Defect Diagnosis of Digital Circuits
Using Surrogate Faults*

Chidambaram Alagappan and Vishwani D. Agrawal

Auburn University
ECE Dept., 200 Broun Hall, Auburn, AL 36849 USA
czal00l1l@tigermail.auburn.edu,
vagrawal@eng.auburn.edu
http://www.eng.auburn.edu/~vagrawal

Abstract. Classical single stuck-at faults are analyzed as surrogates
for any non-classical fault that may have caused an observed failure.
Although multiple stuck-at faults are used as an illustrative example of
non-classical faults, proposed algorithms are applicable to any other type
of fault. Our effect-cause analysis is less complex than existing methods.
The diagnostic procedure adds or removes faults from a set of candi-
date faults based on the observed circuit outputs, using minimal fault
simulation, to obtain a small set of suspected faults.

Keywords: Dictionary-less fault diagnosis; fault simulation; multiple
stuck-at faults; stuck-at faults; surrogate faults.

1 Introduction

An ideal fault diagnosis procedure should report true failures with accuracy,
i.e., resolution (the number of true failures reported among the total number of
faults reported) and diagnosability (the percentage of correctly identified fail-
ures) of the diagnosis result should be high [8]. Previous research on fault diag-
nosis attempts trade-offs between the resolution, diagnosability and CPU time,
but the algorithms become increasingly complex. Two major classes of algo-
rithms are cause-effect and effect-cause types. Cause-effect analysis has a stored
simulated response database of modeled faults. The faulty circuit response is
compared against this database to find out which fault might have caused the
failure [BI7UT2ITH]. This database, called dictionary, is memory intensive and im-
practical for large circuits. Effect-cause analysis works on the observed failing
signals and searches for the cause by tracing back the error propagation path
from the failing primary outputs to identify faults likely to have produced the
failure [3419]. Backward implication and forward propagation are used for this
purpose [9]. Such procedures use moderate amount of memory.

Although a real defect is rarely a classical single stuck-at fault, diagnostic
procedures match observed symptoms to closest single stuck-at faults. This is

* Research supported in part by the National Science Foundation Grant CCF-1116213.

M.S. Gaur et al. (Eds.): VDAT 2013, CCIS 382, pp. 376-[386] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.eng.auburn.edu/~vagrawal

Defect Diagnosis Using Surrogate Faults 377

(a) C17 benchmark circuit. (b) C17 with output selection.

Fig. 1. Output selection implementation on C17 benchmark circuit

because the available analysis tools only handle single stuck-at faults. The di-
agnosed single stuck-at faults then are not real but are “surrogates” meaning
that they have some, but not all, characteristics of the actual defect in the cir-
cuit. The term “surrogate fault” has been used before in the literature [TO/T3JT6].

2 Preliminaries

A fault simulator reports all single stuck-at faults that can be detected by an
input pattern on all primary outputs (POs). To use this information for dis-
tinguishing among several faults that could have caused the failure we employ
output selection. AND gates are added in the simulation netlist at each PO, with
the other input of the AND gate being a new primary input (PI). The failing test
pattern is duplicated as many times as the number of POs, activating exactly
one PI at a time. Thus, new PIs that directly go to the added AND gates are all
forced to 0 except for one PI to a transparent AND gate to find the detectable
faults at the corresponding PO. Consider C17 benchmark circuit of Figure [Tal A
test pattern “abcde” produces good circuit responses ‘f1’ and ‘f2’. Assume this
circuit has a failure only at the second output. A typical fault simulator may
identify detectable faults without associating them to any PO. With output se-
lection of Figure[ID] the test pattern is duplicated as “abcde10” and “abede01”.

3 Diagnosis Algorithm

The diagnosis algorithm relies on a basic concept that a test pattern fails because
a detectable fault is present in the circuit or a test pattern passes because none
of the detectable faults is present. For this to be effective, we assume that there
is no circular fault masking present in the circuit. Let ‘passing_set’ be the set
of passing test patterns, ‘failing_set’ be the set of failing test patterns, ‘sus_fits’
be the suspected fault list, ‘set_can_flits’ be prime suspect candidate faults
and ‘set2_can_fits’ be surrogate candidate faults. For simplicity, we will refer
to ‘seti_can_fits’ as SET1 and ‘set2_can_flts’ as SET2.

The algorithm has four phases [6] as shown in the flowchart of Figure 21
Initially, Phase 1 takes the union of all faults detectable by all failing patterns as
a list of suspects. Since this set can be large, we need to reduce the list. In Phase 2,

378 C. Alagappan and V.D. Agrawal

START

Is
failing_set
empty?,

Restore
failing_set

Select &
remove a failing
pattern, perform
fault simulation
and retain only
faults detected,
insetl_can_fits

Select & remove a
passing pattern, perform
fault simulation and
delete faults detected
from sus_fits

Select & remove
a failing pattern,
perform fault
simulation & add
faults detected to
sus_fits

copy sus_fits
to

Is
failing_set
empty?,

Is setl_can_fits
passing_set

empty?

and
set2_can_fits

From
set2_can_fits
delete faults

Add equivalent &
opposite polarity
faults for every

faultin
set1_can_fits and
sToP set2_can_fits

Fig. 2. Flowchart of diagnosis procedure

that are
present in
setl_can_fits
too

SA1 5 SAO

D
0 —<—— SA0 1 SA0
0
1 D 0 D

Fig. 3. Opposite polarity fault masking

(=]

we take the union of all faults detectable by passing patterns and subtract it from
suspect list of Phase 1. Phase 3 takes an intersection of the suspected fault lists
of all failing patterns. The resulting faults are called prime suspects. These
faults are of low priority, but there is a chance that they can be surrogate of
an actual fault or one of the actual faults. In Phase 4, equivalent faults of the
identified suspected faults are added to the suspect list. To guard against fault
masking, we include the opposite polarity faults of the faults that are present in
SET1 and SET2, to get the final candidate fault lists. The pseudocode for the
entire algorithm is available in a recent thesis [6].

If the actual defect is a single stuck-at fault, the algorithm identifies it as
a “prime suspect” in Phase 2. For other defects, it provides a list of surrogate
single stuck-at faults “resembling” the actual defect in location or behavior.

Masking. In Figure Bl the top input of an AND gate is stuck-at-1 (SA1) and
the output is stuck-at-0 (SA0). To activate the first fault, a ‘0’ must be supplied
to the top input and a ‘1’ must be supplied to the bottom input to propagate
it. This will produce a D on the top input, where D = 1 if SA1 is present on
that input or D = 0 if the input is fault free. However, D will be masked at the
output by the SAO fault. The diagnosis procedure will identify output SAO as
the only suspect. Therefore, SAOs on both inputs are also included as suspects.
Similarly, for the NOR gate in Figure Bl when the top input and output have
SAO0s, the masking occurs. Therefore, Phase 4 enhances the suspect list with all
opposite polarity faults for equivalent faults of a suspected single stuck-at fault.

Defect Diagnosis Using Surrogate Faults 379

Theorem 1. If there is only a single stuck-at fault present in a failing circuit
under diagnosis (CUD), the diagnosis algorithm will always identify that fault
as a prime suspect, irrespective of the detection or diagnostic coverage of the test
pattern set.

Proof. Assume that CUD has a single stuck-at fault that causes N — k out of N
test patterns to fail. The remaining k£ are passing patterns. Because a fault free
circuit cannot have any failing test pattern, the presence of failing test patterns
indicates the presence of some failure s. In other words, a test pattern can only
fail because a fault that it detects is present. Hence all N — k patterns detect
the fault s and the remaining k patterns do not detect the fault s. If all N — &
patterns detect some fault present in the circuit, it has to be the same fault that
all the N — k patterns detect, because there is no more than one fault present in
the circuit according to our assumption in the beginning. Moving forward with
this revelation, Phase 3 will always come up with one or more prime suspects
including the actual fault, as the intersection of the faults detected by all failing
patterns. |

Many possible cases of single stuck-at faults, multiple stuck-at faults without
masking, multiple stuck-at faults with masking, and multiple stuck-at faults with
interference have been analyzed in detail [6]. Figure @ shows the comparison of
simulation effort between the proposed diagnosis procedure and the traditional
fault dictionary diagnosis method. It is plotted for a multiple (two) stuck-at
fault case of C432 ISCAS’85 benchmark circuit. This circuit has a total of 1078
single stuck-at faults in the fault list. The test vector set with 100% diagnostic
coverage of detectable faults contains 462 test vectors (with output selection
implemented). The dictionary method involves simulation of all faults for all
test vectors. Hence, the entire area under the straight black line denotes the
simulation effort of the fault dictionary method. The considered failure case
produced 31 failing vectors and 431 passing vectors. The proposed fault diagnosis
procedure performs fault simulation with the failing test vectors first, which is
denoted by the solid red line. This line drops down steeply because, as and
when the faults are detected, they are dropped. We process fewer faults as we
proceed with the simulation. Next, the fault simulation of passing patterns is
performed, which is denoted by the dotted blue line. Note that the faults that
were detected and dropped during failing pattern simulation are those to be
simulated with passing patterns. In this case too, faults are dropped as and
when they are detected by the passing patterns, which explains the drop in the
line. Once again the number of faults to be simulated keeps reducing throughout
simulation. Beyond a certain point, not many remaining faults are detected by
the passing patterns, which makes the curve almost flat. After simulating all
passing patterns, the remaining faults become the suspects and surrogates. The
area under these lines (solid red and dotted blue) denotes the simulation effort of
the proposed procedure that is far lower than the traditional dictionary method.

380 C. Alagappan and V.D. Agrawal

e Failing Patterns Fault Simulation = = = Passing Patterns Fault Simulation — Lt Simulation for Dictionary

1150
1100
1020
1000

\
850
1
900 -+
|
\

850

800

T 0
§ 700 C
S 650 \
E 600 N
‘g 550 .
£ s00 H
F 450 '
= 400 v
350 Ao
300 ey
250 -
200 ey
150 =
100 5

50 b=

ke L T T T T T T T

T T T T T T T T T T T T T T T T T T T 1
o 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
Test Patterns

Fig. 4. Simulation effort comparison with dictionary method applied to C432

3.1 Fault Ranking

There is a small probability that the diagnosis procedure comes up with no
result, i.e., SET1 and SET2 are both empty after fault simulation. That can
happen in a situation like multiple faults with masking and interference such
that they together produce faulty output responses that will allow a few of the
test patterns detecting them to pass and other test patterns detecting them to
fail. For example, consider the case where every fault detectable by failing patters
is also detectable by at least one passing pattern. This is a rare phenomenon and
only in such cases a ranking procedure is used.

Phase 1 short lists faults in sus_fits. For ranking, while carrying out Phase 1
we keep a count of the number of failing patterns that detect each fault. This
number is called the weight of the corresponding fault, e.g., if fault F1 is detected
by three failing patterns, then the weight of F1 at the end of Phase 1 will be
three. Similarly, in Phase 2, which simulates only the faults found detectable in
Phase 1, we keep a count of the number of passing patterns for each fault. This
number is subtracted from the weight of the fault found in Phase 1. At the end
of Phase 2 we get the final weight of every fault. The faults with the highest
weight are reported to be prime suspect (SET1) faults and the faults with the
second highest weight are reported to be surrogate (SET2) faults.

Note that the final weights can also be negative. This will happen when a
fault is detectable by more passing patterns and by fewer failing patterns. Even
in this case, the top two highest weights are considered to be suspects. Also,
there can be cases where the final weight is zero. This will happen when the
fault is detected by the same number of passing and failing patterns.

The fault simulation in ranking is more expensive because it is done with-
out fault dropping. In practice, however, the four phase diagnostic procedure

Defect Diagnosis Using Surrogate Faults 381

Table 1. Single fault diagnosis with 1-detect tests

Circuit| No. of | No. of | DC |Diagnosis|CPU*| Fault ratio

name |outputs|patterns| % % s |SET1]SET2
C17 2 10 95.454 100 0.067 |1.100| 1.780
C432 7 462 [94.038 100 0.189 |1.025| 6.675

C499 32 2080 [98.000{ 100 0.588 11.029 |16.722
C880 26 1664 |94.161| 100 0.503 |1.069| 2.248
C1908 | 25 3625 [85.187| 100 1.294 |1.379|28.290
C2670| 140 13300 |85.437| 100 6.455 [1.320] 8.207
03540 | 22 3520 (89.091| 100 1.333 {1.229| 5.200
Ch315| 123 13899 |91.192| 100 6.847 [1.054| 4.204
6288 | 32 1056 |85.616| 100 0.764 |1.138| 8.255
C7552| 108 17064 |86.507| 100 |10.123|1.28110.765

* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

returning with zero faults is a rare possibility. Out of numerous tests performed
on benchmark circuits, the algorithm came up with no suspect only twice, re-
quiring the fault ranking to provide a diagnosis.

4 Experimental Results

The algorithms were applied to ISCAS’85 benchmark circuits using various test
pattern sets. The circuit modeling and the entire algorithm were implemented
in Python programming language [2], automatically invoking ATPG and fault
simulator of Mentor Graphics FASTSCAN [I] software. VBA macros [1I] were
used to duplicate the test patterns for output selection. The programs were run
on a personal computer (PC) with Intel Core-2 duo 3.06GHz processor and 4GB
memory. Results for a circuit are averaged over 100 cases, each with a randomly
selected fault. C17 has only 22 faults and its results are averaged over 22 cases.

Results of single fault diagnosis using a 1-detect pattern set are shown in
Table Il The first column states the circuit name, the second column contains
the number of primary outputs the circuit has. The third column shows the
number of patterns (with output selection implemented) used for diagnosis. So
the actual number of patterns in the 1-detect pattern set for any circuit will be
the number of patterns shown in the third column divided by the number of
primary outputs (shown in column 2) of the table.

Diagnostic Coverage (DC) of the test pattern set based on single stuck-at
faults, excluding redundant faults, is stated in column 4. It is defined as [17],

DO — Number of detected fault groups n (1)
N Total number of faults N

Column 5 shows the percentage of cases the single fault was diagnosed. For
single stuck-at faults, the algorithm always comes up with the actual fault (100%
diagnosis), even if the diagnostic coverage of the pattern set is not as high.
Simulation time in seconds is stated in column 6. Ratios of number of candidate

382 C. Alagappan and V.D. Agrawal

Table 2. Single fault diagnosis with 2-detect tests

Circuit| No. of | No. of | DC |Diagnosis|CPU*| Fault ratio
name |outputs|patterns| % % s |SET1]SET2

C499 32 3872 [98.400| 100 1.025 {1.029 7.970
C1908| 25 6425 [86.203| 100 2.242 (1.379]14.798
C7552| 108 27756 (86.750| 100 |16.076|1.281| 8.023

* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

faults in SET1 and SET2 are reported in columns 7 and 8, respectively. This is
the ratio of the total number of faults reported in each set to the number of faults
expected in that set. The expected number of faults includes the actual fault,
its equivalent faults and the opposite polarity faults for all equivalent faults,
including the actual fault. This ratio denotes the diagnostic resolution of the
procedure. The closer the fault ratio is to 1.0, better is the resolution. For single
stuck-at faults, the ratio of SET1 faults is almost 1.0 in all cases. Hence, when
the faults identified in SET1 are probed (by electron beam or other failure mode
analysis procedures), one would locate the actual fault and it will unnecessary
to probe the faults in SET2. But in a real situation since we would not know
whether the actual fault is a single stuck-at fault or a non-classical fault, the
SET2 surrogate faults should not be disregarded.

For circuits C499, C1908 and C7552, the ratio of faults in SET2 is high. This
is due to the fact that the diagnostic coverage of the test pattern set is not high
enough. To examine the effect of improving diagnostic coverage of the test pat-
tern set on diagnostic resolution, 2-detect test patterns were used to diagnose
these three circuits. The results are shown in Table[2l Note that 2-detect patterns
provide a marginal, though definite, increase in diagnostic coverage (DC'). Most
increase occurred for C1908, which is only 1.016%. Still, the resolution improved
as SET?2 ratio dropped to about 50%. So, for patterns with even higher diag-
nostic coverage, the resolution will be further improved. An utmost efficiency of
the diagnosis algorithm can be expected from higher diagnostic capability test
pattern set than from just the detection test pattern set.

To verify the relevance of the reported surrogate faults to actual non-classical
faults, we examined multiple stuck-at faults by introducing two stuck-at faults
simultaneously. One hundred failure cases were generated for each circuit. In
each case, two stuck-at faults were chosen in such a way that they are close
to each other in the circuit. The reason for considering only two simultaneous
faults is that the probability of fault masking is maximum when there are just
two faults and this probability keeps reducing as the number of faults present in
the circuit increases. This increased chance of fault masking created a pessimistic
environment for the algorithm. All diagnosis results are averaged over 100 cases
for each circuit. TableBlsummarizes the multiple fault diagnosis experiment with
1-detect test patterns.

Column 4 of Table Bl shows the percentage of cases where both faults were
diagnosed. Column 5 shows the percentage of cases where only one of the actual
faults present was diagnosed. The sum of these two percentages subtracted from

Defect Diagnosis Using Surrogate Faults 383

Table 3. Multiple (two) fault diagnosis with 1-detect tests

Circuit| No. of | DC % of cases diagnosed CPU*| Fault ratio
name |Patterns| % [Both faults|One fault|No fault] s |SET1[SET2

C17 10 |95.454| 80.950 19.040 | 0.000 |0.067|0.500|2.091
C432 462 94.038| 90.566 7.547 1.886 |0.135(0.563| 3.516
C499 | 2080 |98.000| 49.056 20.754 | 30.188 |0.6130.371|17.589
C880 | 1664 |94.161| 86.792 9.433 3.773 10.50210.900 | 3.205
C1908 | 3625 [85.187| 90.566 0.000 9.433 |0.928 0.488 [12.764
C2670| 13300 [85.437| 88.679 3.773 7.547 |4.720(0.564 | 7.046
(3540 | 3520 [89.091| 86.792 3.773 9.433 |1.547]0.488|5.177
Ch315| 13899 [91.192| 98.113 1.886 0.000 |7.065|0.422 | 3.886
C6288 | 1056 [85.616| 83.018 0.000 | 16.981 |0.888[0.589|5.536
C7552| 17064 [86.507| 96.226 1.886 1.886 |7.539|0.358| 7.104

* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Fig. 5. Fault masking (interference) in XOR gate

100% gives the percentage of cases where both faults were not diagnosed, as
shown in column 6. As the results in the table indicate, except for the circuit
(499, all other circuits have, at least in 80% cases, a perfect diagnosis of both
faults. A point to be noted is that the proposed diagnosis procedure does not
assume that fault masking is not present and the reported percentage of diagnosis
includes the possible fault masking and interference cases.

The reason for C499 (32-bit single-error-correcting circuit) producing poor
multiple fault diagnosis (resulting in irrelevant surrogate faults) even with a
test pattern set having very high diagnostic coverage (based on single stuck-at
faults) must be examined. We found the presence of circular fault masking in
many of the fault cases considered. The circuit has an XOR tree consisting of 104
two-input XOR gates. XOR logic gates are not considered to be elementary logic
gates since they are generally constructed from multiple Boolean gates, such that
the set of faults depends on its construction. All four test patterns are needed to
completely test a 2-input XOR gate, regardless of its construction [I4]. Consider
the XOR gate shown in Figure[5l The top input has a stuck-at-1 (sal) fault and
the bottom input has a stuck-at-0 (sa0) fault. To propagate a single fault through
XOR gate, the other input must be unchanged. But since this is a multiple fault
situation, two faults are trying to propagate through the XOR gate at the same
time. So a ‘0’ on the top input is required to activate the sal fault and a ‘1’ on
the bottom input is required to activate the saQ fault. But since both inputs are
changed, the faults mask each other. This phenomenon is called circular masking.
Hence the output is ‘1’ which is the same as the good circuit output. Due to
this circular masking, the algorithm will not be able to produce the relevant
surrogate faults as the actual faults are dropped, since the pattern which should
have failed, passes. This is not only for the case where both faults are present on

384 C. Alagappan and V.D. Agrawal

Table 4. Multiple (two) fault diagnosis with 2-detect tests

Circuit| No. of | DC % of cases diagnosed CPU*| Fault ratio |
name |patterns| (%) [Both faults|One fault|No fault| s [SET1[SET2|
C499 | 3872 |98.400| 49.056 20.754 | 30.188 | 0.696 |0.371|11.555
C1908 | 6425 |86.203| 90.566 0.000 9.433 |2.314 {0.488| 7.232
C7552 | 27756 |86.750(96.226 1.886 1.886 |17.291|0.358]| 5.905

+* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Table 5. Single fault diagnosis with diagnostic patterns

Circuit| No. of | No. of |DC|Diagnosis|CPU*| Fault ratio
name |outputs|patterns| % % S SET1|SET2

[C17 [2 [12 [100[100 [0.067]1.000[1.780]
* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

the inputs of the XOR gate, but also for any case where fault effects are being
propagated through an XOR gate. The situation will improve while considering
more than two faults to be present in the circuit because the probability of a
complete circular masking decreases with the increase in the number of faults.
In circuit C499, the presence of this huge XOR tree increases circular masking
and thereby deteriorates the performance of the diagnosis algorithm. But as
discussed before, the algorithm does produce reasonable results even in a highly
pessimistic environment, where choices (close neighborhood faults selected) are
made in such a way that the probability of masking is high. One other ISCAS’85
benchmark circuit, which has (2-input) XOR gates present, is circuit C432. But
it has only 18 XOR gates, which do not form a tree and hence the diagnostic
percentage is not hurt significantly.

The ratio of faults in SET1 in Table 3 is less than 1 because in most cases,
faults reported in SET1 include one of the actual faults, its equivalent faults
and the opposite polarity faults. The other actual fault, its equivalent faults
and opposite polarity faults are present in SET2. Hence, the resolution of SET1
faults is mostly closer to 0.5 than being 1.0 when we consider two faults.

The same three circuits show a comparatively poorer SET2 resolution. Hence,
2-detect patterns are used to show that the diagnostic resolution improves upon
improving the diagnostic coverage of the test pattern set. The results of this
experiment are shown in Table @l Once again it is seen that, for small increase
in diagnostic coverage (DC) of the patterns by 1.016% (maximum) for circuit
(C1908 the resolution is improved by almost 40%. Other two circuits show a
similar trend.

The last experiment was to try the diagnosis procedure on a 100% diagnostic
test pattern set. The circuit C17 reports 95.454% of diagnostic coverage (DC)
with as few as 5 patterns that have 100% detection coverage. The total number
of faults in the circuit is 22. There was only one fault pair that was not distin-
guished. Adding one more pattern that distinguishes the fault pair yielded 100%
diagnostic coverage as expected. The diagnostic algorithm was then run using
this test pattern set to yield the results shown in Tables 5] and

Defect Diagnosis Using Surrogate Faults 385

Table 6. Multiple (two) fault diagnosis with diagnostic patterns

Circuit| No. of |DC % of cases diagnosed CPU*| Fault ratio
name |patterns| % [Both faults|One fault[No fault| s [SET1]SET2

| C17 | 12]100] 80.952 | 19.047 | 0.000 [0.067]0.489]2.102]
* PC with Intel Core-2 duo 3.06GHz processor and 4GB memory

Single fault diagnosis with 100% diagnostic coverage vector set produced a
perfect diagnostic resolution ‘1.0” as expected in SET1 and a slightly improved
resolution in SET2. Multiple fault diagnosis with this test pattern set improved
the resolution in SET1 by a very small amount and decreased the resolution
of SET2 by the very same amount. Also, the diagnostic coverage was improved
by a very small percentage. Since the 1-detect test pattern set already had a
diagnostic coverage of 95.454, there was very little left to improve.

To sum up, the proposed diagnostic procedure, given a failing vector and the
cause of failure a single stuck-at fault, will always come up with the actual fault,
irrespective of the detection or diagnostic coverage of the test pattern set. If
the detection coverage of the test pattern is higher, better will be the resolution
of the faults reported. Provided with 100% diagnostic coverage, the maximum
resolution can be achieved. If the actual fault is a multiple stuck-at fault with-
out circular fault masking, the diagnostic procedure will come up with surrogate
faults that represent the actual faults or the behavior of the actual faults, with
higher resolution as the diagnostic coverage of the pattern set increases.

5 Conclusion

We have proposed a lower complexity fault diagnosis algorithm that is based
on effect-cause analysis. The algorithm has higher diagnosability and resolution
for the surrogate faults identified to represent multiple stuck-at faults without
circularly masking, even if provided just with a high detection coverage test
pattern set. The same trend is exhibited when the diagnostic coverage of the
test pattern set is increased. The algorithm is memory efficient, since it does not
require a dictionary and also has reduced diagnostic effort (CPU time), since it
works on relatively smaller number of fault suspects and does not require re-
running simulations after frequently moving faults to and from the suspected
fault list based on heuristics.

In the future, we should examine the performance of the diagnosis algorithm
on other non-classical faults by using appropriate fault models and their simula-
tors. Also, redundant faults as one of the interfering fault in fault masking may
be examined. Considering that fault simulation tools will always be limited to a
few fault models (e.g., single stuck-at or transition faults), we should explore the
relationships between non-classical faults (bridging, stuck-open, coupling, path
delay, etc.) and the corresponding surrogate classical representatives. For exam-
ple, some non-classical faults like stuck-open or bridging require an initialization
pattern to precede a stuck-at test pattern. Thus, the test result for the non-
classical fault agrees with a single stuck-at fault only on a subset of patterns.

386 C. Alagappan and V.D. Agrawal

Further analysis can establish better correlation between actual faults and their
surrogates.

References

1. ATPG and Failure Diagnosis Tools. Mentor Graphics Corp., Wilsonville, OR (2009)

2. Python Tutorial Release 2.6.3. docs@python.org. Python Software Foundation
(2009)

3. Abramovici, M., Breuer, M.A.: Fault Diagnosis Based on Effect-Cause Analysis:
An Introduction. In: Proc. 17th Design Automation Conf., pp. 69-76 (June 1980)

4. Abramovici, M., Breuer, M.A.: Multiple Fault Diagnosis in Combinational Circuits
Based on an Effect-Cause Analysis. IEEE Transactions on Computers C-29(6),
451-460 (1980)

5. Agrawal, V.D., Baik, D.H., Kim, Y.C., Saluja, K.K.: Exclusive Test and Its Ap-
plications to Fault Diagnosis. In: Proc. 16th International Conf. VLSI Design,
pp. 143-148 (2003)

6. Alagappan, C.: Dictionary-Less Defect Diagnosis as Real or Surrogate Single Stuck-
At Faults. Master’s thesis, Auburn University, Auburn, Alabama (May 2013)

7. Beckler, M., Blanton, R.D.(S.): On-Chip Diagnosis for Early-Life and Wear-Out
Failures. In: Proc. International Test. Conf., pp. 1-10 (November 2012)

8. Bushnell, M.L., Agrawal, V.D.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Springer, Boston (2000)

9. Cox, H., Rajski, J.: A Method of Fault Analysis for Test Generation and Fault
Diagnosis. IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems 7(7), 813-833 (1988)

10. Grimaila, M.R., Lee, S., Dworak, J., Butler, K.M., Stewart, B., Houchins, B.,
Mathur, V., Park, J., Wang, L.-C., Mercer, M.R.: REDO - Random Excitation and
Deterministic Observation - First Commercial Experiment. In: Proc. 17th IEEE
VLSI Test Symp., pp. 268274 (April 1999)

11. Kofler, M.: Definitive Guide to Excel VBA. Apress, New York (2000)

12. Millman, S.D., McCluskey, E.J., Acken, J.M.: Diagnosing CMOS Bridging Faults
With Stuck-At Fault Dictionaries. In: Proc. International Test. Conf., pp. 860-870
(September 1990)

13. Reddy, S.M., Pomeranz, 1., Kajihara, S.: On the Effects of Test Compaction on
Defect Coverage. In: Proc. 14th IEEE VLSI Test Symp., pp. 430435 (April 1996)

14. Stroud, C.E.: A Designer’s Guide to Built-in Self-Test. Springer, Boston (2002)

15. Venkataraman, S., Drummonds, S.B.: POIROT: A Logic Fault Diagnosis Tool and
Its Applications. In: Proc. International Test Conf., pp. 253-262 (2000)

16. Wang, L.C., Williams, T.W., Mercer, M.R.: On Efficiently and Reliably Achieving
Low Defective Part Levels. In: Proc. International Test Conf., pp. 616-625 (October
1995)

17. Zhang, Y., Agrawal, V.D.: An Algorithm for Diagnostic Fault Simulation. In: Proc.
11th Latin-American Test Workshop (LATW), pp. 1-5 (March 2010)

	Lecture Notes in Computer Science
	Introduction
	Preliminaries
	Diagnosis Algorithm
	Fault Ranking

	Experimental Results
	Conclusion

