ITC), Baltimore, MD, USA,
Oct. 1993, pp. 1031–1040.

[10] A. Jas, C. V. Krishna, and N. A. Touba, “Hybrid BIST Based on Weighted
Pseudo-Random Testing: A New Test Resource Partitioning Scheme,” in
Proc. 19th IEEE VLSI Test Symp. (VTS), Marina Del Rey, CA, USA, Apr.
2001, pp. 2–8.

[11] S. Pateras and J. Rajski, “Cube-Contained Random Patterns and their
Application to the Complete Testing of Synthesized Multi-level Circuits,”
in Proc. Intl. Test Conf. (ITC), Nashville, TN, USA, Oct. 1991, pp. 473–
482.

[12] R. Kapur, S. Patil, T. J. Snethen, and T. W. Williams, “Design of an
Efficient Weighted Random Pattern Generation System,” in Proc. Intl.
Test Conf. (ITC), Washington, DC, USA, Oct. 1994, pp. 491–500.

[13] L. Lai, J. H. Patel, T. Rinderknecht, and W.-T. Cheng, “Hardware Efficient
LBIST With Complementary Weights,” in Proc. Intl. Conf. Computer
Design (ICCD), San Jose, CA, USA, Oct. 2005.

[14] I. Pomeranz, “Computation of Seeds for LFSR-Based n-Detection Test
Generation,” ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 2, pp.
29:1–29:13, Jan. 2017.

[15] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded
Deterministic Test,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 23, no. 5, pp. 776–792, May 2004.

[16] G. K. Contreras, Y. Zhao, N. Ahmed, L. Winemberg, and M. Tehranipoor,
“LBIST Pattern Reduction by Learning ATPG Test Cube Properties,” in
Proc. 16th Intl. Symp. Quality Electronic Design (ISQED), Santa Clara,
CA, USA, Mar. 2015, pp. 147–153.

[17] G. Contreras, N. Ahmed, L. Winemberg, and M. Tehranipoor, “Predictive
LBIST Model and Partial ATPG for Seed Extraction,” in Proc. IEEE Intl.
Symp. Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS), Amherst, MA, USA, Oct. 2015, pp. 139–146.

[18] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation of
Vector Patterns Through Reseeding of Multiple-Polynominal Linear
Feedback Shift Registers,” in Proc. Intl. Test Conf. (ITC), Baltimore, MD,
USA, Sep. 1992, pp. 120–129.

[19] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in Test for Circuits with Scan Based on Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers,” IEEE Trans. Comput., vol.
44, no. 2, pp. 223–233, Feb. 1995.

[20] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D.
Wheater, “A SmartBIST Variant with Guaranteed Encoding,” in Proc.
10th Asian Test Symp. (ATS), Kyoto, Japan, 2001, pp. 325–330.

[21] C. V. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using
Partial LFSR Reseeding,” in Proc. Intl. Test Conf. (ITC), Baltimore, MD,
USA, Nov. 2001, pp. 885–893.

[22] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, N. Tamarapalli, and J. Qian,
“Embedded Deterministic Test for Low-Cost Manufacturing,” IEEE Des.
Test Comput., vol. 20, no. 5, pp. 58–66, Oct. 2003.

[23] J. P. Hayes and A. D. Friedman, “Test Point Placement to Simplify Fault
Detection,” IEEE Trans. Comput., vol. C–23, no. 7, pp. 727–735, Jul.
1974.

[24] K. K. Pinjala and B. C. Kim, “An Approach for Selection of Test Points
for Analog Fault diagnosis,” in Proc. 18th IEEE Intl. Symp. Defect and
Fault Tolerance in VLSI Systems (DFT), Boston, MA, USA, Nov. 2003.

[25] C. Yang, S. Tian, and B. Long, “Application of Heuristic Graph Search to
Test-Point Selection for Analog Fault Dictionary Techniques,” IEEE
Trans. Instrum. Meas., vol. 58, no. 7, pp. 2145–2158, Jul. 2009.

[26] M. J. Geuzebroek, J. Th. van der Linden, and A. J. van de Goor, “Test
Point Insertion That Facilitates ATPG in Reducing Test Time and Data
Volume,” in Proc. Intl. Test Conf. (ITC), Baltimore, MD, USA, Oct. 2002,
pp. 138–147.

[27] A. J. Briers and K. A. E. Totton, “Random Pattern Testability by Fast Fault
Simulation,” in Proc. Intl. Test Conf. (ITC), Washington, DC, USA, Sep.
1986, pp. 274–281.

[28] M. Youssef, Y. Savaria, and B. Kaminska, “Methodology for Efficiently
Inserting and Condensing Test Points,” IEE Proc E - Comput. Digit. Tech.,
vol. 140, no. 3, pp. 154–160, May 1993.

[29] J.-S. Yang, N. A. Touba, and B. Nadeau-Dostie, “Test Point Insertion with
Control Points Driven by Existing Functional Flip-Flops,” IEEE Trans.
Comput., vol. 61, no. 10, pp. 1473–1483, Oct. 2012.

[30] J. R. Fox, “Test-Point Condensation in the Diagnosis of Digital Circuits,”
Proc Inst. Electr. Eng., vol. 124, no. 2, pp. 89–94, Feb. 1977.

[31] H. Ren, M. Kusko, V. Kravets, and R. Yaari, “Low Cost Test Point
Insertion Without Using Extra Registers for High Performance Design,”
in Proc. Intl. Test Conf. (ITC), Austin, TX, USA, Nov. 2009.

[32] D. V. Bakshi, “Techniques for Seed Computation and Testability
Enhancement for Logic Built-In Self Test,” M.S. thesis, Virginia Tech -
Bradley Dept. Elec. Comp. Eng., Blacksburg, Virginia, 2012.

[33] Y. Fang and A. Albicki, “Efficient Testability Enhancement for
Combinational Circuit,” in Proc. Intl. Conf. Computer Design (ICCD),
Austin, TX, USA, Oct. 1995, pp. 168–172.

[34] E. M. Rudnick, V. Chickermane, and J. H. Patel, “An Observability
Enhancement Approach for Improved Testability and at-Speed Test,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 13, no. 8, pp.
1051–1056, Aug. 1994.

[35] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random
Pattern Delay Fault Coverage Using Inversion Test Points,” in Proc. IEEE
28th North Atlantic Test Workshop (NATW), Burlington, VT, May 2019.

[36] K. Juretus and I. Savidis, “Reducing Logic Encryption Overhead Through
Gate Level Key Insertion,” in Proc. IEEE Intl. Symp. Circuits and Systems
(ISCAS), Montreal, QC, Canada, May 2016, pp. 1714–1717.

[37] H. Vranken, F. S. Sapei, and H.-J. Wunderlich, “Impact of Test Point
Insertion on Silicon Area and Timing During Layout,” in Proc. Design,
Automation, and Test in Europe Conf. (DATE), Paris, France, Feb. 2004.

[38] J.-S. Yang, B. Nadeau-Dostie, and N. A. Touba, “Test Point Insertion
Using Functional Flip-Flops to Drive Control Points,” in Proc. Intl. Test
Conf. (ITC), Austin, TX, USA, Nov. 2009.

[39] M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima, and S. Terada, “Low
Overhead Test Point Insertion for Scan-based BIST,” in Proc. Intl. Test
Conf. (ITC), Atlantic City, NJ, USA, Sep. 1999, pp. 348–357.

[40] F. Muradali and J. Rajski, “A Self-Driven Test Structiure for
Pseudorandom Testing of Non-Scan Sequential Circuits,” in Proc. 14th
IEEE VLSI Test Symp. (VTS), Princeton, NJ, USA, Apr. 1996, pp. 17–25.

[41] J. Yang, B. Nadeau-Dostie, and N. A. Touba, “Reducing Test Point Area
for BIST through Greater Use of Functional Flip-Flops to Drive Control
Points,” in Proc. 24th IEEE Intl. Symp. Defect and Fault Tolerance in
VLSI Systems (DFT), Chicago, IL, USA, Oct. 2009, pp. 20–28.

[42] K.-H. Chang, C.-W. Chang, J.-H. R. Jiang, and C.-N. J. Liu, “Reducing
Test Point Overhead with Don’t-Cares,” in Proc. Intl. Midwest Symp. on
Circuits and Systems (MWSCAS), Boise, ID, USA, Aug. 2012, pp. 534–
537.

[43] N. Z. Basturkmen, S. M. Reddy, and J. Rajski, “Improved Algorithms for
Constructive Multi-Phase Test Point Insertion for Scan Based BIST,” in
Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC),
Bangalore, India, Jan. 2002.

!

!

[44] N. Tamarapalli and J. Rajski, “Constructive Multi-phase Test Point
Insertion for Scan-based BIST,” in Proc. Intl. Test Conf. (ITC),
Washington, DC, USA, Oct. 1996, pp. 649–658.

[45] B. Krishnamurthy, “A Dynamic Programming Approach to the Test Point
Insertion Problem,” in Proc. 24th ACM/IEEE Design Automation Conf.
(DAC), Miami Beach, Florida, USA, Jun. 1987, pp. 695–705.

[46] J. Sziray, “Test Generation and Computational Complexity,” in Proc.
IEEE 17th Pacific Rim Intl. Symp. Dependable Computing, Pasadena, CA,
USA, Dec. 2011, pp. 286–287.

[47] V. S. Iyengar and D. Brand, “Synthesis of Pseudo-random Pattern Testable
Designs,” in Proc. Intl. Test Conf. (ITC), Washington, DC, USA, Aug.
1989, pp. 501–508.

[48] N. A. Touba and E. J. McCluskey, “Test Point Insertion Based on Path
Tracing,” in Proc. 14th IEEE VLSI Test Symp. (VTS), Princeton, NJ, USA,
Apr. 1996, pp. 2–8.

[49] T. Ramakrishnan and L. Kinney, “Extension of the Critical Path Tracing
Algorithm,” in Proc. 27th ACM/IEEE Design Automation Conf. (DAC),
Orlando, FL, USA, Jun. 1990, pp. 720–723.

[50] P. Menon, Y. Levendel, and M. Abramovici, “SCRIPT: A Critical Path
Tracing Algorithm for Synchronous Sequential Circuits,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 10, no. 6, pp. 738–747, Jun.
1991.

[51] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical Path Tracing - an
Alternative to Fault Simulation,” in Proc. 20th ACM/IEEE Design
Automation Conf. (DAC), Miami Beach, FL, Jun. 1983, pp. 214–220.

[52] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia
Controllability/Observability Analysis Program,” in Proc. 17th
ACM/IEEE Design Automation Conf. (DAC), Minneapolis, MN, USA,
Jun. 1980, pp. 190–196.

[53] F. Brglez, “On Testability Analysis of Combinational Networks,” in Proc.
IEEE Intl. Symp. Circuits and Systems (ISCAS), Montreal, Quebec,
Canada, May 1984, vol. 1, pp. 221–225.

[54] H.-C. Tsai, K.-T. Chen, C.-J. Lin, and S. Bhawmik, “Efficient Test-Point
Selection for Scan-Based BIST,” IEEE Trans. Very Large Scale Integr.
VLSI Syst., vol. 6, no. 4, pp. 667–676, Dec. 1998.

[55] R. Lisanke, F. Brglez, A. J. de Geus, and D. Gregory, “Testability-Driven
Random Test-Pattern Generation,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 6, no. 6, pp. 1082–1087, Nov. 1987.

[56] K.-T. Cheng and C.-J. Lin, “Timing-driven Test Point Insertion for Full-
scan and Partial-scan BIST,” in Proc. Intl. Test Conf. (ITC), Washington,
DC, USA, Oct. 1995, pp. 506–514.

[57] H.-C. Tsai, K.-T. Cheng, C.-J. Lin, and S. Bhawmik, “A Hybrid Algorithm
for Test Point Selection for Scan-based BIST,” in Proc. 34th ACM/IEEE
Design Automation Conf. (DAC), Anaheim, CA, Jun. 1997, pp. 478–483.

[58] M. Nakao, K. Hatayama, and I. Higashi, “Accelerated Test Points
Selection Method for Scan-Based BIST,” in Proc. 6th Asian Test Symp.
(ATS), Akita, Japan, 1997, pp. 359–364.

[59] B. H. Seiss, “Test Point Insertion for Scan-based BIST,” in Proc. 2nd
European Test Conf., Munich, Germany, Apr. 1991, pp. 253–262.

[60] Y. Savaria, M. Youssef, B. Kaminska, and M. Koudil, “Automatic Test
Point Insertion for Pseudo-random Testing,” in Proc. IEEE Intl. Symp.
Circuits and Systems (ISCAS), Singapore, Jun. 1991, pp. 1960–1963.

[61] M. J. Geuzebroek, J. Th. van der Linden, and A. J. van de Goor, “Test
Point Insertion for Compact Test Sets,” in Proc. Intl. Test Conf. (ITC),
Atlantic City, NJ, USA, Oct. 2000, pp. 292–301.

[62] Y. Sun and S. K. Millican, “Test Point Insertion Using Artificial Neural
Networks,” in Proc. IEEE Computer Society Annu. Symp. VLSI (ISVLSI),
Miami, FL, USA, Jul. 2019, pp. 253–258.

[63] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural
Networks to Delay Fault Testing: Test Point Insertion and Random Circuit
Training,” in Proc. 28th Asian Test Symp. (ATS), Kolkata, India, Dec.
2019, pp. 13–18.

[64] M. He, G. K. Contreras, M. Tehranipoor, D. Tran, and L. Winemberg,
“Test-Point Insertion Efficiency Analysis for LBIST Applications,” in
Proc. 34th IEEE VLSI Test Symp. (VTS), Las Vegas, NV, USA, Apr. 2016.

[65] M. He, G. K. Contreras, D. Tran, L. Winemberg, and M. Tehranipoor,
“Test-Point Insertion Efficiency Analysis for LBIST in High-Assurance
Applications,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 25,
no. 9, pp. 2602–2615, Sep. 2017.

[66] M. Chen and D. Xiang, “Pseudorandom Scan BIST Using Improved Test
Point Insertion Techniques,” in Proc. 7th Intl. Conf. Solid-State and

Integrated Circuits Technology (ICSICT), Beijing, China, Oct. 2004, pp.
2043–2046.

[67] R. Sethuram, S. Wang, S. T. Chakradhar, and M. L. Bushnell, “Zero Cost
Test Point Insertion Technique to Reduce Test Set Size and Test
Generation Time for Structured ASICs,” in Proc. 15th Asian Test Symp.
(ATS), Fukuoka, Japan, Nov. 2006.

[68] C. Acero et al., “Embedded Deterministic Test Points,” IEEE Trans. Very
Large Scale Integr. VLSI Syst., vol. 25, no. 10, pp. 2949–2961, Jul. 2017.

[69] E. Moghaddam, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J.
Zawada, “Logic BIST with Capture-per-Clock Hybrid Test Points,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 6, pp. 1028–
1041, Jun. 2019.

[70] G. L. Smith, “Model for Delay Faults Based Upon Paths,” in Proc. Intl.
Test Conf. (ITC), Philadelphia, PA, USA, 1985, pp. 342–351.

[71] I. Pomeranz and S. M. Reddy, “An Efficient Non-Enumerative Method to
Estimate Path Delay Fault Coverage,” in Proc. IEEE/ACM Intl. Conf.
Computer-Aided Design (ICCAD), Santa Clara, CA, USA, Nov. 1992, pp.
560–567.

[72] I. Pomeranz and S. M. Reddy, “On the Number of Tests to Detect All Path
Delay Faults in Combinational Logic Circuits,” IEEE Trans. Comput., vol.
45, no. 1, pp. 50–62, Jan. 1996.

[73] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 6, no. 5, pp.
694–703, Sep. 1987.

[74] S. Tragoudas and N. Denny, “Testing for Path Delay Faults Using Test
Points,” in Proc. IEEE Intl. Symp. Defect and Fault Tolerance in VLSI
Systems (DFT), Albuquerque, NM, USA, Nov. 1999.

[75] I. Pomeranz and S. M. Reddy, “Design-for-testability for Path Delay
Faults in Large Combinational Circuits Using Test Points,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 17, no. 4, pp. 333–343,
Apr. 1998.

[76] P. Uppduri, U. Sparmann, and I. Pomeranz, “On Minimizing the Number
of Test Points Needed to Achieve Complete Robust Path Delay Fault
Testability,” in Proc. 14th IEEE VLSI Test Symp. (VTS), Princeton, NJ,
USA, Apr. 1996, pp. 288–295.

[77] U. Sparmann, D. Luxenburger, K.-T. Cheng, and S. M. Reddy, “Fast
Identification of Robust Dependent Path Delay Faults,” in Proc. 32nd
ACM/IEEE Design Automation Conf. (DAC), San Francisco, CA, 1995.

[78] R. Sankaralingam and N. A. Touba, “Inserting Test Points to Control Peak
Power During Scan Testing,” in Proc. 17th IEEE Intl. Symp. Defect and
Fault Tolerance in VLSI Systems (DFT), Vancouver, Canada, Nov. 2002.

[79] S. Gerstendörfer and H.-J. Wunderlich, “Minimized Power Consumption
For Scan-Based BIST,” in Proc. Intl. Test Conf. (ITC), Atlantic City, NJ,
USA, Sep. 1999, pp. 77–84.

[80] E. G. Ulrich, V. D. Agrawal, and J. H. Arabian, Concurrent and
Comparative Discrete Event Simulation. Boston, MA: Springer, 1994.

[81] X. Gu, S. S. Chung, F. Tsang, J. A. Tofte, and H. Rahmanian, “An Effort-
Minimized Logic BIST Implementation Method,” in Proc. Intl. Test Conf.
(ITC), Baltimore, MD, USA, Nov. 2001, pp. 1002–1010.

[82] S. Roy, G. Guner, and K.-T. Cheng, “Efficient Test Mode Selection &
Insertion for RTL-BIST,” in Proc. Intl. Test Conf. (ITC), Atlantic City,
NJ, USA, Oct. 2000, pp. 263–272.

[83] H. Vranken, F. Meister, and H. Wunderlich, “Combining Deterministic
Logic BIST with Test Point Insertion,” in Proc. 7th IEEE European Test
Workshop (ETW), Corfu, Greece, May 2002.

[84] F. P. Higgins and R. Srinivasan, “BSM2: Next Generation Boundary-Scan
Master,” in Proc. 18th IEEE VLSI Test Symposium (VTS), Montreal,
Quebec, Canada, Apr. 2000, pp. 67–72.

[85] V. Vorisek, B. Swanson, K.-H. Tsai, and D. Goswami, “Improved
Handling of False and Multicycle Paths in Atpg,” in Proc. 24th IEEE VLSI
Test Symposium, Berkeley, CA, USA, Apr. 2006, pp. 6 pp. – 165.

[86] E. Moghaddam, N. Mukherjee, J. Rajski, J. Tyszer, and J. Zawada, “On
Test Points Enhancing Hardware Security,” in Proc. 25th Asian Test Symp.
(ATS), Hiroshima, Japan, Nov. 2016, pp. 61–66.

[87] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” in Proc.
IEEE Intl. Symp. Circuits and Systems (ISCAS), Kyoto, Japan, Jun. 1985.

[88] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,” in Proc. IEEE Intl. Symp. Circuits and
Systems (ISCAS), Portland, OR, USA, May 1989, pp. 1929–1934.

[89] S. Davidson, “ITC’99 Benchmark Circuits - Preliminary Results,” in Proc.
Intl. Test Conf. (ITC), Atlantic City, NJ, USA, Sep. 1999, pp. 1125–1125.

!

!

