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Abstract–This article surveys test point (TP) architectures and test 
point insertion (TPI) methods for increasing pseudo-random and 
logic built-in self-test (LBIST) fault coverage. We present a history 
of TPI approaches, including TPI for increasing stuck-at fault 
coverage, compressing test patterns, detecting path delay faults, 
and reducing test power. We discuss some known weaknesses of 
TPs and explore research directions to overcome them. 
Index Terms–survey, test points, test point insertion, built-in self- 
test, path delay test, pseudo-random test  

I. INTRODUCTION 
Modern electronics in critical and high-assurance 

applications (e.g. self-driving cars, aerospace, and medical 
devices) have strict reliability requirements. Since defective 
devices create economic loss or catastrophic loss-of-life, 
manufacturing tests must be credible in detecting and preventing 
faulty behavior. Tests are also required in the field after 
manufacturing to detect post-delivery defects, (i.e., soft errors). 

Logic built-in self-test (LBIST) [1] is commonly used for 
both manufacturing tests and post-manufacturing reliability 
checks [2]. LBIST uses on-chip stimulus generators, i.e. pseudo-
random pattern generators (PRPGs) [3], [4] to stimulate circuits 
inputs and set circuit states while circuit outputs and states are 
observed. When complementing conventional test methods (i.e., 
ATPG), LBIST can significantly increase fault coverage while 
decreasing test application time. LBIST is useful in field test. 
With embedded LBIST, devices become testable with minimal 
functional interruption by saving the circuit state, applying test 
enable/disable signals, and then reloading the circuit state to 
resume the normal function.  

A major challenge for LBIST is detecting random pattern 
resistant (RPR) faults [5]. RPR faults manifest in logic with 
many inputs when few input combinations can excite certain 
logic paths, and therefore pseudo-random tests often fail to 
excite and observe RPR faults. The prototypical example of an 
RPR fault is the output of a large logic gate. For example, 
probability of the output of a 32-input AND gate being logic-1 
and exciting a stuck-at-0 fault is 0.532 (presuming all AND gate 
inputs are equally likely to be logic-0 or logic-1), which implies 
more than one billion pseudo-random patterns may be needed to 
excite the fault. Under the presence of RPR faults, applying 
LBIST becomes a time and power consuming process. 

To detect RPR faults, many technologies have been 
proposed to improve the type of patterns applied, either through 
weighted random pattern testing [6]–[13] or PRPG reseeding 
[14]–[22]. Although useful, these methods require extra 
hardware to generate weights, require significant computation to 
calculate seeds, or require significant memory and hardware to 

store and apply seeds. Although still used in modern designs, 
some applications that have restricted hardware resources and 
nuanced environments cannot apply such methods, whilst others 
still need additional fault coverage with such methods. 

An alternative method to improve LBIST performance is 
modifying circuits with test points (TPs). TPs change circuit 
values or observe values in a circuit, thus making the detection 
of RPR faults easier. Test point insertion (TPI) techniques find 
high-quality TPs locations which improve fault coverage or 
reduce the number of test patterns. Since the concept of TPI was 
proposed by Hayes and Friedman [23] in 1974, numerous 
algorithms have appeared to improve TPI performance. These 
methods can be placed into one of three categories based on how 
testability is measured: fault simulation, approximate testability 
measures, or multiple measurements. TPs can also be used in 
analog circuits, e.g., fault diagnosis and analog testing [24], [25], 
or to improve ATPG results [26], but present survey focuses on 
TPs for digital circuit LBIST. 

II. TP ARCHITECTURES 

A. TP implementations 
TPs are circuit modifications which change or observe 

circuit functions during test but do not change the circuit 
function when disabled [23], [27]. Conventional TPs are 
categorized into two types [28]: control TPs and observe TPs (as 
shown in Figure 1(a), (b), and (d)). Control TPs are typically 
implemented using OR gates for control-1 TPs or AND gates for 
control-0 TPs (and NAND/NOR gates can be used at the output 
of inverters). During test, a test enable pin forces lines to their 
controlled values [29]. While not under test, this test enable pin 
is disabled and the circuit function does not change. The goal of 
control TPs is to increase the probability of exciting faults in a 
circuit and to make faults easier to observe by creating 
propagation paths to circuit outputs. Observe TPs change circuit 
observability by inserting fan-outs to circuit outputs, which 
makes faulty values on lines easily observed [30]. 

The source of test enable and the output for observe points 
can either be a pin or a scan latch. Although test enable is most 
often modeled as a pin, implementing it as a circuit pin is 
impractical given the high cost of circuit pins. Instead, outputs 
and inputs of scan latches typically provide additional TP 
“pins”. A large circuit with many TPs and (latch-implemented) 
TP pins may require significant area overhead. There are 
numerous articles on reducing TP pin/latch area overhead while 
using TP pins selectively to increase fault coverage. The 
following sub-section surveys these. 
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Although effective for increasing stuck-at fault coverage, 
both control and observe TPs have their detriments; hence, TPI 
must carefully select TP locations and types. Since a control TP 
forces the line to ‘0’ or ‘1’ when active, the controlled line can 
only be a single value when the TP is active. This prevents one 
stuck-at fault on the line from being excited. Additionally, active 
control TPs block the transmission of excited faults through the 
controlled line. Although observation TPs do not block faults 
like control TPs, observation TPs cannot detect RPR faults that 
are difficult to excite. 

In contrast to control TPs, inversion TPs use inversions to 
change line values during test [31]–[35]. Inversion TPs are made 
with XOR gates and a test enable pin (shown in Figure 1(c)): 
when the test enable pin is active, the XOR gate becomes an 
inverter; otherwise the XOR gate acts as a buffer. In contrast to 
conventional TPs which force lines to values, inversion TPs 
invert signal probabilities, i.e., if a line has an 80% probability 
of being logic-1, the line will have a 20% probability of being 
logic-1 with an active inversion TP. Because active inversion 
TPs do not force a single value, both stuck-at-0 and stuck-at-1 
faults can be excited on active TP locations. Additionally, faults 
can propagate through inversion TPs to circuit outputs (unlike 
control TPs which block faults from propagating through) [35]. 
However, inversion TPs add more propagation delay, power, 
and overhead compared to control TPs [35], [36]. Additionally, 
RPR faults may require values to be forced to optimally increase 
fault coverage [35], which inversion TPs cannot perform. 

B. TP selection architectures  
Although TPs can significantly improve fault coverage, they 

can create significant area overhead, which in turn increases 
production costs and reduces yields due to larger die areas and 
fewer dies per wafer [37]. One study found chip area increased 
by 2.68% when using logic BIST, and TPs constituted 43% of 
this area increase [38]. It is therefore important to reduce the area 
overhead of TPs while keeping LBIST fault coverage high. 

To reduce TP area overhead, some methods proposed 
sharing flip-flops or other existing circuit signals to reduce TP-
controlling hardware [28], [31], [38]–[42]. [28] and [39] 
proposed sharing a single flip-flop for multiple test enable 
signals, which reduced the number of flip-flops that were 
required to implement control points. [38], [41] found more than 
half of TPs inserted were control points, so replacing dedicated 
test enable flip-flops with existing functional flip-flops reduced 
area overhead: suitable functional flip-flops can be found in the 
fan-in region with the shortest distance from the control TPs. 
Additionally, the test enable signals were only active in the test 
mode since the test enable signal is generated based on latch 

value combinations that can never appear in the functional 
mode. [40] proposed a self-drive TP, which used test enable 
signals created from gate outputs already existing in the circuit, 
which eliminated the test enable signal generation. Similar to 
[40], [31] used pre-existing signals for test enable without the 
need for extra registers. [42] utilized controllability don’t-cares 
to generate TPs activation signals instead of a global test enable 
signal, which generated test enable signals locally and allowed 
TPs to be randomly activated: these controllability don’t-cares 
are constant values in the functional mode, such as circuit states 
accessible only through scan, and thus can only change values 
in the test mode. 

Other studies proposed reducing the number of TPs needed 
through various means. [43], [44] partitioned circuit tests into 
multiple phases, and sub-sets of control TPs were activated 
during certain phases. This provided greater control over the 
interaction between control points and helped reduce the total 
number of TPs needed to obtain adequate fault coverage. 

III. TEST POINT INSERTION ALGORITHMS 
TPI algorithms iteratively select TPs from a list of 

candidates. In each iteration, they select a TP that increases the 
fault coverage the most without violating other constraints, such 
as, fault coverage, power, delay, etc. Optimal TP placement in 
circuits with reconvergent fanouts is a known NP-hard problem 
[45], [46] and, therefore, most TPI approaches use heuristics to 
select TP locations.  

Many TPI algorithms proposed in the literature perform the 
following steps to insert a single TP. First, fault simulation or 
approximate testability measures identify RPR faults. Second, 
candidate TPs are evaluated for their impact on fault coverage. 
Third, the TP with the highest positive impact on fault coverage 
is inserted into the circuit. This process repeats until reaching the 
number of desired TPs or achieving some pre-designated 
threshold for estimated fault coverage. 

A. TPI using simulation 
Using fault simulation to find undetected faults and then 

inserting TPs to detect these faults is a straightforward method 
of TPI. [47] inserted control TPs on gate outputs where faults 
were not excited while inserting observe TPs at the input of gates 
which blocked propagation. [48] used backward path tracing 
[49]–[51] on undetected fault sites and used control TPs to 
sensitize a path to the fault. 

Several methods [43], [44] used probabilistic fault 
simulation to guide TP placement combined with greedy 
heuristics. Probabilistic fault simulation performs regular logic 
simulation to find signal probabilities and faults which are 
propagated in the circuit, and then uses these probabilities to 
predict the probability any fault will be detected at a given 
location [44]. [44] used this method combined with a divide-
and-conquer technique: probabilistic fault simulation was 
performed in phases, and at the end of each phase, TPs were 
inserted to target faults with the lowest detection probability. 
[43] improved memory usage and TPI CPU time whilst 
marginally sacrificing TPI accuracy: instead of using logic 
simulation to determine all faults which can be detected on each 
circuit line (and the probability of each fault being detected), a 
representative of all faults at each fan-out location is chosen in 
order to reduce the number of faults to consider during TPI.  

TETE
a) Control-0 b) Control-1

TE
c) Inversion d) Observe  

Figure 1: Illustrated here are the logic-level implementations of 
control, inversion, and observe TPs. 
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B. TPI using approximate testability measures 
Fault simulation accurately quantifies fault coverage, but its 

computation complexity (in terms of CPU time and memory) is 
infeasible for modern circuits: to overcome this, numerous 
studies replace fault simulation with approximate testability 
measures, such as SCOAP [52] and COP [53]. SCOAP [52] is a 
linear complexity algorithm (relative to the number of logic 
gates in a circuit to analyze) which estimates the number of 
circuit inputs needed to force a logic-0/1 on a line, defined as 
controllability. Using these values, SCOAP can estimate the 
observability of a line, which is the number of inputs that must 
be set to propagate a faulty value on a line to an observable 
output. SCOAP also includes the depth of a line in a circuit in 
its controllability and observability estimations. Alternatively, 
COP [53] predicts the probability a line will be logic-0/1 and the 
probability of a line’s value will be observed at a circuit output 
presuming random stimuli is applied to circuit inputs. COP 
values can directly predict the probability of fault detection: 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for stuck-at-0 faults and 
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ∗ 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for stuck-at-1 faults. 
Controllability and observability measures can therefore be used 
to identify hard-to-control and hard-to-observe locations in a 
circuit, and they can be used to predict the current fault coverage 
(with or without a TP) of a circuit without performing fault 
simulation: TPs can then be inserted based on this information.  

Compared against exact fault simulation, testability 
measurements take substantially less time to calculate but loose 
accuracy for circuits with many reconvergent fanouts. However, 
experiments have suggested approximate testability 
measurements can be accurate enough for use in TPI for large 
designs [54]. Therefore, many TPI methods from literature [54]–
[59] use a cost function to estimate a TP’s quality, with a typical 
example [55] provided below: 𝐹𝐹 is a set of faults, and 𝑃𝑃𝑑𝑑𝑗𝑗  is the 
probability the fault 𝑗𝑗 is detected (calculated using COP). 

𝑈𝑈 =
1

|𝐹𝐹|
�

1
𝑃𝑃𝑑𝑑𝑗𝑗∀𝑗𝑗∈𝐹𝐹

 

Cost functions such as 𝑈𝑈 are used as indicators of circuit 
testability, and many TPI algorithms attempt to maximize such 
cost functions during TPI. In this example, the value of 𝑈𝑈 
changes when a TP is inserted, and the difference in 𝑈𝑈 before 
and after a TP is inserted is called actual cost reduction (ACR) 
[55]. Gradient calculations [55] can select TPs with the largest 
ACR, but the computational complexity of finding the ACR for 
every TP is too high and unpractical for modern circuits [54]. 
Therefore, the concept of a cost reduction factor (CRF) was 
introduced to approximate ACRs [59]. The algorithms which 
use CRFs and ACRs typically perform as follows: first, 
controllability and observability are calculated using an 
approximate testability measure, e.g. COP or SCOAP; second, 
the CRF for each TP in a candidate set is calculated, discarding 
TPs with CRF below a given threshold; third, the ACR for 
remaining candidate TPs is calculated; lastly, the TP with the 
largest ACR is inserted. 

For evaluating a TP by cost function, various studies use 
nuances to either select superior TPs or reduce TPI CPU time. 
[56] selected TPs whose impacts on timing slack and fault 
coverage were smaller and larger, respectively, than given 
thresholds. [54], [57] proposed hybrid cost reduction: after a TP 

was inserted, faults were divided into two subsets, and only 
those with a large change in 1 𝑃𝑃𝑑𝑑𝑓𝑓�  had their 1 𝑃𝑃𝑑𝑑𝑓𝑓�  value 
recalculated using fault simulation (with other faults being 
calculated by testability analysis); the rationale for this is that 
large changes in a CRF may be inaccurate. [58] proposed three 
strategies for accelerating CRF-based algorithms: remove TPs 
with redundant TPI-effective regions (i.e., regions where the 
same controllability (for control TPs) or observability (for 
observe TPs) are changed), choose the TP with the highest CRF 
(i.e., do not calculate ACR), and reduce candidate TPs by 
selecting the first TP found to reduce the cost function (instead 
of calculating the ACR or CRF for all candidate TPs). 

Beyond COP and SCOAP, other methods use 
additional/alternative cost functions or introduce additional 
constraints. [28], [60] identified RPR faults using COP and 
created fault sectors: RPR faults were sorted by ascending logic 
levels, then control TPs targeted faults in ascending order and 
observation TPs targeted faults in descending order. This 
prevented the targeting of same fault by multiple TPs, which 
reduced the number of TPs required. [61] used test counts (TCs) 
to complement COP-based TPI: the TC of a line is the fewest 
number of tests that must pass through the line such that all faults 
in its fan-in cone will be tested, and TPs were selected in order 
of the most tests which must pass through the TP location. [26] 
proposed several cost functions using one or multiple test 
analysis measurements (COP, SCOAP, or TC): TPI was split 
into multiple stages, where each stage selected a cost function to 
target the currently the hardest test problem, namely, finding 
tests for RPR faults, reducing test vectors, or a combination of 
the two. [62], [63] used pre-TP COP controllability and 
observability as an input feature to an artificial neural network 
which predicted the quality of a TP. [64], [65] used an efficiency 
equation for TPs, which evaluated the size of a TP fan-out/fan-
in cone-of-influence and the number of undetected faults in this 
cone. This information then helps select the TP with the highest 
efficiency. An estimation metric approximates the final area 
overhead and test coverage without TP insertion and synthesis. 
[66] proposed a new conditional testability measure to overcome 
COP’s inability to account for reconvergent fan-outs, thus 
increasing the accuracy of calculated cost functions. 

Some methods incorporate non-fault coverage information, 
such as, timing violations, into cost functions [56] or efficiency 
equations [65], as discussed in the following section. 

C. TPI using multiple measures 
Some approaches utilize both fault simulation and testability 

measures to increase TP quality [67]–[69]. [67] reduced test 
vector counts and test generation time by considering layout and 
timing information for observe TPs. The cost function (see 
Section III.B) of an observe TP was the product of the total 
number of independent faults (i.e., faults which cannot be 
simultaneously detected by any single pattern) in the fan-in cone 
of the observe TP (which was found through fault simulation) 
and the minimum number of controlled primary inputs needed 
to propagate the independent faults to the TP location (estimated 
using SCOAP). [68], [69] performed COP and fault simulation 
to calculate fault testability, propagated faults, and faults 
blocked by control TPs: the cost function of control TPs is based 
on the controllability of blocked faults and that of observation 
TPs is composed of the observability of unobserved faults. 
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IV. MODERN TARGETS FOR TPI 

A. Path manipulation to increase path delay fault coverage 
A path delay fault (PDF) [70] occurs when any path’s delay 

exceeds a circuit’s designed clock speed, and the PDF models 
defects which cause cumulative propagation delays along a 
circuit path that exceed the circuit’s specifications. Unlike stuck-
at faults, PDFs involve operational features as well. Thus, a PDF 
exists only within a certain range of operational clock periods. 
A PDF test uses a set-up vector to create the precondition for a 
transition and a second trigger vector to initiate the transition. 
Specialized test hardware, using a clock period greater than the 
operational clock period loads a set-up vector and then applies a 
trigger vector, but the operational clock period must follow the 
trigger vector in order to capture a transition along the path 
under test. If the target output has not changed from its value 
after the set-up vector, then the circuit is faulty. 

There are three problems associated with PDFs, which are 
problems TPs have attempted to address. First, the number of 
paths (and number of PDFs) in practically-sized circuits is too 
large for test tools to handle [71]. Second, the number of tests 
needed to detect all PDFs is too large [72]. Third, many PDFs in 
practical circuits are not testable [73]. To remedy this, TPs can 
divide full paths into sub-paths, thus making paths easier to test 
and reducing the number of paths [74]. Additionally, it is easier 
to generate tests for shorter sub-paths [74]. 

TPI methods have incorporated these observations into cost 
functions, which represent the number of paths in a circuit, i.e., 
the TP that reduces the total number of paths in the circuit is 
iteratively chosen [74]–[76]. [75] selected TPs using the cost 
function above. [74] added an additional constraint to the above 
cost function, i.e., clock speed of the circuit under test: if a TP 
reduces the longest path in the circuit, the clock speed during 
test can be increased, thus decreasing test application time. [76] 
targeted non-robust-dependent faults of functionally 
sensitizable paths [77], thereby reducing the fault set and hence 
the number of TPs. 

B. Power reduction during test 
The power consumption of digital systems is considerably 

higher in a test mode compared to functional modes. This is 
because during normal circuit operation, a relatively small 
number of flip-flops change value each clock cycle, whilst in a 
test mode, a much larger number of flip-flops will change 
values, which results in excessive switching activity and current 
spikes [78]. Especially during self-test, power dissipation 
increases since random patterns can cause many nodes to switch 
[79]. If the peak power during test is too large, 𝑉𝑉𝑑𝑑𝑑𝑑  drop or 
ground bounce can cause false-failures or device damage. 

Some studies [78], [79] inserted TPs to reduce power 
consumption during test, but TP placement was restricted to flip-
flop outputs. [79] used modified shift registers which suppress 
activity at the output during shift operations: by adding NOR or 
NAND gates to the outputs of latches controlled by a test enable 
pin, latch outputs were forced to known values and thus did not 
cause circuit switching. [78] proposed inserting TPs into a 
conventional full-scan circuit to keep peak power during scan 
below a given limit without decreasing fault coverage (with TPs 
being inactive during the capture cycles): a subset of scan flip-
flop outputs were forced to 0 and 1 during scan. First, cycle-by-
cycle simulation identified which scan cycle’s power 

consumption was greater than the specified limit. Second, an 
event-driven, selective trace simulation procedure [80] 
estimated the power reduction for every latch when its output 
was forced to 0 or 1, then latches were iteratively forced to 
reduce power consumption. 

C. Considering the timing impacts of TPs 
Inserted TPs may cause circuit timing violations which break 

proper circuit operation [37], and resolving these timing 
violations may require several tedious design iterations. Many 
attempts have been proposed [56], [81]–[83] to insert TPs to 
increase fault coverage without creating new timing violations. 
In [56], [83], timing analysis was performed before TPI to 
identify paths with small timing slacks, then TPI was performed 
after removing candidate TPs which reside on such paths. [81] 
performed TPI without any constraints, then timing analysis was 
performed to remove TPs which caused timing violations. [82] 
performed TPI at RTL-level (instead of the typical logical netlist 
level), which means TPs were inserted before logic synthesis to 
avoid later design iterations. 

For timing or delay test, LBIST often involves at-speed 
application of pseudorandom patterns. Possible activation of 
non-functional false paths or multi-cycle paths may cause a good 
circuit to fail during test. We use timing analysis to ether suitably 
reduce the LBIST clock frequency [84] or identify circuit 
responses for masking during test [85]. The timing analysis must 
account for the TPI related logic modifications as well. 

V. THE FUTURE OF TPI 
TPI has been explored extensively since 1974 [23]. 

Numerous proposed methods improved existing approaches or 
targeted nuanced issues. The testability of circuits and potential 
for using LBIST have been consistently improving. 

However, as logic circuits become ever-more complex 
(despite the theoretical presence of “Moore’s Wall”) new 
problems will appear and the performance of TPI methods will 
need to improve further. First, few studies have touched the 
impact TPI has on power (or how to use TPI to reduce power 
without restricting TP placement to latch outputs), thus power 
will be an attracting topic in the future, especially since low-
power applications are in high demand for consumer. Second, 
most TPI studies only target one or two problems, but many 
design issues (timing, area, power, and testability) directly 
conflict with each other, and addressing several of these issues 
simultaneously requires nuances to be addressed. A noteworthy 
challenge is the security issue created by TPs [86]. Third, with 
rapid technology developments, modern circuits have millions 
of components and the computational complexity of TPI is 
growing at a rate faster than the size of the circuits to be analyzed 
[62]. Additionally, more TPs need to be evaluated and inserted 
to increase fault coverage to acceptable levels in these large 
circuits, thus current TPI heuristics (and other DFT algorithms) 
will need significantly more time to meet fault coverage 
requirements. Given most TPI experiments in literature are done 
under old benchmark circuits, e.g., ISCAS’85 [87], ISCAS’89 
[88], or ITC’99 [89], the ability of established heuristics to 
perform on larger, modern circuits need to be studied, as do new 
computing paradigms that can break the “heuristic wall”. 
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