
Training Neural Network for Machine Intelligence
in Automatic Test Pattern Generator

Soham Roy, Spencer K. Millican, and Vishwani D. Agrawal
Department of Electrical and Computer Engineering

Auburn University, Auburn, AL 36849-5201

{szr0075, millican, agrawvd}@auburn.edu

Abstract—Recent research shows that an artificial neural
network (ANN) can combine multiple heuristics to guide an
automatic test pattern generator (ATPG) with fewer backtracks
than required by guidance from any single heuristic. Thus
motivated, we develop a new training method to include multiple
heuristics. Our ANN has a single output neuron and a single
layer of hidden neurons, which is sufficient to accommodate the
training data volume. Conventional PODEM ATPG applied to
hard-to-detect and easily detectable faults in selected benchmark
circuits provide training data for nodes marked as “success” if the
backtrace leads to a test or “failure” if it results in backtrack.
ATPG data of a fault is used for training only if backtracks
in the ANN-guided ATPG decrease. Circuit parameters added
to training include input-output distances and testability values
from COP (controllability and observability program) for signal
nodes. Compared to the ANN guidance in previous studies,
the proposed training method is found to require fewer total
backtracks for all faults in any circuit from ISCAS’85 and ITC’99
benchmarks.

Index Terms—Artificial neural network (ANN), ATPG, Digital
testing, Machine learning

I. INTRODUCTION

Automatic test pattern generation (ATPG) belongs in a set

of NP-hard problems [1]. Such complexity may force one

to try all possible circuit input vectors to find a test for a

fault, but this is impractical for large circuits. Popular ATPG

algorithms [2], [3] trace backward (i.e., “backtrace”) from an

interior node to a primary input (PI) to assign logic values.

This action may or may not lead to a test, and in the latter case,

the algorithm backtracks, or reverses, the PI assignment. To

avoid backtracking, heuristics (i.e., rules based on a designer’s

intuition) select backtrace directions from available choices.

Choosing the best path during backtrace is a vital problem in

ATPG. A recent study [4] showed that machine intelligence

(MI) in the form of an artificial neural network (ANN) can

replace any heuristic in PODEM [2] and speedup ATPG.

However, some circuits did not exhibit any noticeable im-

provement in the backtracking performance. The ANN training

was ad hoc and rudimentary, therefore, formulated training

may elevate ANN-guided PODEM’s performance. This study

examines such a training method: the training recursively

uses ATPG data generated from hard-to-detect as well as

easily tested faults, resolves conflicts in data patterns (e.g.,

when different ANN outputs come from similar inputs), and

discards data that does not improve the guidance of ANN.

Computer-aided design (CAD) tool developers are unwilling

to share the source code of commercial EDA software. Buying

these EDA tools will only give us executables, making it

impossible to run our experiments using them. Therefore,

we ran our experiments using our own CAD programs. At

present, ANN-guided ATPG is not typical practice, and this

study will optimistically galvanize the CAD tool developers’

minds to incorporate ANNs in their ATPG tools. The specific

contributions of this study are as follows:

• A technique to resolve conflicts among ANN training

data. Main benefit of conflict resolution is improved ANN

accuracy as evident from reduction in the mean square

error (MSE) during training.

• A technique for selecting faults using a recursive training

method that dynamically trains an “evolving” ANN as

opposed to training with a preselected set of faults. ATPG

data from a fault is retained only if the trained ANN

guidance continues to further reduce backtracks over

those from conventional heuristics (distance and COP).

Both hard-to-detect and easy-to-test faults are sampled as

opposed to only the former [4]. This prevents the training

data from being overwhelmingly “failure” oriented.

• An improved assessment of the quality of the ANN guid-

ance by modifying the backtrack count procedure. We

count backtracks only for faults that are detected or found

redundant; earlier work [4] also included backtracks from

aborted faults, which distorts the count.

The remainder of this article is organized as follows. Sec-

tion II briefly describes prior work on ATPG including MI

applications. Section III outlines the motivation leading to

the present work and summarizes the objectives. Section IV

describes the proposed training techniques. Section V provides

experimental exploration of the proposed training technique

using benchmark circuits. Sections VI and VII highlight some

future directions and conclude the article, respectively.

II. PRIOR WORK

In early work, D-algorithm [5] provided a comprehensive

search method over the space of 2N states for N signal

nodes in the circuit. An improvement came in the form

of PODEM [2], where search space is reduced to 2#PI

vectors for #PI PIs. Due to its simplicity, PODEM became a

popular ATPG algorithm, and it could easily use heuristics like

distance [2], COP [6], SCOAP [7], CAMELOT [8], and others

to guide its backtracing decisions. FAN [9] further modified

316

2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID)

2380-6923/21/$31.00 ©2021 IEEE
DOI 10.1109/VLSID51830.2021.00059

20
21

 3
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 V
LS

I D
es

ig
n 

an
d 

20
21

 2
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 E
m

be
dd

ed
 S

ys
te

m
s (

VL
SI

D)
 |

 9
78

-1
-6

65
4-

40
87

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
VL

SI
D5

18
30

.2
02

1.
00

05
9

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 



Input Nodes

(Features)
Hidden Layer

Neurons

Output 

Neuron

(Label)

Bias Node
X0 = +1

X1

X2

XM

Y1

Y2

YN

Z

w(X0,Y1)

w(XM,YN)

Fig. 1. The ANN used in [4] consists of inputs (bias X0 fixed at 1.0, and M
inputs, Xi), a hidden layer of N neurons, {Yj}, and a single output neuron,
Z. Directed edges connect input to all hidden layer neurons, and hidden layer
neuron to the output neuron.

the search space from all PIs to headlines: it used PODEM-like

procedures with heuristic guidance taken from fanout weights.

This work uses PODEM, which readily adapts to any heuristic,

including those based on MI [4].

Applications of MI or ANN in VLSI design and test

started in the late 90s and gained popularity in the last two

decades [10]–[12]. ATPG using ANN was first attempted

by Chakradhar et al. [13] by modeling digital circuits as

an ANN: stable states of an ANN model (i.e., minimum

energy states) provided tests. Although effective, such ATPG

is time-consuming and complicated because the ANN energy

profile contains local minima traps. Other testing problems like

scan chain diagnosis [14], identification of fault models [15],

testability measures [16], analog and RF circuit testing [17],

[18], and test-point insertion (TPI) [19]–[22] have been solved

using ANNs.

A recent study [4] applied MI to improve the efficiency

of ATPG. The authors reported that an ANN could combine

multiple heuristics to guide ATPG. Their ANN consists of

an input layer, a single hidden neuron layer, and an output

neuron, as illustrated in Fig. 1, and the output of a neuron lies

in the [0,1] range. The values of inputs, referred to as features,

X0, X1, · · · , XM , were normalized to [0,1] to facilitate the

ANN training. X0, fixed at 1.0, is a bias input. Hidden neurons

Y1, Y2, · · · , YN and a output neuron Z, called the “label”,

evaluate their outputs using respective inputs. The output value

of a neuron is denoted as xi, yi or z. The directed edge from

any neuron A to another neuron B, denoted by w(A,B),
carries a signed floating point value. The output of any neuron

Yj is calculated as,

yj = f(
M∑

i=1

xi × w(Xi, Yj)) (1)

where f is the activation function [23] for which sigmoid

function [24] was used.

f(v) = 1− 1

1 + e−v
(2)

Fig. 2. Previous results [4]: Backtracks in PODEM ATPG for 100 hard-
to-detect checkpoint stuck-at faults (including detected and redundant). The
original ANN guidance (orange bars) reduced backtracks over conventional
heuristics (green-distance, blue-COP).

A training data pattern consists of inputs (features) and

expected output (label) values. During training, for any given

input features, the output label is computed and compared

to the expected value of output. The square of difference

between computed value and expected value of output neuron

averaged over all training patterns is the mean squared error

(MSE). Weights are adjusted in successive training “epochs”

to minimize this MSE. This error can be further minimized

by tuning hyper parameters like the number of hidden layers,

number of hidden neurons per hidden layers, learning rates,

activation functions, etc. Adam [25] is a typical optimizer

prominently used for feed-forward ANN structures. The input

features of the ANN contain the following: 1) The one-hot

encoded gate-type of a gate driven by the circuit line being

traced during ATPG; 2) from COP [6], CC (probability of

setting a line to “1”), and CO (probability of line being

observed at a circuit output); 3) the minimum distance between

the line being traced and circuit PIs.

Improvement in ATPG performance was reported [4] for

many benchmark circuits, but several circuits, including some

large benchmarks (c3540, c7552, c2670, and c432), did not

perform well. We will discuss these results in the next section,

since they serve as the motivation for this work.

III. MOTIVATION

To motivate this work, we repeat previous work [4] with mi-

nor changes. Training patterns were generated using PODEM

applied to 100 hard-to-detect faults in the three highest depth

circuits: c6288, c3540, and b05. The trained ANN was used

to guide a PODEM applied to the 100 hardest-to-detect faults

in each of the 24 benchmark circuits used in [4]. Figure 2

compares the total backtracks with those from conventional

PODEM using distance [2] and COP [6] heuristics. One

difference in our evaluation procedure, as stated in Section I,

is that we did not include backtracks from aborted faults. We

refer to this ANN as the “original ANN” to distinguish it

from the ANN developed in this paper, identified as the “new

ANN”.

317

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 



We make several observations from Figure 2. Circuit size

increases from left to right and the first four small circuits and

c2670 have no backtrack by any method. Also, for circuits b09,

b10 and c2670, the ANN required no backtracks. Although

ANN guidance satisfies the expectation of fewer backtracks

than both conventional heuristics for several circuits, there

are exceptions, especially among larger benchmarks. Notable

among these are c7552, c5315 and c3540. For example, c3540

shows 32,008 (distance), 32,978 (COP), and 58,852 (ANN)

backtracks used, similar observations were made in [4].

We believe remedying these outliers requires addressing

several aspects of the ANN training procedure. Our investi-

gation led us into following observations:

1) Selection of training circuits. In the previous work [4],

the ANN was trained with ATPG data from high depth

circuits: c6288, c3540 and b05. Since c3540 causes

worry, we retrained the ANN with just c3540, but still

the ATPG performance of this circuit did not improve.

Therefore, we retained the three high depth circuits for

training.

2) Resolution of conflicts among training data patterns.

These data patterns may lead to increase in training error

of the ANN and thus degrade its guiding ability. This is

explained in Section IV-A.

3) Selection of faults. All faults do not provide useful

training information, and preselection of faults for train-

ing may unnecessarily increase the training data volume

without benefit. Section IV-B gives a novel method of

training the ANN considering three aspects, i.e., the

training error of ANN must be kept low by adjusting

the number of hidden neurons, training data from a fault

must be accepted only if guidance from the resulting

ANN reduces backtracks, and the faults used for training

data generation should not restricted to be hard-to-detect

faults. In fact, a fault provides useful training data as

long as it reduces backtracks.

4) Forgetfulness of the ANN. The ANN may enter a

zone called “catastrophic forgetting” [26] when it forgets

information contained in a large training data volume.

Such consideration in training improvement is worth

exploring in the future.

In this study, we discuss a new training strategies listed

addressing the above (except Item 4) to improve the back-

tracking performance of ANN-guided PODEM. In previously

reported work [4], the number of hidden neurons in the ANN

was preselected, but a static ANN is incapable of absorbing

increasing amounts of training data. The new training tech-

nique progressively adds training data after resolving conflicts

in data patterns to further reduce backtracks while discarding

data that does not accomplish this objective, and the ANN

evolves through addition of hidden neurons to further reduce

MSE during training.

Fig. 3. An example of ANN training data patterns with conflicts. Note the first
three patterns with identical inputs (features) and conflicting outputs (labels).

Fig. 4. Example ANN training data patterns after resolving conflicts. The
first pattern here replaces the first three patterns of Figure 4.

IV. PROPOSED TRAINING METHODOLOGY

A. Resolving conflicts in training data

The ith training data pattern consists of an input vector {xi}
of features and an output label zi. The label and all features

range in [0,1]. Two patterns, i and j, form a conflicting pair

if {xi} ≡ {xj} and zi �= zi. This is because the ANN cannot

be trained to produce different outputs for the same input. The

presence of conflicting patterns in training data influences the

training as indicated by non-decreasing MSE during training.

To remedy this, we collect patterns with identical features

into groups and then replace each group by a single repre-
sentative pattern with common features. Since these patterns

are derived from actual ATPG runs, the label of a pattern is

either 1 (indicating success) if it belongs in a backtrace leading

to a test or 0 (indicating failure) if it results in a backtrack.

We count the number of 1 and 0 labels in the group, and the

representative pattern is given the label
count(1)

count(0)+count(1) .

A conflict is illustrated by the sample training patterns in

Figure 3, where the first three patterns have a conflict. This is

resolved in Figure 4, where the three patterns are replaced by

a single representative pattern with a label 2
2+1 = 0.67.

We collected training data from conventional heuristic-

based PODEM applied to the training circuits (c6288, c3540

and b05), resolved all conflicts among training data patterns,

trained the ANN, and integrated the ANN guidance into

PODEM. We observed that pre- and post-conflict resolution

MSE were 3% and 1%, respectively. Additionally, training

318

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Flow chart of proposed training methodology, including sub-
procedures, recursive training by conventional heuristic-based PODEM, fol-
lowed by “evolving” ANN.

patterns were compacted in this manner allowed more faults

to be included during training.

B. Recursive training and evolving ANN
In previously reported work [4], PODEM with random

heuristic generated the ANN training data. This can be time-

consuming, difficult, and non-repeatable. Experimental results

of Figure 2 show that COP [6] heuristic can provide reasonable

ATPG performance (i.e., fewer backtracks or in the same

ballpark regime) for the training circuits. In a recent study [4],

PODEM with random heuristic was used to train ANN. That

approach could be time-consuming and difficult to repeat.

Therefore, PODEM guided by COP is used for training data

generation.
ANN training quality largely depends on its structure and

complexity. We examined the interrelation between the number

of hidden neurons and MSE of the ANN to find a “sweet-spot”

that guarantees efficient ANN training. This “sweet-spot” is

found during the run-time of ANN’s complexity determination

step by either adding hidden neurons or restoring the previous

optimal hidden neurons with corresponding training data,

making the ANN effective with minimal MSE. Training data

from PODEM using COP is obtained from a small set of

faults and applied recursively to train ANN. This training

continues to minimize MSE by adding small batches of faults

to the training as long as they continue to improve the ANN

quality as discussed later in Section IV-C. This makes our

ANN dynamic in terms of hidden neurons.

C. Algorithm
The algorithm to develop an “evolving” ANN-guided ATPG

is illustrated in Figure 5. We select large depth circuits, c6288,

b05, and c3540, from ISCAS’85 and ITC’99 benchmarks [27],

[28]. The ANN structure is same as in the previous study

(Figure 1) and parameters are initialized as “hidden neurons

(HN) = 10” and “MSE = 1.0”. COP-based PODEM is applied

to a set of 100 hard-to-detect faults, and number of backtracks

is recorded “#b” to be minimized through recursive training.

The training starts by using 50 hard-to-detect faults to generate

a training database, followed by ANN training to check MSE

and record the corresponding number of hidden neurons,

simultaneously. This process continues until MSE starts sat-

urating, and the corresponding MSE “MSE UPD” and the

number of hidden neurons “HN UPD” are recorded and the

ANN is re-trained. The similar process is continued for 100

easy-to-test faults. To evaluate the training, the ANN-guided

ATPG is applied to 100 hard-to-detect faults of the same

training circuit. If backtrack count decreases, then 10 more

hard-to-detect faults are added to the training of the ANN,

else the hidden neurons “HN PREV” and MSE “MSE PREV”

are restored, discarding the corresponding training patterns

from training database, and another circuit is selected to re-

iterate the same process until one of the following conditions

is satisfied: 1) the number of backtracks is reduced to 50; 2)

100 hard-to-detect faults are used for training; 3) the ANN

contains 100 hidden neurons.

V. EXPERIMENTAL RESULTS

All experiments were conducted on an industry-oriented

workstation (Intel-i8700 microprocessors, 8GB RAM). Our

design-for-test (DFT) tools are written in C++ and com-

piled using the MSVC++14.15 compiler with maximum opti-

mization settings. PODEM is programmed for easy-to-plugin

heuristics, distance [2], COP [6], the original ANN [4] or

the new ANN, can be applied across 24 ISCAS’85 [27] and

ITC’99 [28] benchmark circuits with no other modifications

to the ATPG algorithm.

Figure 6 shows how this article’s the new ANN performs

on 100 hard-to-detect faults across benchmarks as compared

to the original ANN [4]. In terms of backtracks, with few

exceptions, the new ANN does the same or better in reducing

backtracks compared to the original ANN [4], especially for

larger circuits.

Our next experiment used all (testable and redundant) faults

to show the efficacy of guidance by the new ANN using the

proposed training technique. Table I shows the computation

time of ATPG “CPU Time (ms)”, “Backtrace count”, and

“Backtrack count”. Clearly, the new ANN performs better

(with fewer backtracks) than the original ANN [4], reaffirming

the value of the proposed training technique of this article.

Backtrack counts for all faults are shown in Figure 7.

Table I has some notable observations. First, c17, b02, and

b01 have no reconvergent fanouts and therefore have no back-

tracks. Of course, there is no scope for reducing backtracks by

new ANN guidance. We observe that the number of backtraces

is either constant or reduced in these reconvergent fanout-

free circuits by the new ANN over the original ANN [4].

Second, except c1908, c432, c499, b12, and b05, the new

319

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
PERFORMANCE OF PODEM ATPG FOR ALL CHECKPOINT FAULTS IN BENCHMARK CIRCUITS, GUIDED BY

ORIGINAL ANN [4] AND NEW ANN (THIS PAPER). BOLDFACE NUMBERS SHOW REDUCED BACKTRACKS BY NEW ANN.

Circuit Original ANN [4] New ANN (this paper)
name CPU time (ms) Backtrace count Backtrack count CPU time (ms) Backtrace count Backtrack count
c17 7 64 0 7 64 0
b02 41 236 0 41 236 0
b06 128 514 1 130 506 0
b01 121 514 0 117 498 0
b09 984 3293 23 1250 3239 4
b03 662 2166 78 605 1901 8
c499 7097 22418 933 6828 22888 965
b10 1784 3718 361 1448 3225 181
b08 1683 4420 804 1665 4205 481
c432 12610 26253 19840 13626 30150 21441
b12 24877 33814 7161 24496 33945 7482
b13 1720 5481 1063 1453 4871 570
c880 4014 11889 7 3481 10459 0

c1355 40231 58658 1498 35825 57788 934
b04 67329 66182 46423 43855 47139 27110
b07 14660 18851 10810 12741 16420 7476

c2670 48296 72347 29924 38816 65159 18355
b11 17397 21008 5673 14601 18242 3641

c1908 30616 39150 549 27685 35982 779
c7552 291393 297572 57874 214372 222395 11183
c5315 85702 105072 21782 69560 86429 7321
c3540 126861 82609 41842 100468 71492 30529
b05 56152 43078 21260 48830 39892 21540

c6288 457206 212968 29982 390805 180588 16525

Fig. 6. New result: Backtracks in PODEM ATPG for 100 hard-to-detect
checkpoint stuck-at faults (including detected and redundant). Formally
trained ANN guidance (black bars) show reduced backtracks over the previous
ANN [4] (orange bars).

ANN exceeds expectations in terms of performance based

on reductions in backtracks. Third, the new ANN is able

to reduce backtracks and backtraces for b09 but the CPU

time increases. Possibly more time per backtrace is used in

order to reduce backtracks by expensive evaluation of weights

and biases of ANN edges that involves matrix multiplication

and computation of sigmoid [24] function. Forth, the new

ANN heuristic does not perform as well on a few circuits

compared to the original ANN [4], but, it still outperformed

the conventional heuristics (like Distance [2] and COP [6]),

except in case of c432. Fifth, Figure 8 illustrates that CPU

time remains constant for smaller circuits, and a reduction for

Fig. 7. New result: Backtracks in PODEM ATPG for all checkpoint stuck-at
faults (including detected and redundant). Formally trained ANN guidance
(black bars) show reduced backtracks over the previous ANN [4] (orange
bars).

high depth circuits is observed perhaps due to simultaneous

reduction in backtracks and backtraces.

VI. DISCUSSION AND FUTURE DIRECTIONS

This study provides several avenues to be explored. First,

our focus was on reducing backtracks, but the performance

of backtraces, particularly in reconvergent fanout-free circuits,

can also be improved. Second, our exploration for eliminating

backtracks has a cost in CPU time. Thus, a “sweet-spot” may

be found where the reduction of backtracks would be optimum

for minimizing CPU time. Third, finding untestable/redundant

faults earlier can make ATPG for the entire circuit faster.

320

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. New result: CPU time (ms) of PODEM ATPG for all checkpoint stuck-
at faults (including detected and redundant). Formally trained ANN guidance
(black line) shows some reduction in CPU time over the previous ANN [4]
(orange line), especially for larger benchmarks.

Fourth, recent work [20] has demonstrated that arbitrary

random circuits can generate limitless training data. Fifth, this

study is demonstrated on academic benchmark circuits and

not on larger industry standard circuits. The authors believe

that the ANN-guided ATPG performance trends are quite

promising (which is important) and likely to scale on a wider

variety and larger set of designs to show broader capabilities in

future. Finally, there may be other features, such as SCOAP [7]

and those related to fanouts or reconverging signals, that can

add to the capability of the ANN. Yet another area is to

examine ANN structures beyond the single hidden layer [29].

We found that training with just hard-to-detect faults was

not sufficient for obtaining a more useful ANN. Therefore, we

had to include some easy-to-test faults in the training process.

A possible reason is that the hard-to-detect faults may cover

only some parts of the circuit topology while ignoring others.

VII. CONCLUSION

The methodical training of an ANN for guiding ATPG

as presented here has benefits. Although many cases show

significant improvements, there are circuits that demand more.

Finding the most suitable training circuits remains an open

problem. ANN training is only a one-time cost, after which

the MI imparted to the ATPG can have long-term benefits.

However, there is an added CPU time cost in every ATPG run

because of the more complex computation required during the

ANN-based decision. In an alternative implementation, some

of those computations may be avoided by using lookup tables.

Also, practical ATPG systems may combine a simple program

(e.g., random vector ATPG) for easy faults and a complex

program (e.g., ANN-based ATPG) for hard-to-detect faults.

REFERENCES

[1] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection
Problems,” IEEE Trans. Comp., vol. C-24, pp. 242–249, 1975.

[2] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” IEEE Trans. Comp., vol. C-30, pp. 215–
222, 1981.

[3] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer US, 2013.

[4] S. Roy, S. K. Millican, and V. D. Agrawal, “Machine Intelligence for
Efficient Test Pattern Generation,” in Proceedings of the IEEE Int. Test
Conf., Nov 2020, pp. 1–6.

[5] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algo-
rithms to Compute Tests to Detect and Distinguish Between Failures in
Logic Circuits,” IEEE Trans. Electronic Comp., vol. EC-16, pp. 567–
580, 1967.

[6] F. Brglez, “On Testability Analysis of Combinational Circuits,” in Proc.
Int. Symp. Circ. and Sys., Montreal, Quebec, Canada, 1984, pp. 221–225.

[7] L. Goldstein, “Controllability/observability analysis of digital circuits,”
IEEE Trans. Circ. and Sys., pp. 685–693, 1979.

[8] R. G. Bennetts, C. M. Maunder, and G. D. Robinson, “COMELOT: a
Computer-aided Measure for Logic Testability,” IEE Proceedings E -
Comp. and Digital Techniques, vol. 128, no. 5, pp. 177–189, 1981.

[9] Fujiwara and Shimono, “On the Acceleration of Test Generation Algo-
rithms,” IEEE Trans. Comp., vol. C-32, pp. 1137–1144, 1983.

[10] M. Pradhan and B. B. Bhattacharya, “A Survey of Digital Circuit Testing
in the Light of Machine Learning,” WIREs Data Mining Knowl. Discov.,
pp. 1–18, 2020.

[11] H. Stratigopoulos, “Machine Learning Applications in IC Testing,” in
Proc. IEEE 23rd European Test Symposium (ETS), Bremen, Germany,
Jun 2018, pp. 1–10.

[12] S. Roy, S. K. Millican, and V. D. Agrawal, “Special Session – Machine
Learning in Test: A Survey of Analog, Digital, Memory, and RF
Integrated Circuits,” in Proc. IEEE VLSI Test Symposium (VTS’21),
2021, pp. 1–10.

[13] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, Neural Models
and Algorithms for Digital Testing. Springer, 1991.

[14] M. Chern, S.-W. Lee, S.-Y. Huang, Y. Huang, G. Veda, K.-H. H. Tsai,
and W.-T. Cheng, “Improving Scan Chain Diagnostic Accuracy Using
Multi-Stage Artificial Neural Networks,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conf. (ASP-DAC), Tokyo, Japan,
Jan 2019, pp. 341–346.

[15] L. R. Gómez and H.-J. Wunderlich, “A Neural-Network-Based Fault
Classifier,” in Proc. IEEE 25th Asian Test Symp. (ATS), Hiroshima,
Japan, Nov 2016, pp. 144–149.

[16] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High Performance Graph Convolutional Networks with Applications
in Testability Analysis,” in Proc. 56th ACM/IEEE Design Automation
Conf. (DAC), Las Vegas, NV, USA, June 2019, pp. 1–6.

[17] H.-G. Stratigopoulos and Y. Makris, “Error Moderation in Low-Cost
Machine-Learning-Based Analog/RF Testing,” IEEE Trans. Computer-
Aided Design of Integrated Circ. and Sys., vol. 27, no. 2, pp. 339–351,
Feb. 2008.

[18] D. Maliuk, H.-G. Stratigopoulos, H. Huang, and Y. Makris, “Analog
Neural Network Design for RF Built-In Self-Test,” in Proc. Int. Test
Conf. (ITC), Austin, TX, USA, Nov 2010, pp. 23.2.1–23.2.10.

[19] Y. Sun and S. K. Millican, “Test Point Insertion Using Artificial
Neural Networks,” in Proc. IEEE Comp. Society Annual Symp. on VLSI
(ISVLSI), Miami, FL, USA, Jul 2019, pp. 253–258.

[20] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural
Networks to Delay Fault Testing: Test Point Insertion and Random
Circuit Training,” in Proc. IEEE 28th Asian Test Symp. (ATS), Kolkata,
India, Dec 2019, pp. 13–18.

[21] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random
Pattern Delay Fault Coverage Using Inversion Test Points,” in 2019 IEEE
28th North Atlantic Test Workshop (NATW), Burlington, VT, USA, May
2019, pp. 206–211.

[22] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Pseudo-
Random Fault Coverage Through Inversions: a Study on Test Point
Architectures,” J. Electron. Test, vol. 36, no. 1, p. 123–133, Feb. 2020.

[23] Y. Lecun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature Cell
Biology, vol. 521, pp. 436–444, 2015.

[24] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
Functions: Comparison of trends in Practice and Research for Deep
Learning,” ArXiv, vol. abs/1811.03378, 2018.

[25] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
“Measuring Catastrophic Forgetting in Neural Networks,” eprint cs.AI
arXiv:1708.02072, 2017.

[27] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” Proceed-
ings of the IEEE Int. Symp. on Circ. and Sys. (ISCAS), pp. 677–692,
June 1985.

[28] F. Corno, M. S. Reorda, and G. Squillero, “RT-Level ITC’99 Bench-
marks and First ATPG Results,” IEEE Design & Test of Comp., vol. 17,
pp. 44–53, Jul. 2000.

[29] B. M. Wilamowski, “Neural Network Architectures and Learning Algo-
rithms,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 56–63,
Dec. 2009.

321

Authorized licensed use limited to: Auburn University. Downloaded on May 01,2021 at 21:30:09 UTC from IEEE Xplore.  Restrictions apply. 


		2021-04-23T08:50:51-0400
	Certified PDF 2 Signature




