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Abstract—In a machine intelligence (MI)-based automatic test
pattern generator (ATPG), an artificial neural network (ANN)
may guide decisions that would otherwise rely on some heuristic.
Heuristics use circuit-specific data such as gate types, logic depth,
fan-out data, or various testability measures. Treating these data
collectively as a multivariate statistic of circuit topology, this
study extracts principal components (PCs). A subset of PCs is
then used to train the ANN that facilitates algorithmic decisions
in ATPG. This reduces the ANN complexity and enhances ATPG
efficiency. Results on benchmark circuits show the benefit of
reduced CPU time.

Index Terms—ATPG, Backtrace, Digital testing, Heuristics,
Machine intelligence (MI), Principal component analysis (PCA)

I. INTRODUCTION

With technology scaling, ICs continue to become more
complex, making automatic test pattern generation (ATPG)
exceedingly inefficient. This is because test generation belongs
to a set of NP-complete problems [1]. In the last century, many
algorithms were developed to manage the computation time of
test generation and improve the commercial electronic design
automation (EDA) tools. When ATPG algorithms faced CPU
time problems, advances in computing technology were able
to improve test generation efficiency. A serious problem is the
ability to examine nearly all possible circuit inputs to find a
test with reasonable effort. ATPG algorithms use heuristics.

An ATPG algorithm traces backward, i.e., “backtraces” [2],
with an objective to assign certain logic value to a signal.
A signal is either a primary input (PI) or output of a gate.
When a signal fans out, multiple copies of the signal are often
identified as separate signals. Thus, backtracing produces an
ordered list of signals starting from an internal signal to a
PI and a specified value to be assigned. This PI assignment
may or may not lead to a test. In the latter case, one would
backtrack to undo the PI assignment, and then continue with
more backtraces. To reduce the possibility of backtracking,
heuristics based on designer’s intuition help select a back-
tracing direction from available choices [3]; tracing backward
through a multiple input gate is a typical situation.

Supervised learning in machine intelligence (MI) includes
the popular artificial neural networks (ANNs). The main
advantage of ANNs is they assimilate input-output relation-
ships (i.e., pattern recognition) of a target problem. They are
popular because (1) they eliminate the need for mathematical
formulation of complex processes and (2) they interpolate
quantities of interest without any linear assumptions.

This study improves ANN training quality and efficiency by
pre-processing training data with principal component analysis
(PCA) [4], [5]. PCA extracts relevant features from a list of
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many features to train an ANN [6]—[8]. It offers a viable pre-
processing step [9] to decrease ANN complexity.

Human clairvoyance in the form of heuristics was success-
fully used in ATPG programs, but it has been reported [10],
[11] that no single heuristic works optimally for all instances,
and the use of multiple heuristics can be computationally
expensive. Although MI is not a new technique, considerable
performance impact of ANN was found in test point insertion
(TPI) [12]-[16]. Recent advances in MI-based ATPG demon-
strated that heuristics can be easily incorporated in ATPG
through MI [17], [18]. Thus, MI could harness the benefits of
multiple heuristics. However, as the volume of heuristic data
increases, the workhorse of MI, i.e., the ANN, tends to be
overloaded to the extent that its efficiency suffers. Principal
component (PC) analysis (PCA) [4], [5] can amalgamate
training features to enhance supervised learning of ANN.
Although the application of PCA-assisted ANN is not new,
this study demonstrates its novel application to ATPG.

The heuristics in ATPG are built around topological data
of the circuit, and this study uses correlation among data to
achieve compaction [4], [5] and extracts the PC of the circuit
data, thus the ANN complexity is reduced as it is now trained
only with a few selected PCs. Additionally, the ATPG CPU
time is reduced since the trained ANN is now less complex,
and evaluating weights and biases of ANN edges requires
smaller matrix multiplication and fewer computations of non-
linear Sigmoid functions [19].

This article is organized as follows. Section II highlights
background work on MI applied to testing and ATPG al-
gorithms. Section III outlines the contribution of this study
that explains the PC extraction with detailed mathematical
backgrounds and technique to choose major PCs. Section IV
evaluates the performance of PODEM guided by the PC-
trained ANN against that of PODEM guided by ANN without
PCs [17], [18]. Section V summarizes the study and suggests
future work, and Section VI concludes the article.

II. PRIOR WORK

Various VLSI studies incorporate ANNs to model circuits
and in algorithms [20]-[22]. ANN has been used to model a
digital circuit where a bi-directional binary neuron represents
the state of a signal [23]. Since the network energy function
depends on all signals and has many local minima, finding a
test becomes very difficult. In contrast, other work [17] used
a conventional digital circuit model and a search algorithm
that guarantees a test given unlimited computing resources.
However, an ANN can guide the search for test while avoid-
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Fig. 1. An ANN used to guide ATPG [17] comprises of inputs (bias X
fixed at 1.0, and M inputs, X;), a hidden layer of N neurons, {YJ} and a
single output neuron, Z. Directed edges connect input to the output neuron,
via hidden layer neurons.

ing unproductive decisions. Hence, conventional backtracing
heuristics were replaced by an ANN. Sample conventional
ATPG steps were used to train the ANN, which then guided
the ATPG. The training data also contained topological and
functional features used for conventional ATPG heuristics. Al-
though the authors restricted themselves to the Path-Oriented
Decision Making (PODEM) [3] ATPG algorithm to demon-
strate the efficacy of the ANN-based heuristic, the technique
can be applied to most ATPG algorithms. The ANN-guided
ATPG consistently outperformed the conventional heuristics,
but no noticeable improvement in backtracking performance
for some circuits was reported [17]. Since, the initial ANN
training was ad hoc and elementary, a structured training
methodology could elevate the performance of the ANN-
guided PODEM [18]. This included recursive training of
the ANN from both hard and easy-to-detect faults, conflict
resolution among training data patterns, e.g., the same ANN
input requiring different outputs, and discarding training data
that did not positively impact the guidance.

MI can combine multiple heuristics and improve the
efficiency of ATPG [17], [18]. The ANN comprises an input
layer, a single hidden neuron layer, and an output neuron,
as illustrated in Fig. 1 [17]. The output of a neuron lies
between 0 and 1. X, X3, , X are inputs referred to as
“features” of the ANN. Their values are normalized in the
range [0,1]. X is a bias input and its value is fixed at 1.0.
Y1,Ys5,--- Yy are known as hidden neurons (HNs), and the
output neuron Z is called the “label”. Each neuron’s output
value is denoted as x;,y; or z. w(A, B) denotes the directed
edge from any neuron to another neuron and carries a signed

floating-point value. The output of any neuron Y is,
M

yi = FO_mi x w(X;,Y5)) (1)

i=1
where f is called the activation function [24] for which the
Sigmoid function [19], expressed below, is used.

1
o) =1

The inputs (features) and expected output (label) values are
the main components of training data. During training, the

2

output label is computed based on any given input features
and compared to the expected output neuron value. The mean
square error (MSE) is computed by calculating the square
of the difference between the computed and expected value
of the output neuron, which is averaged over all training
datasets. Weights and biases are adjusted during successive
training “epochs” to minimize MSE, and tuning other hyper-
parameters such as the number of hidden layers, number of
hidden neurons (HNs)/hidden layers, learning rate, activation
functions, etc., minimizes the MSE. The input features of the
ANN comprise (1) numerically encoded gate-type of a gate
which is driven by the circuit line being traced, (2) COP [25]
CC (probability of setting the line to “1”’) and CO (observablity
of the traced line), and (3) the minimum distance between the
traced line and any PIs of the circuit.

The performance of ANN-guided PODEM [17] was further
improved by optimizing the training methodology [18]. How-
ever, the addition of more features to the ANN would cause
problems of high volume of the training dataset and the ANN
complexity to absorb and retain the information. This leads to
the storage crunch of such a high volume of training data and
leads to high ANN training time. Also, it may be possible that
some training features are irrelevant, and therefore extraction
of useful training features is one such novel contribution of
this article, which enhances ATPG performance (both in terms
of backtracks and CPU time).

An increase in the training data set is prevalent and
alarming. A multivariate statistical method, popularly known
as PCA [4], [5], reduces the data sets’ dimensionality and
increases interpretability with minimum information loss. PCA
creates new uncorrelated variables (also known as PCs) with
maximum variances. Finding PCs reduces solving an eigen-
value/eigenvector problem; the new variables are not defined
a priori, but by the data set at hand, making PCA a pliant data
analysis technique.

PCA is a technique to identify patterns in data and express
the data to show the similarities and dissimilarities. Any
patterns in high-dimensional data are hard to find, but PCA
plays a vital role in analyzing these data, where the luxury
of graphical representation is not available. The PCA is also
useful in compressing data by reducing the number of dimen-
sions without losing necessary information once the patterns
are found [4], [S]. Before this work, PCA finds significant
application in image processing and recently in the form of
unsupervised learning in ATPG [26], but this statistical tool has
not been explored as a pre-processing step of ANN training
in ATPG or MlI-based ATPG (also known as PCA-assisted
ANN-guided ATPG).

III. METHODOLOGY

This study demonstrates PCA-based pre-processing of train-
ing data obtained from circuits, c6288, c3540, and b05, chosen
due to their large logic depths. The use of deep circuits in train-
ing ANN for ATPG is empirically found to be effective [18].
The ANN training data is obtained from successful and failed
backtraces in a COP-based ATPG, as illustrated in the recent
work [17]. The backtrace histories are stored. Backtraces that
lead to backtrack are classified as “failure”, and those that
lead to fault detection as “success”. In the present research,
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TABLE I
EXAMPLE OF 8-DIMENSIONAL FEATURE (SIGNAL CHARACTERISTIC) DATA
FOR FIRST 5 SIGNALS OF TRAINING CIRCUIT C6288.

Fan-"| Gate | COP | COP | SCOAP | SCOAP | SCOAP | .

out | tpe | CC | CO SCO SC1 SCO st
0.000 | 0.000 | 0.063 | 1000 | 0.0I3 | 0.058 | 0.000 | 0.237
0.000 | 0.000 | 0.063 | 1.000 | 0.013 | 0.058 | 0.004 | 0211
0.000 | 0.000 | 0.938 | 1.000 | 0.034 | 0.016 | 0.004 | 0.184
0.000 | 0.000 | 0.938 | 0.063 | 0.034 | 0.016 | 0.045 | 0.158
1.000 | 0.330 | 0.500 | 0.125 | 0.007 | 0.011 | 0.034 | 0.132

:‘g’
0.6 0.8 1

CoP (CO)

Fig. 2. A two-dimensional scatter plot of “distance” and “COP CO” data
for all signals in training circuits c6288, ¢3540 and b05. A nearly circular
concentration indicates a weak correlation between two features.

the ANN recognizes eight features (characteristics) for each
signal line (PI, gate output, or fanout branch). The feature
values are normalized in the range [0, 1]. They are specified
below, with examples shown in Table I:

1) Fanout - Its value is O for a signal (line) with single
destination, and 1 for multiple destinations.

2) Gate type - The type of a signal is specified numerically.
PI, fanout branch, and inverter output are type 0.0. A
multiple-input gate output signal, which can be a non-
fanout signal or a fanout stem, is type 1 through 6
corresponding to AND, NAND, OR, NOR, XOR, or
XNOR gate, respectively. After normalization the gate-
type becomes 0.0, 0.167, 0.33, 0.5, 0.67, 0.83, or 1.0.

3) COP CC - Combinational controllability computed by
COP [25] as probability of setting the signal to 1.

4) COP CO - Combinational observability computed by
COP [25] as probability of observing the signal at
primary outputs (POs).

5) SCOAP SCO - Effort of setting the signal to O as
computed by SCOAP [27].

6) SCOAP SC1 - Effort of setting the signal to 1 as
computed by SCOAP [27].

7) SCOAP SCO - Effort of observing the signal at POs as
computed by SCOAP [27].

8) Distance - Number of lines on the shortest path between
the signal and PIs, normalized with respect to the
maximum PI to PO depth of the circuit.

A. Principal Component Analysis

This section performs PCA on a set of data and also attempts
to provide elementary mathematical background required to
understand PCA’s mechanisms, such as calculating mean, co-
variance matrix, eigenvectors, and eigenvalues of a covariance
matrix, choosing the components that form a feature vector,
and finally deriving a new data set based on feature vectors.

SCOAP (SC0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Distance

Fig. 3. A two-dimensional scatter plot of “SCOAP SC0” and “distance”
data for all signals in training circuits c6288, ¢3540 and b05. The elliptical
concentration indicates significant correlation between two features.

TABLE 11
EXAMPLE OF FEATURES « = COP CO AND y = DISTANCE IN TABLE I,
AND MEAN-ADJUSTED VALUES FOR FIRST 5 SIGNALS OF C6288. MEANS
< x > AND < y > ARE COMPUTED FOR ALL SIGNALS OF TRAINING
CIRCUITS 6288, 3540 AND BOS5.

COPx(CO) ‘ D’St;’"“ Tadjust = T— < T > | Yadjust = Y— <Y >
1 0.237 0.795 -0.021
1 0.211 0.795 -0.048
1 0.184 0.795 -0.074
0.063 0.158 -0.143 0.100
0.125 0.132 -0.080 -0.127

1) Step 1: Getting data: Examples of 8 input features of
the ANN are given in Table I. For simplicity, 2-dimensional
data for “COP CO” and “Dist.” are illustrated in Table II.
Figures 2 and 3 show the combined training data from circuits
¢6288, ¢3540, and b05 for two pairs of features. These are
scatter plots of raw data and show how some features can have
stronger correlation. The circular or elliptical concentration
with minimum outliers indicates uncorrelated or correlated
data. Although not empirically proven here, this issue will
be revisited in later sections.

2) Step 2: Subtracting mean: The mean of each data types
in Table I is calculated and subtracted from the respective
data as shown in Table II. The well known procedure for
computation of mean is [28]:

N

1 ay+ags+---+an
<a> N;a N 3)

where a = x or y, and NV is the total number of signals in
training circuits.

3) Step 3: Calculating covariance matrix: Data sets can
be either single or multi-dimensional, and depending on
which various statistical tools are involved in calculating
the effect of respective dimensions on each other. Standard
deviation and variance are such statistical tools that can be
used for one-dimensional data sets to calculate the standard
deviation for each dimension of the data independent of
the other dimensions. However, it is essential to have an
evaluation metric to find how much the dimensions vary
from the mean concerning each other, known as covariance.
The mathematical formula for covariance is similar to
variance [28]:
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S @i <) (4)

SN (@i <z >)yi— <y >)
N —1

Covg y = (5
The total number of covariances for 2 or more data dimen-
sions is “—", where n is the dimension of data set. As this
study deals with 8-dimensional data sets, n = 8, and the total
number of covariances (i.e., the number of elements in either
the lower triangle or the upper triangle of a symmetric matrix)
is 28.

For a simple illustration, let us consider 2-dimensional
data of Figure 2. There is only one covariance. Higher the
covariance, stronger is correlation between features. In this
case, covariance is extremely low, suggesting that these
features are almost uncorrelated. The covariance matrix is
computed using equation 5 as:

0.057 0.008
¢= <0.008 0.026) ©

4) Step 4: Calculating eigenvectors and eigenvalues:
Eigenvectors and eigenvalues [28] are calculated from the
covariance matrix C' using the python standard library. These
signify the relative strengths of data components, which help
fetch significant PCs. Eigenvectors are orthogonal to each
other and provide useful reorganization of data. Eigenvectors
represent a rotation matrix, the eigenvalues correspond to the
square of the scaling factor in each dimension. Here,

, 0.973 —0.232
eigenvectors = 09232  0.973 @)
eigenvalues = (0.059 0.024) (8)

5) Step 5: Forming a feature vector: This step illustrates
compression and reduced dimensionality of data set. All
eigenvectors are different and have different eigenvalues. The
eigenvector with highest eigenvalue is the major principal
component of the data set. It carries maximum significance
among data dimensions. Eigenvectors are obtained from
the covariance matrix and ordered according to decreasing
eigenvalues. One may choose the significant eigenvectors
based on their high eigenvalues and discard the rest of the
eigenvectors without losing much information, as shown
below. In the present situation, the two variables have rather
low correlation and hence none would be dropped. However,
just for illustration if we were to drop the second variable,

0.973) ©)

selected eigenvector = (0_232

Finally, n dimensional data may produce at most n eigenvec-
tors and corresponding eigenvalues. A subset of p eigenvectors
may be chosen eliminating those with relatively small eigen-
values. Finally, a data set of dimension p (p < n) is created
in the next step.

6) Step 6: Reconstructing a new data set: A transform T’
is an n X n square matrix containing eigenvectors as rows. The
mean-adjusted feature data for each line is an n-dimensional
vector. This vector when multiplied by 7', produces a new
n-dimensional vector of principal components (PC) for the
corresponding line. A subset of p data elements is selected
as described in the previous step. Similar transformation is
applied to all lines of the circuits.

B. Selecting Major Principal Components

This section highlights details on generation of six major
PCs for each line, as discussed in Section III-A. There are
various avenues to fix the number of significant PCs, but
the Pearson correlation coefficient (PCC)-based technique
is chosen to compress/extract the final dimensions of PC-
based data [29]. PCA is well-suited to compressing data
that are highly correlated with each other, and therefore,
dimensionality reduction is a key benefit [4], [5]. However,
datasets contain a mix of correlated and uncorrelated items.
The neural network training becomes more efficient when all
its input features are strictly orthogonal or, in other words,
un-correlated. Therefore, PCC is a handy technique by which
one can compress unnecessary correlated data, keeping
the uncorrelated data intact. The well-known equation for
PCC [28] is as follows:

,— Y (wi— <z >)(yi— <y>)
\/Zfil(xi— <z >)2\/Z£\;1(yi_ <y >)2

where r is PCC, x and y are data samples of two-dimensional
dataset, < x > and < y > are computed mean of data samples,
and N is number of samples.

The entire data set from three training circuits, of which
only a sample is shown in Table I, was analyzed to compute
correlation coefficients as shown by the 8 x 8 matrix below.
We observe that diagonal elements are self correlated.
Because they are highly correlated, the PCC is 1 (highlighted
in bold). Pair-wise correlation coefficients are off-diagonal
elements and, as pointed out earlier, considering the diagonal
symmetry there are 28 of them.

(10)

1.000 0.246 —0.099 —0.086 —0.145 —0.005 0.031 —0.029

0.246 1.000 —0.107 —0.100 —0.142 0.025 —0.049 —0.091
—0.099 —0.107 1.000 0.064 0.322 —0.164 0.039 0.212
—0.086 —0.100 0.064 1.000 0.130 0.214 —0.364 0.201
—0.145 -0.142 0.322 0.130 1.000 0.408 0.286 0.622
—0.005 0.025 —0.164 0.214 0.408 1.000 0.175 0.559
0.031 —0.049 0.039 —0.364 0.286 0.175 1.000 0.258
—0.029 -0.091 0.212 0.201 0.622 0.559 0.258 1.000

Items 5, 6, and 8, i.e., SCOAP SCO0, SCOAP SC1 and distance
as shown in Table I example, display strong correlation
as highlighted in bold-green color in the PCC matrix. The
correlation of SCOAP SCO and distance is also observed in
Figure 3. Six major PCs in this study are based on PCC, as
five are weakly correlated and are assumed uncorrelated, and
of the remaining three two can be dropped. Thus, only six
PCs are used to train the ANN, and to facilitate algorithmic
decisions in ATPG.
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Fig. 4. Backtracks required to find a test or verify redundancy for all
checkpoint stuck-at faults in benchmark circuits, arranged left to right in order
of increasing logic depth. This study’s ANN (black bars) shows reduction in
backtracks compared to the previous ANNs shown as orange bars [17] or
green bars [18].
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C. Preprocessing and ATPG

We record 8 features listed at the beginning of this section
for all signal lines in the three training circuits, c6288, c3540,
and b05 in a L x 8 matrix, where L is total number of
lines in the three circuits. Next, follows the PCA leading to
the 8 x 8 matrix appearing at the end of the last page. A
COP-based ATPG is run on the training circuits to record
training data along with major PCs for all backtraced lines.
Each backtrace is also labeled either as success if it leads to
a test, or failure if it is undone by a backtrack. An ANN is
then trained, and replaces the conventional heuristics-based
sub-routine of a PODEM ATPG. When backtracing through
a gate with multiple inputs, the ANN rates the chance for
success for each input, and the input with highest rating is
chosen. To prepare a circuit under test (CUT) for ATPG, first,
all six features are computed for each line, and the values
are transformed into PCs, in a similar way as was done for
training circuits.

IV. EXPERIMENTAL RESULTS

Experiments were carried out on a workstation containing
Intel-8700 processor and 8§ GB RAM. The design for test
(DFT) electronic design automation (EDA) tools were imple-
mented in C++ using MSVC++14.15 compiler with perfor-
mance optimizer. The ANN training and PCA analysis were
executed using Python and MATLAB. PODEM ATPG [3] was
implemented along with an event-driven fault simulator [2].
This PODEM is implemented in such a way that any heuristic,
distance [3], COP [25], SCOAP [27], ANN [17], ANN [18]
or new ANN, could be applied across ISCAS’85 [30] and
ITC’99 [31] benchmark circuits. As an ATPG program is time-
expensive to run exhaustively, some faults may be aborted.
Nearly identical fault coverage was obtained with each heuris-
tic by using a suitable per-fault time limit.

We hope this study will inspire EDA vendors to put in
MI in their ATPG software. Understandably, EDA vendors
were disinclined to pass on their program source code, and it
was infeasible to perform research-oriented experiments using
binary. Therefore, our experiments were restricted to in-house
EDA tools.

The ATPG was applied to all testable and redundant single
stuck-at faults in each circuit. Figures 4 and 5 show the
number of backtracks and ATPG CPU time (ms) of three
ANN-based heuristics: ANN [17] shown in orange, ANN [18]

10000000

© ANN[18] o New ANN

‘ * ANN[17]

1000000

100000

10000

1000

CPU time (ms)

100

10

1
0 50 100 150 200 250 300 350
Logic depths of the benchmark circuits

Fig. 5. CPU time to find a test or verify redundancy for all checkpoint stuck-
at faults for circuits of Figure 4. The present ATPG (black) used reduced
CPU time compared to those previously reported, shown as orange [17] or
green [18]. Points indicate actual CPU time for a circuit. The curves are
MATLAB fits giving CPU time as a function of logic depth.

in green, and new ANN (PCA-assisted) in black. For each
circuit three bars record total backtracks in Figure 4 and
three points show CPU times in Figure 5, corresponding
to the three versions of PODEM. Curves in Figure 5 are
MATLAB power-law curve fits (y = ca®) for the three
PODEM versions. For circuits b10, bl12, c880, b04, bll,
c1908, c7552, c5315, and c3540 the new ANN outperforms
the other two ANN-based heuristics [17], [18] in terms of
backtracks and ATPG CPU time. Circuits ¢2670, b07, and
¢3540 show reduced backtracks but require more backtraces
alleviating the CPU time benefit. Circuits c432, c2670, b07,
b13, c6288, b09, b03, c499, b08, bl3, c1355 show that
quite often, the PCA-assisted ANN-guided PODEM ATPG
gives the best guidance, but when does not it is never the
worst performing. Circuits c17, b02, b0l, b06 have zero
reconvergent fanouts and provide no scope for reducing
backtracks by the new ANN. Circuit b05 has no reduction
in backtracks but a significant reduction in CPU time. This
result is significant in terms of the ability to achieve the
so-called “sweet-spot” [17], [18].

V. DISCUSSION AND FUTURE WORK

Minimizing test generation time has been the sole motive
for many IC test researchers in the past decades. As the time to
generate tests depends on the anatomy of the ATPG algorithm,
innovations can improve algorithm’s efficacy. The use of
heuristics in backtrace is one such technique, which attempts
to find a test with minimal bad decisions or “backtracks”,
and more successful “backtraces.” These two ATPG activities
play significant roles in the way the search space is explored
for finding tests, trying to minimize the CPU time. The
search for a test is terminated as soon as a suitable vector
is found, making the exploration of the remaining space
unnecessary. Conventional heuristics attempt to enhance ATPG
performance, but with the introduction of MI this attempt can
be further improved to an extent a single conventional heuristic
can never achieve [10], [11]. Past attempts [17] to combine
multiple heuristics used statically configured ANN and rudi-
mentary training methodology. The results were promising
but left scope to improve further. Hence, the breakthrough
discovery of MI-based ATPG, though attractive to the test
community, needed more attention in its shortcomings. A
structured and formal training methodology potentially en-
hances backtrack performance and improves CPU time [18].
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This article attempts to improve upon the previous MI-based
test generation system’s detriments by introducing an existing
statistical method, known as PCA [4], [5]. The authors of
this study think that the ANN of Ml-based test generation
systems may have many potential features, and their large
number could have been a detriment in the past research.
Also, finding a “sweet-spot” between “backtracks” and “CPU
time” is a challenge, and PCA has the powerful ability to
combine even larger-dimensional correlated data, reduce the
data volume, and continue to improve the ANN training
efficiency. This study went beyond expectation by showing an
order of magnitude reduction in test generation time (except
for c6288) through effectively combining multiple heuristics.
This study opens up future avenues. First, backtraces
of reconvergent fanout free circuits can be improved.
Second, finding a “sweet-spot” that demands minimal or
optimal backtracks in lowest CPU time. Third, identifying
redundant/untestable faults quickly to expedite the ATPG
process. Fourth, recent work on MI-based test point insertion
(TPI) [13] demonstrates that random circuits could substitute
for the use of third-party IP circuits and generate training
data with no limits. Fifth, the new method was demonstrated
only on academic benchmark circuits where the PC-trained
ANN-guided ATPG gave inspiring performance, hence future
applications to industrial circuits, yet to be tried, are likely
show capabilities. Sixth, continued search for new and
effective heuristics, and finally, the efficacy of ANN with
more than a single-hidden layer [32] may have potential.

VI. CONCLUSION

To be successful, an ATPG algorithm must backtrack
when necessary and then move forward again. Efficiency
is derived by minimizing backtracks. PCA [4], [5] allows
to effectively increase the amount of useful information
fed through machine intelligence into the ATPG. It brings
closer to the elusive goal of zero backtrack. The work
presented here shows that PCA reduces the dimension of
the training dataset and effectively trains the ANN. This is
known as PCA assisted supervised learning in contrast with
the supervised learning [17], [18], and can be employed to
solve NP-complete problems like ATPG [1].
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