
Improved Random Pattern Delay Fault Coverage
Using Inversion Test Points

Soham Roy, Brandon Stiene, Spencer K. Millican and Vishwani D. Agrawal
Auburn University, Department of Electrical and Computer Engineering

Auburn, AL 36849, USA

szr0075@auburn.edu; bks0015@auburn.edu; millican@auburn.edu; agrawvd@auburn.edu

Abstract—This article analyzes and rationalizes the capabilities
of inversion-based test points (TPs) when implemented in lieu
of control-0/1 TPs. With upward scaling of transistor density,
delay faults can be masked when using pseudo-random tests
with control-0/1 (“conventional”) TP architectures. This study
finds delay fault coverage can be improved using inversion TPs
in logic circuits using pseudo-random tests without negatively
impacting stuck-at fault coverage.

Keywords—Design for test, random test, built-in self-test, test
points, delay test

I. INTRODUCTION

Circuit test is a critical part of the integrated circuit (IC)

manufacturing process which confirms circuit reliability. Cir-

cuit test applies stimuli to a manufactured IC to excite defects

created as a natural consequence of the silicon manufacturing

process. The cost of testing circuits is a significant portion

of IC manufacturing costs [1], [2], and as transistor density

continues to scale upwards, circuit test costs are increasing

and efforts continue to keep circuit test costs down. The

primary challenge of IC test is to reduce test-related costs

while preventing the release of defective circuits while not

discarding good devices. Small increases in fault coverage

is worth investment in order to reduce manufacturing defect

levels.
Pseudo-random testing has been demonstrated to be effec-

tive at detecting defects in previous generations of technology,

but its utility is degraded for complex circuits. Although

pseudo-random tests detect fewer defects per test compared

to deterministic, circuit-specific tests, i.e. those generated by

automatic test pattern generators (ATPGs), they are more

economical since they require less computational effort to

generate and can be applied with minimal on-chip hardware.

However, the utility of pseudo-random tests is degraded for

modern technologies due to random-pattern-resistant (RPR)

faults [1] (see Section II). These faults are a natural conse-

quence of increasing circuit complexity and will continue to be

present in new technologies since fulfilling consumer demands

requires ever-more complex circuits. Many methods have been

developed to improve the fault coverage of pseudo-random

test patterns, with a common technique being test point inser-

tion (TPI). Other methods of improving pseudo-random test

effectiveness include changing the nature of random stimuli,

such as deterministic seeding [3] and pattern weighting [4],

but modifying the logic of a circuit during test using circuit

controlling and circuit observing “test points” (TPs) has been

of particular interest due to its ease-of-implementation on

circuit netlists.

This study demonstrates the effectiveness of unconventional

inversion TPs in lieu of traditional control TPs [5] by analyzing

the delay and stuck-at fault coverage achieved by implement-

ing these two TP architectures, which has not been examined

by earlier studies on inversion TPs. Using inversion TPs is

not standard practice today, and this study will hopefully

motivate the electronic design automation industry to support

inversion TPs in their DFT tools. Although inversion TPs have

been introduced in earlier literature [6], [7], [8], no studies

have compared their impact compared to conventional TP

architectures. Their effectiveness at improving fault coverage,

especially delay fault coverage compared to conventional TPs

has yet to be explored. The specific contributions of this study

are as follows:

• A rationale for the effectiveness of inversion TPs com-

pared to conventional control TPs is provided.

• Experiments are performed which demonstrate inversion

TPs frequently have higher stuck-at fault coverage com-

pared to conventional TPs.

• Experiments are performed which demonstrate inversion

TPs ability to increase delay fault coverage while con-

ventional TPs frequently degrade stuck-at fault coverage.

The remainder of this article is organized as follows. The

motivation for this study is described in Section II. The

inversion TP architecture and its functioning are discussed in

Section III. The experimental setup which evaluates inversion

TP abilities is given in Section IV. Results and discussion on

these experiments are given in Section V, and conclusions and

future research directions are expressed in Section VI.

II. MOTIVATION

Pseudo-random tests are variable and predictable circuit

stimuli generated by a pseudo-random pattern generator

(PRPG) in a built-in self-test (BIST) environment [1]. The

typical hardware schema for applying pseudo-random tests

is illustrated in Figure 1. A PRPG is typically implemented

with a linear feedback shift register (LFSR) [9], although

other architectures which generate variable, but predictable,

stimuli can be used. To apply a test, the PRPG is first loaded9978-1-7281-3382-9/19/$31.00 c©2019 IEEE

Proceedings of 28th IEEE North Atlantic Test Workshop (NATW), Essex, VT, May 13-15, 2019 (6 pages)

1

Fig. 1: The typical arrangement of pseudo-random testing

hardware. In the test mode, inputs, memory, and outputs may

be scan flip-flops connected in one or more scan chains [9].

The chains receive inputs from PRPG and feed into the

response compactor.

with a “seed” which determines future stimuli. The circuit is

then programmed to take inputs from the PRPG as opposed

to normal circuit inputs. With each stimulus applied, circuit

outputs are either directly observed or compressed into a

“signature” generated by signal compression hardware (e.g.,

a multiple-input signature register (MISR) [1], [10]). This

signature is compared against a simulated value, and if the

hardware signature matches the simulated signature, the circuit

is considered free of defects.

The effectiveness of pseudo-random tests is impaired by

the presence of RPR faults, which are a natural occurrence

in complex logic circuits. An RPR fault [1], [11] is a logical

representation of a defect which is unlikely to be detected

using random stimulus, since RPR faults can only be detected

by a small set of test vectors among all possible stimulus.

Although the probability of detecting these types of faults can

be improved by applying many test vectors, the number of

vectors needed to do so may be infeasibly large. A typical

example of such a fault is illustrated in Figure 2. Exciting and

observing the indicated fault requires 32 logic-0’s to be applied

to the OR gate and 32 logic-1’s to be applied to the AND

gate. Presuming all inputs have an equal probability of being

logic-0 or logic-1, the probability of this stimulus occurring

is 2−64 ≈ 5.4 ∗ 10−20, which makes its application highly

unlikely using random stimuli.

A. Conventional TP Architectures

The purpose of a TP is to make the excitation of faults and

the observation of faults more likely under random stimulus.

Signal-controlling TPs function using an extra test enable pin

(or scannable register) which forces logic in a circuit to a

controlled value. While not under test, test enable is disabled,

which leaves the function of the circuit unchanged. During test,

test enable is enabled, which allows hard-to-control signals to

be directly controlled. Typical TP architectures use AND gates

Fig. 2: An example of a fault requiring one specific vector to

detect, which is unlikely to be generated using random stimuli.

or OR gates (or other analogous logic-forcing structures) to

force a circuit line to logic-0/1 (respectively) during test [4],

as illustrated in Figure 3(a) and 3(b). The first input to these

control TPs is the circuit line to be forced during test, and the

second input is the test enable signal (which can come from a

circuit pin, a dedicated scannable latch, or a functional latch

[12]).

Forcing circuit lines to known values has two effects: defects

can be excited which are unlikely to be excited under random

stimulus, and circuit paths can be activated to allow defects to

be propagated to circuit outputs under random stimuli. Control

TPs are known to increase circuit area with extra gates, but this

extra circuit area is deemed worthwhile given fault coverage

improvements made by the control TPs [13].

Another category of TPs, observe TPs, directly observes

circuit logic as opposed to controlling it, but observe TPs are

not the immediate subject of this study. To make a circuit line

easier to observe, a circuit line can be diverted to drive circuit

outputs (or scannable latches [14]) made specifically for test,

as shown in Figure 3(c). Observe TPs are not addressed by this

study as the detriments described in the following sub-section

do not immediately apply to them, but issues involving observe

TPs will be addressed in future studies (see Section V).

B. Conventional TP Detriments

Although the intention of control TPs is to excite “stuck

values” (i.e., “stuck-at faults”) in a circuit, their use can have

unintended consequences. Since an active control TP forces

a line to a set value, only one stuck-at value (stuck-at 0 or

stuck-at 1) can be excited when a control TP is active. Also,

an active control TP will prevent logic on the controlled signal

from passing through the TP. This later effect will prevent

any faults present on the controlled line from being observed.

Although the intention of control TPs is to increase stuck-at

fault coverage, these qualities can hinder their ability to excite

and propagate such faults.

Another disadvantage of control TPs is they prevent signal

transitions, which blocks the transmission and excitation of

delay faults. In a circuit’s functional mode, delay-causing

defects can cause an incorrect value to be observed at circuits

output when the correct circuit value can not reach the output

in time, as is illustrated in Figure 4. Unlike stuck-at faults,

delay faults require two circuit input vectors to detect: one to

activate the fault and one to launch the slow transition in the

circuit. Control TPs prevent signal transitions when enabled

2

TE TE

(a) Contro- 0 TP

TE

(b) Control-1 TP

Logic Logic

(c) Observe TP

TE

(d) XOR based TP

Fig. 3: Test Points (TPs) force a signal to logic-0 (control-

0), force a signal to “logic-1” (control-1), observe a signal

directly (observe), or invert signal from the previous logic

stage. TPs may require an extra pin to force a circuit value.

Circuit changes are shown in dashed lines.

(since they force signals to a value), and therefore control

TPs will block all delay faults from passing through the TP.

They also prevent delay faults on the output of the TP from

being excited, and they can make other delay faults driven by

the controlled line less likely to be excited.

Although typical test procedures will apply tests with TPs

both on and off, removing the disadvantages form active TPs

will make tests more effective. This is needed when the time

to apply random stimuli is limited (such as for in-field tests)

and when few “test modes” can be applied.

III. INVERSION-BASED TP ARCHITECTURE

Unlike conventional control TP architectures discussed in

Section II-A, inversion TPs change signal value probabilities

through inversions as opposed to forcing circuit lines to pre-

determined values. Conventional control TPs force signal value

probabilities by forcing constant values on lines, i.e., when a

control TP is enabled, the probability of logic-0/1 on a line

is 100% while the probability of the opposite value occurring

is 0%, which creates the detriments discussed in Section II-B.

Inversion TPs, on the other hand, invert signal probabilities.

For example, if a signal has a 75% chance of being logic-

1, activating an invert TP will make the probability of being

logic-1 25%.

The implementation of inversion TPs is illustrated in the

Figure 3(d). An inversion TP is implemented using an XOR

gate connected to test enable and the other input is the inverted

signal. When the TP is disabled, the XOR gate functionally

becomes a buffer, allowing the original circuit value to pass-

though. When the TP is enabled with test enable, the XOR

functionally becomes an inverter. Like control TPs, the source

of test enable signal can be a scanned register or a circuit-level

pin.

A potential advantage of inversion TPs over conventional

control TPs is their ability to excite both stuck-at 0 and stuck-

at 1 faults when activated, as well as to allow stuck-at faults

on the inverted line to propagate through. Since these TPs do

not force logic to set values, it is possible to excite both logic-

0 and logic-1 with these TPs when activated. Also, when an

Control-1TE

Normal

Faulty

Observe

TP

Logic

Fig. 4: Here, the effect a control TP has on the excitation

and observation of a delay fault is illustrated. The output

waveforms of a normal circuit, a faulty circuit, and a circuit

with an active control TP are labeled, as is the point in time

where an observation occurs.

Combinational Logic

50%
Primary Input

Fig. 5: This figure illustrates an instances where inversion

TPs may not increase fault coverage: if the best TP solution

is to force the circuit input to logic-1 during test, an inversion

TP will fail to do so.

inversion TP is activated, a fault’s effect on the inverted line

is no longer forced to a given value but is instead allowed

to pass though the TP (albeit inverted), which in turn gives a

chance for the fault’s effect to be observed at a circuit output.

A second potential advantage of inversion TPs is they can

excite and propagate delay faults when active. Since inversion

TPs do not force circuit lines to set values, they provide an

opportunity for transitions to occur on the TP output, and these

transitions can excite delay faults on the TP output (or on

logic driven by the TP). Additionally, if a transition (from

a delay fault) occurs on the inverted line, this transition can

pass through the inversion TP (albeit inverted) and has the

opportunity to be observed at a circuit output.

Inversion TPs may falter when a random signal needs to

be less random, but whether such occurrences will degrade

inversion TPs performance has yet to be studied. To detect

faults under random stimuli, it may be required to force

a relatively random signal to a set value. For example, as

illustrated in the Figure 5, an AND gate may prevent faulty

logic from passing though it based on another signals value,

and thus forcing that signal to logic-1 allows values to pass

though the gate. If that controlled signal is normally random,

this cannot be accomplished with an inversion TP. Whether

such conditions are likely to occur, however, has yet to be

determined and will be explored though experiments (see

Section V).

To the author’s knowledge, using XORs as TPs has been

noted in previous studies [6], [7], [8], but their advantages

compared to conventional control TPs and their effect on

3

delay fault coverage has yet to be examined or leveraged. The

focus of [6] was broad and covered many topics in weighted

random pattern generation, with a single section devoted to

TPI. The study chose to implement control-0 and control-

1 points in a circuit but implemented these control TPs as

XOR gates under the assumption that such TPs would only

be placed on lines where signals were almost always be logic-

0/1 under random stimuli. Beyond this assumption, the effect

of implementing control-0/1 TPs in such a manner was not

explored, and neither was the effect such a TP architecture

has on the detection of delay faults. It must also be noted that

the assumption made by the study contradicts the observation

made by the previous paragraph, since if a control-0/1 TP on

the previously described location was replaced by an inversion

point, its effect would be removed. XORs as a TP was also

noted in [7], [8], but the study did not compare inversion TPs

against conventional control TPs, nor did the study analyze

the effectiveness of inversion TPs at detecting delay faults.

IV. EXPERIMENTAL SETUP

This section provides the experimental setup used to evalu-

ate conventional control TPs and inversion TPs. Experiments

under this setup will provide a fair comparison between the

two architectures and demonstrate their ability to detect faults

under random stimuli.

A. Test Point Insertion (TPI)

This study does not propose a new TPI algorithm, and

instead will use an established TPI algorithm from literature

to compare the different TP architectures [15]. This method

was chosen because it can insert inversion TPs or control

TPs without favoring one architecture over another since

the algorithm itself does not require specific information on

the TPs used and instead only knows the calculated effect

a TP will have on fault coverage. The controllability and

observability program (COP) [16] is used to quantify a circuit

based on probabilistic metrics. Many algorithms use COP [15],

[12] to find the TP which maximizes the calculated fault

coverage of the circuit (FC) by calculating the probability

that each fault will be detected (Pf), depending on stuck-at-0

(SA0) or stuck-at-1 (SA1) fault model:

Pf =

{

controllability × observability for SA0

(1− controllability)× observability for SA1

FC = (1/|F |)
∑

∀f∈F

Pf (1)

Heuristic TPI algorithm starts by performing testability

analysis [16] on a given circuit, which assigns “controllability”

(the probability a circuit line will be logic-1) and “observ-

ability” (the probability a circuit line will be observed at

a circuit output pin) values to all lines in a circuit. These

controllability and observability values can then be used to

predict if a fault will be detected, i.e., if it will be excited

and observed, which in turn can be used to predict the fault

coverage if a given number of random vectors are applied.

It should be noted that this calculated fault coverage is not

the actual circuit fault coverage since the controllability and

observability calculations are not precise when re-convergent

fan-outs are present in the circuit [16]. The TPI algorithm

iteratively calculates the impact each candidate TP will have

on circuit fault coverage by re-calculating controllability and

observability values when the TP is active. The TPI program

then inserts the TP which provides the highest positive impact

on the calculated fault coverage. This process is repeated

until the number desired TPs is inserted, the predicted fault

coverage is reached, no more TPs which increase the fault

coverage can be inserted, or a computation time limit is

reached.

Although other TPI implementations from literature can be

chosen for this study, it is presumed the TPI algorithm used

will have not impact this study’s conclusions as long as the TPI

method does not give an advantage to any TPI architecture.

When performing TPI with the two architectures, observe

points will also be allowed on each line to mimic an industrial

application of the inversion-based TP architecture, as control

and observe TPs are often used together. Candidate TPs for

the conventional architecture will include control-0, control-

1, and observe TPs on the input and output of every gate,

while candidate TPs for the inversion-based TP architecture

will include inversion TPs and an observe TPs on every such

line.

In this study, every TP has the same test enable signal.

Alternatively, different TPs can have different test enable

signals which are not uniformly on/off [17], [4], but the

impacts of such TP architectures is not the scope of this study.

To model delay faults, this study uses the transition delay

fault (TDF) model. This choice is made due to it’s ease of

implementation and its known ability to model circuit defects

[18].

B. Execution

All programs (TPI and fault simulation) are run on a high-

performance workstation representative of an industrial de-

velopment environment. The workstation is equipped with an

Intel i7-8700 processor and 8GB of RAM. Software programs

were written in C++ and complied using the MSVC++14.15

compiler with maximum optimization parameters.

Original TPI and fault simulation programs were written

for this project. This choice was made in lieu of using of

industrial tools for ease-of-integration of different parts of

the TPI flow (circuit testability analysis, circuit modification

with TPs, fault simulation, etc.). Using industrial tools was

also infeasible since such tools are not programmed to give

optimal inversion TP placement and would give favourable

result towards conventional control TPs. This is in contrast to

the implementation of [15], which does not have knowledge

of TP types and instead only predicts their impact on fault

coverage given circuit modifications.

Table I provides information of benchmark circuits used in

this study. These circuits include ISCAS’85 [19] and ITC’99

4

TABLE I: Experimental Results on Benchmark Circuits

Circuit Details #TP (Cont./Obs.) SAF Coverage (%) TDF Coverage (%) TPI CPU seconds
Name #Gates #PI #PO #Faults Conv. Invert No TP Conv. Invert No TP Conv. Invert Conv. Invert

b04 652 77 74 1832 6/6 12/0 98.75 99.12 99.67 98.41 95.64 97.61 222.29 106.15
b05 927 35 60 2520 1/1 2/0 77.06 77.50 77.50 72.57 69.04 69.03 1323.91 39.21
b07 383 50 57 1112 2/3 5/0 97.93 98.38 100 96.94 89.74 100 34.82 16.79
b11 726 38 37 1900 2/2 4/0 95.63 95.63 96.63 95.15 91.960 95.168 88.62 38.39
b12 944 126 125 2825 4/1 4/1 97.34 98.30 99.89 94.30 84.61 97.10 247.18 75.79
b13 289 63 63 851 1/0 1/0 96.00 97.06 100 96.00 96.94 99.53 3.88 1.02
c432 160 36 7 573 1/1 2/0 99.00 99.30 99.47 99.30 98.94 97.56 3.41 1.61

c1355 546 41 32 1566 2/5 7/0 99.48 99.48 100 99.48 93.37 100 109.04 28.54
c2670 1193 233 140 3481 7/7 12/2 82.90 95.68 95.63 81.55 85.39 90.43 55542.43 402.99
c3540 1669 50 22 4527 4/2 6/0 96.00 96.17 96.04 95.22 54.62 95.22 1006.89 352.33

75

80

85

90

95

100

b04 b05 b07 b11 b12 b13 c432 c1355 c2670 c3540

No TPs Conv. Inv.

Fig. 6: Stuck-at fault coverage for ITC’99 and ISCAS’85

benchmarks

[20] benchmarks. For each circuit, the table provides the

number of gates (“#Gates”), number of primary inputs (“#PI”),

the number of primary outputs (“#PO”), and the number of

stuck-at or transition delay faults without fault collapsing

(“#Faults”). The sequential cells in benchmark circuits are

converted into pseudo-inputs and pseudo-outputs in order to

emulate a full-scan environment (i.e., every sequential cell

is fully controllable and observable during test by a PRPG

and compactor, e.g., the STUMPs architecture [9]), and these

additional circuit pins are included in “#PI” and “#PO”. Table I

omits ISCAS’85 and ITC’99 benchmarks which achieved

greater than 99.5% fault coverage without TPI or where TPs

(conventional or proposed) do not change fault coverage after

simulating 65,535 vectors (b01, b02, b06, b08, b09, b10, c17,

c499, c880, and c1908), as these benchmarks do not require

TPs to be tested using random stimuli.

V. RESULTS AND DISCUSSION

Table I presents the results of performing TPI using control

TPs and inversion TPs. Each row gives the results obtained

from a given benchmark circuit. Columns “Conv.” and “Invert”

under the heading “#TP (Cont./Obs.)” give the number of

TPs inserted under the conventional and the inversion TP

architecture, respectively. The number left of ‘/’ gives the

number of control/inversion TPs inserted and the number

50

55

60

65

70

75

80

85

90

95

100

b04 b05 b07 b11 b12 b13 c432 c1355 c2670 c3540

No TPs Conv. Inv.

Fig. 7: Transition delay fault coverage for ITC’99 and IS-

CAS’85 benchmarks

right of ‘/’ gives the number of observe points inserted. It

is noteworthy that under the inversion-based TP architecture,

fewer observe points are chosen to be inserted despite the

same observe points being candidates for insertion under

both architectures. This implies inversion TPs have a positive

impact on observability that reduces the need for observe

points. The columns “No TP”, “Conv.” and “Invert” under the

heading “SAF/TDF Coverage (%)” give the SAF/TDF fault

coverages after simulating 65,535 random vectors (or vector

pairs for TDF coverage) with no TP, using coventional TPs,

and using inversion TPs. For the two TP architectures, half of

the vectors are with TPs enabled and the other half are with

TPs disabled, which is typical in industrial settings.

Stuck-at fault coverage results from Table I, which are com-

paratively plotted in Figure 6 show the proposed architecture

does not negatively impact stuck-at fault coverage, but instead

appears more likely to increase it. With the exception of

circuits c2670 and c3540, the inversion-based TP architecture

always obtains higher stuck-at fault coverage with the same

number of TPs.

TDF coverage results from Table I, which are compara-

tively plotted in Figure 7, demonstrate the positive impact

that inversion TPs have on delay fault coverage. For every

benchmark except b05 and c432, the delay fault coverage

obtained by inversion TPs is significantly greater than the

5

delay fault coverage obtained by conventional TPs. This result

was predicted in Section III, with anomalies being acceptable

due to the nature of random stimuli. A second noteworthy

result from Figure 7 is, more often than not, the conventional

architecture decreases delay fault coverage significantly. This

can be attributed to factors discussed in Section II-B, which

proved to be worthwhile motivation for this study.

A corollary result from Table I is the time required to

perform TPI using inversion TPs is significantly less compared

to using conventional control TPs since fewer TPs need to be

evaluated. Results under the heading “TPI Time (s)” show the

time required to insert TPs is decreased never less than by

half. The likely reason for this significant decrease in TPI

time is fewer TPs need to be considered during TPI, and

thus finding the best TP to insert requires less computation

time. This is because the conventional TP architecture has 3

possible TPs on a given line (control-0, control-1, and observe)

while the inversion-based TP architecture has only 2 (invert

and observe).

VI. CONCLUSION AND FUTURE DIRECTIONS

In this article, improving delay fault coverage through

alternative TP implementations has been studied. The results

show that inversion TPs do not negatively impact stuck-at fault

coverage while simultaneously increasing delay fault coverage

compared to conventional control TPs.

Observe TPs must be a focus of future studies, as their

impact on delay fault detection is not yet known. Observe

TPs change circuit timing paths when present, and therefore

may capture a line’s value after the effect of a delay fault

has passed. This study chose to model delay faults as TDFs

due to their ease of implementation and their ability to model

known defects (i.e. stuck-open faults), but if the fault model

includes the magnitude of a delay (as is the case of small delay

defects [21]), the presence of observe points may decrease

delay fault coverage. Future endeavors will explore the impact

observe points have on such fault coverages as well as explore

architectures which can remedy observe TP detriments.

Another future avenue of research is the impact TPs have

on the detection of redundant faults and producing false

failures. In this study, fault simulation did not remove re-

dundant faults [22], and therefore some undetected faults are

truly undetectable. However, the addition of TPs may make

faults which are normally impossible to detect (and therefore

have no impact on the function of the circuit) detectable.

If such faults are detected when TPs are active, this will

create a “false failure”, which in turn unnecessarily reduces

circuit manufacturing yield. An avenue of future studies is

to select TP locations which increase fault coverage while

simultaneously preventing redundant faults from being excited.

REFERENCES

[1] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for

Digital, Memory and Mixed-Signal VLSI Circuits. Springer, 2000.
[2] P. K. Nag, A. Gattiker, S. Wei, R. D. Blanton, and W. Maly, “Modeling

the economics of testing: a DFT perspective,” IEEE Design & Test of

Computers, vol. 19, no. 1, pp. 29–41, Jan 2002.
[3] D. Xiang, X. Wen, and L. Wang, “Low-power scan-based built-in

self-test based on weighted pseudorandom test pattern generation and
reseeding,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 3, pp. 942–953, Mar. 2017.
[4] J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for Embedded

Systems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.
[5] C. Acero, D. Feltham, Y. Liu, E. Moghaddam, N. Mukherjee, M. Patyra,

J. Rajski, S. M. Reddy, J. Tyszer, and J. Zawada, “Embedded determin-
istic test points,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, no. 10, pp. 2949–2961, Oct 2017.
[6] D. Bakshi, “Techniques for Seed Computation and Testability Enhance-

ment for Logic Built-In Self Test.” Master’s thesis, Virginia Tech., 2012.
[7] Y. Fang and A. Albicki, “Efficient testability enhancement for combina-

tional circuit,” in Proceedings of International Conference on Computer

Design (ICCD), Oct 1995, pp. 168–172.
[8] E. M. Rudnick, V. Chickermane, and J. H. Patel, “An observability

enhancement approach for improved testability and at-speed test,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 13, no. 8, pp. 1051–1056, Aug 1994.
[9] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI:

Pseudorandom Techniques. New York: Wiley-Interscience, 1987.
[10] R. David, “Signature analysis for multiple-output circuits,” IEEE Trans.

Comput., vol. 35, no. 9, pp. 830–837, Sep. 1986.
[11] M. J. Geuzebroek, J. T. van der Linden, and A. J. van de Goor, “Test

point insertion that facilitates ATPG in reducing test time and data
volume,” in Proceedings of the IEEE International Test Conference,
Washington, DC, USA, 2002, pp. 138–147.

[12] J. Yang, N. A. Touba, and B. Nadeau-Dostie, “Test point insertion
with control points driven by existing functional flip-flops,” IEEE

Transactions on Computers, vol. 61, no. 10, pp. 1473–1483, Oct 2012.
[13] N. A. Touba and E. J. McCluskey, “Automated logic synthesis of random

pattern testable circuits,” in Proceedings International Test Conference,
Oct 1994, pp. 174–183.

[14] S. R. Makar and E. J. McCluskey, “Functional tests for scan chain
latches,” in Proceedings of International Test Conference (ITC), Oct
1995, pp. 606–615.

[15] H. C. Tsai, K.-T. Cheng, C. J. Lin, and S. Bhawmik, “A hybrid algorithm
for test point selection for scan-based BIST,” in Proceedings of the 34th

Design Automation Conference, June 1997, pp. 478–483.
[16] F. Brglez, “On testability analysis of combinational networks,” in Pro-

ceedings International Symposium on Circuits and Systems, vol. 1, May
1984, pp. 221–225.

[17] N. Tamarapalli and J. Rajski, “Constructive multi-phase test point
insertion for scan-based BIST,” in Proceedings International Test

Conference, Oct 1996, pp. 649–658.
[18] J. Mahmod, S. Millican, U. Guin, and V. D. Agrawal, “Delay fault

testing: Present and future,” in Proc. IEEE 37th VLSI Test Symposium

(VTS), Apr. 2019.
[19] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational

benchmark circuits and a targeted translator in fortran,” in IEEE Int.

Symposium on Circuits and Systems, Jun. 1985, pp. 677–692.
[20] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks

and first ATPG results,” IEEE Design & Test of Computers, vol. 17,
no. 3, pp. 44–53, July 2000.

[21] R. Mattiuzzo, D. Appello, and C. Allsup, “Small-delay-defect testing,”
EDN (Electrical Design News), vol. 54, no. 13, p. 28, 2009.

[22] M. Abramovici and M. A. Breuer, “On redundancy and fault detection in
sequential circuits,” IEEE Transactions on Computers, vol. C-28, no. 11,
pp. 864–865, Nov 1979.

6

