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Authors Note: The comments from the two reviewers allowed us to look at the paper from a 
knowledgeable reader’s viewpoint and helped us revise meaningfully. We hope the changes that are 
spread all across the manuscript make it a much improved survey. 

 

Reviewer #1:  

Reviewer’s Comment - AI in electronic testing is clearly a hot topic and for this reason a survey about it is, 
in general, needed. I also support the idea of covering memories, analog/RF and digital circuits in one 
text. However, I do see quite a large number of issues with this survey, both on a conceptual level and 
when covering individual techniques. I think that for being acceptable, this paper has to undergo a rather 
large-scale revision. 

Scope: - Parts of the paper lack focus. For no obvious reason, II.A, after one paragraph of discussing test-
related issues, turns to design of analog ANNs with no obvious relationship to testing and spends two 
pages with this topic (which might be important but out of scope). 

Authors’ Response: Since reference [116, or 112 in the old version] is a paper primarily based upon 
analog ANN, we thought necessary to cover detailed outlining of this topic containing, RF testing 
issues, design of ANN, training of ANN, how ANN is finally applied to RF BIST followed by detailed 
future directions. 

 

Reviewer: - II.B describes a design flow that does not have an apparent connection with testing. And 
even the connection with ML is only mentioned in the end, along the lines of saying "it uses ML and it 
brings the following benefits", with no explanation or intuition what ML is used for. I recommend to 
completely remove II.B, or explain its connection to testing. 

Authors: We agree, and we have removed Section II.B of the original paper. 

 

Reviewer: - V "Hardware security" is, in my opinion, unfortunate. It does not cover a comprehensive list 
of topics on ML in hardware security: 2-5 out of its paragraphs discuss counterfeiting detection. Alone 
the topic of ML for power side-channel attacks would easily fill a survey of similar length to the 
submission! In the remaining half paragraph, side-channel attacks are mentioned, but they seem to 
relate to detection of hardware Trojans by side-channel measurements. "Detecting profiling and non-
profiling-based side channel analysis" is confusing and misleading at least, as I don't think the mentioned 
papers are detecting side-channel attacks. I would either remove V completely or rename it into 
counterfeiting detection and argue that this is a task related to testing. 

Authors: Reviewer’s remarks are relevant. However, we retain Section V, which now begins with two 
new paragraphs narrowing the focus down to two areas within the broader field of hardware security. 

 

Reviewer: Structure - The sections are extremely unevenly distributed. This is best seen in Section III, 
where most of no less than 11 subsections are 1 or 2 paragraphs long and do not go far beyond citing the 



discussed papers, whereas the last section III.K is over 2 pages long and includes a comprehensive 
introduction into D-algorithm and PODEM. When reading the 11 subsections, III.G, III.H and III.K 
essentially consider the same question: how to compute testability metrics using ML. And III.C and III.E 
both discuss diagnosis. 

Authors: We give a justification for Section III.I (old III.K) being so long in the “Introduction” section. 
The reason being Section III.I outlines authors’ recent research, which has not been widely available 
until recently. The idea is to give highlights in the best possible manner without disturbing the goals of 
other subsections. Sections III.F, III.G, and III.I (old III.G, III.H and III.I) now are distinctly different; F 
discusses ML usage in computation of testability measures, and G and I, applications of ML and 
testability measures to problems of test point insertion and automatic test pattern generation, 
respectively. 

 

Reviewer: - Several subsections start with introduction-style sentences, which are either repetitive 
(saying over and over that due to scaling we need to test more logic) or suddenly shifting the focus. E.g. 
IV.B without any prior warning argues over automotive ICs - are the techniques exclusive for this 
application? 

Authors: We agree with the remark and have changed the start of sections without repetitive lines. 
The beginning sentence of Section IV.B now says that the automotive industry is not an exclusive 
domain and flash memories may have other applications.  

 

Reviewer: - Detailed comments: 

Introduction - It is not true that the survey "covers most of the details"; most descriptions are superficial 
and cannot be understood without reading some of the cited papers. This is not a drawback per se, as it 
can be a valid task of a survey to make readers aware of the problem and point them towards detailed 
descriptions, but such claim then should not be made. 

- The authors make a point about being biased. If they see they are biased, they should please de-bias 
their text until at least themselves do not see the bias. 

Authors: We have removed explicit statements showing bias. This survey is written as an update of 
previously published surveys. It was motivated by some very recent research on MI applications to 
test pattern generation that included our work. 

 

Reviewer: Section II - Comma after "elusive goal". 

Authors: Fixed. See the paragraph just before Section II.A. 

 

Reviewer: Section II.A - It is not explained what a "valid/invalid codeword" means in the context of 
analog/RF testing. Are the authors considering digital signals and propose to use some redundancy? 
Does "invalid codeword" mean a "non-codeword"? 



Authors: Parts of Section II.A have been rewritten to eliminate this concern. 

 

Reviewer: - The statement "As a result of a training phase, suitable topology is formed" is wrong. The 
topology is the result of architecture search (even though in many cases a previously known topology is 
simply selected), and training only sets the weights and biases. 

Authors: Addressed through rewording of the first paragraph in Section II.A. 

 

Reviewer - What is "pattern of measurements"? Are these patterns applied to a device (inputs) or 
measured on that device (outputs)? 

Authors: Also addressed through rewording of the first paragraph in Section II.A. 

 

Reviewer: - Apart from analog ANN design discussion being questionable in such (see above), "analog 
ANN design must consider…" includes criteria that apply to any ANN, not analog ones. I would expect 
here a discussion what is specific to analog ANN. 

Authors: Addressed through rewording of the second paragraph in Section II.A. 

 

Reviewer: - "This method is likely to get trapped in local minima, thus several rounds of training may be 
needed" - this makes no sense. If the method is trapped in a local minimum, running it several times will 
lead it to being trapped in (possibly different) local minima each time. If the problem is non-convex (as is 
the case in ML), there must be some technique to get from one local minimum to the other. 

Authors: Addressed through rewording of the last few lines of fourth paragraph in Section II.A. 

 

Reviewer: - The only loosely test-related context in all of the ANN discussion that I see is the mentioning 
of "effects of DUT degradation". And here it is unclear whether DUT is the ANN itself or the analog ANN 
is a separate block somehow in charge of testing a DUT that is a different block. 

Authors: Addressed through rewording of the sixth point of the ANN discussion in the 6-point list at 
the end Section II.A. 

 

Reviewer: - Section II.C (now Section II.B): It is not defined what "estimated closer to the specification" 
means. Is such an "extreme instance" a good or a bad thing to have? 

- Under 3), "The ANN is re-trained … so that the class of the "extreme" circuits is closer to the 
specification" - what does that mean? Do the circuits become better because of training some ANN? 

"showed reduce simulation run-time" -> "reduced". 



Authors: Addressed by changes and corrections throughout Section II.B (previously II. C), and 
eliminating the last paragraph. 

 

Reviewer: - Section III.A: - Fig. 6, different from claims in text, does not show any radial basis functions or 
anything else related to SVMs. 

Authors: Addressed through rewording of the text in Section III.A. 

 

Reviewer: - Section III.B: - "Affine group" is mentioned several times without being defined or explained. 
If it is so important that scan cells form a group and that this group is affine, more details should be 
included. 

Authors: The second paragraph of Section III.B is now split into two paragraphs. Relevant details of 
Affine group are now given in the last paragraph of the section. 

 

Reviewer: - Section III.C: - I fail to see what diagnosis methods discussed here have to do with the section 
title "classifying fault models" 

Authors: Indeed, the title of Section III.C, Classifying Fault Models,” was inappropriate. Therefore, the 
contents of old Section III.C are merged into the present Section III.D. The are other changes too. The 
present organization of Section III is as follows: 

 Section III.A Wafer Testing     Old Section III.A 

 Section III.B Scan Chain Diagnosis    Old Section III.B 

 Section III.C Printed-Circuit Board (PCB) Testing   Old Section III.D 

 Section III.D Fault Diagnosis     Old Sections III.C and III.E 

 Section III.E Test Compression     Old Section III.F 

 Section III.F Testability Analysis     Old Section III.G 

 Section III.G Built-In Self-Test (BIST) and Test Point Insertion (TPI)  Old Sections III.H and III.J 

 Section III.H Power Supply Noise (PSN) and Signal Integrity Old Section III.I 

 Section III.I Machine Intelligence Applied to ATPG  Old Section III.K  
  

Reviewer: - Section III.D (now Section III.C): - The way how it is written up, I do not understand why 
(weighted) majority voting needs ANNs or SVMs. It is a simple addition followed by a comparison; what 
role do ANNs play here? 

Authors: Addressed through rewording of the second last paragraph in Section III.C. 

 



Reviewer: - Section III.F (now Section III.E): - I did not understand what the role of an PRPG in test 
compression is supposed to be and length of what is being optimized. If it is the TPG/decompression 
block, then it was called CODEC just 4 lines above; if it is something else, then what is it? 

Authors: Addressed through rewording of the first paragraph and adding necessary details in Section 
III.E. 

 

Reviewer: - Section III.G (now Section III.F): - Restricting "testability analysis" to "linear-complexity 
procedures" not only is quite unusual but also effectively excludes all ML methods, which would not have 
linear complexity in anything. 

Authors: In Section III.F. The first sentence is modified as, “Testability analysis generally refers to 
linear, or at most polynomial but not exponential, complexity procedures that can identify test 
bottlenecks in a circuit [4].”  

 

Reviewer: - Section III.K (now Section III.I): - "search space consists  of 2^#PI … Thus ATPG is a search 
algorithm whose complexity increase exponentially" - this is a wrong implication. E.g., sorting algorithms 
have an exponential search space of n! possibilities but run in O(n log n). 

Authors: Addressed through rewording of the first paragraph in Section III.I (previously Section III.K). 

 

Reviewer: - Mentioning quantum computing is unexpected; these methods have nothing to do with ML. 

- "whith backtrace". 

Authors: Addressed through rewording of the sixth paragraph, “Application of quantum . . .,” in 
Section III.I. Typo fixed in the paragraph starting as, “Statistical analysis . . .” 

 

Reviewer: - "We find that…"; "The results showed the effectiveness…" - is this published data or a new 
result? In the latter case, showing the data would be useful. 

Authors: It is published data. Readers are strongly encouraged to read the cited papers. 

 

Section IV.A: 

Reviewer: - Over 1/2 of this section discusses reference [118] (reference [122] in the revised version) from 
1993. How relevant is this line of research? Has there been any follow-up by anybody? 

Authors: This survey is not about criticizing or evaluating the relevancy of the line of already published 
research. The goal of this survey is to consolidate the ML-related work in testing. In this, subsection, 
it’s ML-based memory testing. 

 



Reviewer: - The discussion of "stuck-at firing or nonfiring" neurons is confusing. Are these spiking NNs? 
Some discussion, including some actual numbers how many neurons out of how many in total were 
defective, would be useful. In the recent years, there is a large body of literature on behavior of ANNs 
under errors; it does not help the readers to point them to that paper from 1993. 

Authors: Addressed through rewording of the last paragraph in the reorganized Section IV.A. 

 

Reviewer: - Section IV.B: - The section continuously talks about "false fails". What are they? Coverage 
holes? Overtesting issues? Why do they show up? 

Authors: Also addressed through rewording of the second paragraph in Section IV.B. 

 

Reviewer: - Section IV.C: - These 6 lines essentially cite one paper from year 2009, which seems to be on 
statistics rather than on testing. Either more explanations are needed what this work does and what it 
has to do with ML, or it should be removed. 

Authors: Addressed through rewording of Section IV.C and improvised Monte Carlo based yield 
improvement method for SRAM ICs. 

 

Reviewer: - Section V: 

- I don't think the claim "ML algorithms have not been directly applied to reverse engineering" is true. RE 
involves image processing, which for sure will rely on ML. 

- "instruction-based assembly" is unclear; if the authors mean "assembly language" then it is 
"instruction-based" by definition. 

Authors: Each comment is addressed through rewording and clarifications in Section V  

 

Reviewer - Conclusions: 

- This is a problematic part of the submission. Bullet 1 has nothing to do with the content of the paper 
and considers an important but different issue: use of ANNs in safety-critical systems (such as pedestrian 
recognition) - what does it have to do with IOC test? Bullet 2 focuses on security, which is again not the 
main topic of the paper, and it is undefined what is meant "attack either good or bad ICs". Bullet 3 refers 
to variations in emerging technologies and argues about "supplying products based these technologies 
using ML". What do variations on emerging device level have to do with ML, and where in the paper did 
we read how testing helps (or could help) here? 

Authors:  We do not completely agree with reviewer’s argument against bullet 1, and as it is an 
opinion, we believe readers will go either way. We have addressed comments on other bullets 
through rewording. Also, the section is enlarged to include suggestions for future work. 

 



Reviewer: - The remainder of conclusions raises two new issues that have not been described above. 
First, repair/reconfiguration, where I don't see the argument why ML-based testing requires repair or 
reconfiguration. I could see that repair is needed for memories, but I do not think it is widely used before, 
and I also do not see how the fact that testing is ML-based influences the need for it. Then, fast detection 
of anomalies is mentioned - for the first time in the paper. Finally, another completely new topic is 
mentioned: lithographic hotspot detection. If the authors see a connection to testing, they should add a 
subsection in Section III (or IV) and describe it there, rather than bring it as a last sentence of the paper. 

Authors: These are mentioned as a part of future in the revised section. 

 

Reviewer - Overall, I think that the story of this survey must be re-thought completely, the paper's 
sections need a different structure, irrelevant parts must be removed, technical mistakes must be 
corrected, and lengthy discussions of papers that appeared 30 years ago should be reconsidered. There 
should be also some uniform way of introducing a problem to the reader: either consistently superficial 
or in detail, but not sometimes this and sometimes that way. In its present form, I would not recommend 
this paper to a student who wishes to get acclimatized in this research area. 

Authors: We have given a new shape to this paper by removing irrelevant parts, rectifying technical 
mistakes, shortening the published line-of-research and keeping coherent parts only.  

 

Reviewer #3:  

Reviewer: - This is a survey covers a large area on testing using machine learning techniques. 

It is interesting that the survey covers not only digital circuit testing but also analog circuit testing or 
hardware security. 

Most part are well written and easily understandable. 

However, some of parts are difficult to read. 

The reviewer is concerned about the imbalance as a whole. 

Some of parts should be totally written. 

The following parts are difficult to understand. 

Section II-A 

This part is deeply focused on [112] ([116] in the revised version) 

especially the implementation of analog ANN circuit. 

The effectiveness of [112] as BIST should be mentioned. 

Authors: Addressed through rewording of Section II.A. 

 



Reviewer: - In addition, though [112] is a work in 2010 in which several future research directions were 
reported as mentioned, there is no description on related works following [112]. Reference [112] is now 
[116]. 

Authors: No action was necessary because 2-3 lines description is already provided in our survey for 
each future work. More descriptions are available in the cited papers.  

 

Reviewer: - The reviewer wonders why [112] is so highlighted. Reference [112] is now [116]. 

At the knowledge of the reviewer, there are a lot of works on analog ANN using NVM, though it is not 
sure that they are used as a part of BIST. 

If [112] has some special features to be used as a part of BIST, it can be a reason why it is highlighted. 

Authors: A strong reason to use that reference ([116] in the revised version) is that the cited paper is 
amongst the initial group of papers that mentioned analog neural network design for RF BIST.  

 

Reviewer: - Section III-B - 1st paragraph: There is no description of the method proposed in [78] whose 
targets are intermittent faults. Reference [78] is now [79]. 

Authors:  Addressed by mentioning that the proposed method (unsupervised learning-based method), 
initially proposed for permanent faults, has positive impact in diagnosing intermittent faults too 
(mentioned in Section IV of paper [78], or [79] in the revised version). We gave the initial crux of the 
proposed method, further details can be obtained from the paper itself. 

 

Reviewer: - 2nd paragraph: The description is very confusing. From line 4, it says "The ANN has the 
following input features: fault type, faulty cell's identification number, and the probability of a test 
pattern activating the fault." However, from line 8, it says "These input features are binary response 
vectors compressed into a single integer failure vector (IFV) computed by performing bit-wise addition of 
all response binary vectors." 

Actually, [31], now [32], proposes multi-stage ANNs consisting of CGNN and RLNN. However, there is no 
such explanation in the survey. 

Authors:  Addressed by adding/editing few lines in the second paragraph and also removing the 
confusing elements in the paragraph. We have touched base with the core concept and application of 
the proposed methodology in our survey. However, to study more, one needs to visit the referenced 
paper [32] itself to further deep dive into the proposed methodology. 

 

Reviewer - Minor comments: 

page 5, left, line 52: response binary vector ->  binary response vector page 7, left, line 44: To improve ..., 
designers inserts ... to detect .... One sentence has "to ..." twice. 



Authors: Addressed through fixing of the typos in Section III.B 

 

Reviewer - page 9, left. 43 - 46:  

    controllability and observability program (COP) 

    Sandia Controllability/Observability Analysis Program (SCOAP)  

  COP and SCOAP already appeared in page 8. 

  SCOAP [50] and SCOAP [49] are mixed. 

Authors: The confusion of duplicated references [49] and [50] has been fixed. The SCOAP reference 
now appears everywhere as [51]. We appreciate the reviewer for bringing this to our notice.  
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Abstract—Integrated circuit (IC) testing presents complex
problems that for large circuits are exceptionally difficult to solve
by traditional computing techniques. To deal with unmanageable
time complexity, engineers often rely on human “hunches” and
“heuristics” learned through experience. Training computers to
adopt these human skills is referred to as machine intelligence
(MI) or machine learning (ML). This survey examines appli-
cations of such methods to test analog, radio frequency (RF),
digital, and memory circuits. It also summarizes ML applications
to hardware security and emerging technologies, highlighting
challenges and potential research directions. The present work is
an extension of a recent paper from IEEE VLSI Test Symposium
(VTS’21), and includes recent applications of artificial neural
network (ANN) and principal component analysis (PCA) to
automatic test pattern generation (ATPG).

Index Terms—Machine intelligence (MI), machine learning
(ML), analog testing, digital testing, memory test and repair,
RF testing, hardware security, artificial neural network (ANN),
principal component analysis (PCA).

I. INTRODUCTION

Integrated circuit (IC) defects behave differently depending
on the type of circuit, requiring separate test methodologies.
Analog and radio frequency (RF) tests are functional and
derived from high-level specifications [93], digital tests are
structural and target modeled faults [21], and memory tests
also target modeled faults but test them in a functional
manner [3]. For any circuit type, increasing integration reduces
cost, but testing must address the increased complexity and test
for nuanced faults not seen in previous generations of circuit
technology.

Problems like digital test pattern generation are computa-
tionally complex while those such as integrated circuit (IC)
yield enhancement are not easily addressable by simple algo-
rithms. Human intuition often helps but the cost of employing
teams of experienced engineers to apply their intuition can
be nontrivial. In this situation, engineers can apply machine
learning (ML), also known as machine intelligence (MI), to
create novel solutions for test problems. Besides, ML also
makes programming easier and reduces software development
cycles and costs.

Previous surveys [137], [173] have discussed ML applica-
tions to testing. Our recent article at the VLSI Test Symposium
(VTS’21) [147] explored additional areas absent from the pre-
vious surveys. The present article provides some details from
previous publications. In addition, recent applications of ML

to automatic test pattern generation (ATPG) are summarized
in Section III-I. These are,

• Establish the feasibility of training artificial neural net-
work (ANN) to guide an ATPG algorithm [145].

• Optimize the training of ANN for ATPG [148].
• Use principal component analysis (PCA) to combine

multiple heuristics in ATPG [149].
• Impact of ML guidance on the performance of

ATPG [146].
• Use PCA to combine multiple heuristics for backtracing

and D-drive [50] in a practical ATPG system (i.e., random
patterns followed by algorithmic vectors) [150].

Section III-I is derived from authors’ recent research in
which they try to follow the elusive goal of zero backtracks
in ATPG [143]. The results show improvement from the past
but cannot claim ultimate optimality. Indeed, they point to a
possible path for the future, and that is the purpose of this
survey.

Rest of this article is organized as follows. Section II
discusses ML applications in testing of analog and RF circuits.
Section III explores new ML techniques for digital circuits,
which is an additional contribution beyond the previous sur-
veys. Memory testing is the subject of Section IV. Moving
beyond classical testing, Section V outlines recent applications
of ML to hardware security, IC counterfeiting, and issues
related to emerging technologies. Section VI concludes the
survey by listing some open test-related challenges yet to be
addressed by ML.

II. ANALOG AND RF TESTING

Analog and radio frequency (RF) components are integral
parts of modern electronics, and testing them requires sophis-
ticated equipment and methods. Such devices demand more
time and indirectly increase manufacturing costs. A common
belief among engineers is that even though the analog and
mixed-signal parts may occupy around 10% of the chip area,
the rest being digital, they take 90% of the testing effort. This
is mainly because analog testing is specification-based while
digital testing relies on fault models permitting effective use
of computer tools.

Efforts to reduce test time have led to alternate test strate-
gies: generating signatures that differentiate between faulty
and fault-free circuits [2], [165]; built-in test (BIT) or the use
of an on-chip tester [59], [153] that switches the device under



Fig. 1. Built-in self-test (BIST) of a radio frequency (RF) device under test
(DUT) [116].

test (DUT) into test mode by fetching signals from sensors [1],
[33], [53], [81], [121], [190]; built-off test (BOT) or converting
RF signals to DC signals using an interface (placed on a load
board) between the DUT and tester [16], [43]; and implicit
test, i.e., statistical model-based test that can make an off-line
PASS/FAIL decision [5], [176], [192].

Complete automation in this area has been an elusive goal,
and that is where machine learning has begun to play a
role [40], [174].

A. Use of Machine Learning

Machine learning can play an important role in testing of
analog and radio frequency devices, because here the decision
of a test passing or failing is not as straightforward as in a
digital test. We use built-in self-test (BIST) for an RF devise
under test (DUT), such as a low noise amplifier (LNA), for il-
lustration. A proposed architecture [116] consists of a stimulus
generator, measurement acquisition sensors, and an artificial
neural network (ANN) to provide PASS/FAIL decision. During
the offline training or test phase, ANN translates measured
(test) data into a one-bit output, indicating whether it is in
compliance with the DUT specification (see Figure 1). The
training phase selects a suitable ANN topology, e.g., number of
hidden layers, number of neurons per hidden layer, etc., as well
as the weights assigned to the internal synapses. The weights
are saved in a local memory and downloaded during the test.
Self-test is applied by connecting the DUT with a test stimulus
generator. On-chip sensors provide the ANN with relevant data
from the DUT. Analyzing the test data in relation to the learned
classification boundary is how the ANN classifies the DUT.
Beside training on fabricated chips, the technique has also
been further enhanced [177].

For an effective implementation of the BIST circuit shown
in Figure 1, area and power consumption of the ANN hardware
should be low. An analog ANN on silicon densely packs
synapses and computing elements for superior parallel pro-
cessing ability, robustness, and fault tolerance. Compared to a
digital implementation it is faster, smaller, easy to reconfigure
and train, and consumes less power. However, analog ANN

Fig. 2. Reconfigurable ANN [116].

Fig. 3. Schematic diagram of synapse [116].

design must consider 1) topology, 2) training algorithm, and 3)
weight/bias storage. Fabrication technology makes implement-
ing analog ANN on silicon difficult since conventional CMOS
technologies have significant parameter variations [73], [113],
[123], [127].

Figure 2 illustrates an architecture of a reconfigurable,
single hidden layer ANN [116]. It comprises of synapses (S),
multiplexers, and neurons (N) in a matrix. Each synapse is
mixed-signal hardware that performs computation in analog
mode while storing weights and biases in a digital random
access memory (RAM). The schematic of a typical synapse
circuit, shown in Figure 3, illustrates multiplication imple-
mented through a digital-to-analog converter (DAC) [97], a
combination of differential input voltages, and programmable
tail currents. The upper half of Figure 3 is a differential
pair “N10-N11” performing multiplication while switching
transistors “P0-P3” controlled by bit “B5”, steer the current
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Fig. 4. Schematic diagram of neuron [116].

and define the sign of the multiplication. In the lower half,
five switching transistors digitally program the tail currents
“N5-N9” and binary-weighted current sources “N0-N4”. Thus,
the tail current depends on the digital word “B0-B4”. Since
multiplication in analog circuitry is area-expensive, approxi-
mate multiplication is common but may be non-linear, which
can be mitigated by using customized backpropagation algo-
rithms [113]. Multiplexers select input sources from previous
layers, and the summation of synapses is fed into a neural
circuit, as illustrated in Figure 4. This neuron circuit converts
synapse outputs, i.e., the differential currents, into differential
voltages. The common-mode cancellation circuit produces a
positive difference from “I+in” and “I−in.” The next stage
is a current-voltage converter made up of two p-channel
MOSFETs. The last stage, a level shifter, is a source follower
circuit that shifts the output voltage from the previous stage
upward to match the high voltage requirement of synapses in
the next layer(s). This architecture has following advantages:

1) It is modular and can expand to any number of neurons
and inputs within the chip area.

2) Output multiplexer reduces the number of pins and
analog-to-digital converter (ADC) devices.

3) All signals are differential with broad input ranges thus
providing improved noise resiliency.

Conventional training algorithms (i.e., backpropagation al-
gorithms) for on-chip ANNs suffer from low precision and
high area overhead. A parallel stochastic weight perturbation
technique [85] may be preferred since it does not require
on-chip support and provides a compact solution. In this
method, random vectors perturb all edge weights of the ANN.
The mean squared error (MSE) is calculated over the entire
training set to check the error status. If the error decreases,
the new random vector with weights is accepted, otherwise
it is discarded. This method is likely to get trapped in local
minima, which can be avoided by using a simulated annealing
technique, allowing the state of the network to move “uphill.”

In an experiment on low noise amplifier (LNA) circuits
two RF amplitude detectors placed at the input and output
produced DC signals proportional to RF power at detector

inputs [116]. These DC signals were fed to an analog ANN
classifier, trained in different configurations with 2, 4, and
8 neurons in a single hidden layer. This was repeated five
times to average out randomness of the training algorithm’s
stochastic nature. Additional experiments replaced the hard-
ware classifier with a software classifier using the Matlab
neural network toolbox trained by a resilient backpropagation
algorithm. It was observed that the software classifier training
error outperforms the hardware classifier, but the validation
error was comparable in both cases. However, for more
neurons in the hidden layer the hardware classifier’s validation
error is substantial, compared to the software classifier. Several
future research directions were reported by this study:

1) The accuracy of the hardware classifier is lower than
the software classifier due to non-linearity in synapse
multiplication, limited resolution and dynamic range of
weight values, and the training algorithm’s limitations.

2) The dynamic range of synapses can be improved using
adjustable gains, i.e., by changing gain when weights
become too low or saturated [72].

3) Weight resolution is problem-specific and depends on
network architecture. However, it can be increased in the
presence of high non-linearity for minimal size devices
but may lead to mismatch and parameter variation in the
manufacturing process [108].

4) The training algorithm demonstrates significant conver-
gence properties with minimal variance of the final error,
but this requires increased training time.

5) Weight storage is large since it is implemented as digital
memory. However, in built-in self test (BIST), these
weights need to be stored permanently, which may
require memories using floating gate transistors [60],
[63]. Nevertheless, using floating gate memories to store
weights of analog neural networks may further raise
issues like handling of high voltage, accurate program-
ming schemes, and weight updates.

6) Further investigation is needed on whether the ML-based
approach considers the effects of DUT degradation dur-
ing device lifetime, which includes the ANN as well.
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Fig. 12. Algorithm for analog test metrics estimation.
Fig. 5. Simulation flow for parametric test metrics estimation [173].

B. Parametric Test Metrics Based on Machine Learning

Test engineers have procedures to estimate analog parame-
ters related to test costs, yield loss, and test escapes. However,
these metrics should be accurately estimated by simulation
ahead of silicon manufacturing. A test strategy [173], [175]
that includes ML algorithms is shown in Figure 5 and illus-
trates the following points:

1) A trained ANN classifies circuits whose parametric
metrics are estimated closer to the specification, known
as “extreme” instances.

2) Circuit netlists are synthesized using a process design kit
(PDK) [173] from intellectual property (IP) vendors. The
procedure simultaneously trains an ANN with process
metrics to classify “extreme” circuits. These represent
rare occurrences identified by a special Monte Carlo
technique known as statistical blockade [168].

3) The ANN is re-trained with new simulated circuits
to push the boundary such that performance of the
extreme class of circuits matches even closer to the
specification. This process continues with the re-trained
boundary in the pursuit of collecting true “extreme”
instances (circuits having performance values marginally
satisfying to the specification), and push the training
boundary to generate more such “extreme” circuits.

The “extreme” instances can serve as fault models based on
parameters, that examine high-performance, and are obtained
from an alternative test scheme [13], [178]. This method
speeds up the Monte Carlo transistor-level simulation. Typ-
ically, fault models account for process parameters based on
a joint distribution as given in their respective PDK [178].
Finally, the fault model is verifiable after performing transistor-
level simulation. The algorithm [175] outputs a refined para-
metric fault model compared to the generalized fault mod-
els and helps estimate fault coverage and yield loss more
precisely. This method was applied to a low noise amplifier
(LNA) [178] and reduced simulation run-time by eliminating
the redundant specification tests and replacing them with the
proposed ML-based parametric measurements. The technique
was also applied to data-converters [13], but is yet to be
explored for other analog ICs whose simulation run-time is
high, such as phase-locked-loops (PLLs).
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III. DIGITAL TESTING

In a modern electronic system, digital parts cover most area.
Similarly, digital testing occupies most pages in a book on
electronic test [21]. As chips become more complex, two types
of problems emerge. One, whose complexity is beyond the
economically available computing capability, and the other
for which the problem itself is too ill-defined is to find an
algorithmic solution. Some of these problems have benefited
from machine learning.

A. Wafer Testing

In general, logic defects occur on wafers in physical clus-
ters [131]. Thus, clustering algorithms [179] can identify
defect concentrations across the wafer. They work in two
steps: 1) cluster containment and 2) learning. The first step
identifies wafers with cluster patterns and screens out passing
dies having no defect within these clusters. Those dies are
marked for high risk of failure. This process repeats based
on cluster size, cluster location on the wafer, and failure
composition across multiple wafers to avoid additional yield
loss and failure analysis. Recent work [198] proposes a similar
cluster-detecting ML algorithm using support vector machine
(SVM) [66], [156]. The SVM kernel is a radial basis function,
generally a Gaussian function, for distance computation to
identify the die from the defective clusters during classifi-
cation. The corresponding process flow diagram is shown in
Figure 6.

B. Scan Chain Defects

Defective scan latches can fail with permanent faults (which
are easy to model) or intermittent faults (which are difficult to
model). A recent survey [80] points to Bayesian learning [189]
for identifying faulty scan cells in the presence of intermittent
faults using an unsupervised learning approach. The method
analyzes a test set and the corresponding failure log of the
scan chain [79]. The details of this algorithm are explained by
assuming a chain fault expressed by a dataset. This dataset
contains count of patterns for the respective scan cell that
is “sensitive” to the fault (“sbits”) and the count of patterns
for which a sensitive bit failed (“fbits”). In case of perfectly

4



modeled permanent fault, one would expect any upstream cells
(scan cells between the scan chain input and a scan cell’s
scan input terminal) will fail on sensitive patterns, and any
downstream cell (scan cells between the scan chain output
and a scan cell’s scan output terminal) to pass on all the
sensitive patterns. However, if defects do not behave similar
to the modeled faults, upstream defective cells are likely to
have failure rate below 100% and downstream cells, a failure
rate above 0%. This unsupervised learning-based approach has
been applied to diagnose designs containing intermittent faults
with positive results.

Another work [32] proposes a different ML-based scan
chain diagnosis technique using supervised learning. This uses
ANN to diagnose intermittent faults in a scan chain. Various
multi-level ANNs with proper topologies (termed in this study
as coarse global neural network (CGNN) and refined local neu-
ral network (RLNN)) provide high-resolution scan diagnosis.
By evaluating in multiple stages, the investigators were able
to zoom into the faulty location with higher accuracy. They
also incorporated comprehensive ANN training vectors to have
lower chances for unseen data deviating from trained patterns
and experimental results showed encouraging results. The
ANN has the following input features: fault type, faulty cell’s
identification number, and the probability of a test pattern
activating the fault. The output layer represents scan cells of
a particular scan chain. These input features are modeled in
the form of binary response vectors, further compressed into
a single integer failure vector (IFV) computed by performing
bit-wise addition of all binary response vectors. The number
of scan latches in the scan chain determines the length of the
IFV. The computation of the output node of CGNN indicates
the candidate scan cell being faulty in the scan chain.

This work [32] also proposed a novel solution for com-
pressing binary response vectors into a single vector. An
affine group comprises of scan cells whose euclidean distance
between their IFV and candidate scan cell is minimal. The
length of the modified IFV, known as “reduced cascaded vector
(RCV),” can be reduced by removing bits at certain positions
based on the affine group (a group of scan cells having similar
characteristics). This updated CGNN comprises of two layers
whose number of input nodes equals the length of RCV, and
the number of nodes in the output layer equals the number
of scan cells in the affine group. The resulting scan diagnosis
procedure could achieve reasonably high accuracy.

C. Printed-Circuit Board (PCB) Testing

Testing each component on a board is vital from the real-
time testing perspective. Even when an in-circuit test [14] of
components using automatic test equipment (ATE) passes, the
board-level functional test can fail. This phenomenon is fore-
boding and needs a structured way of testing to guarantee the
reliability of the PCB (or SoC) and its continual maintenance.
Typically, board-level functional fault diagnosis is based on the
past root-cause analysis of faulty boards, which is also used as
training data to predict defective components on new boards.
The syndromes for faulty boards serve as a set of features,

and the diagnosed root-causes serve as labels for the training
data set.

A reasoning-based approach [130] is effective in functional
debugging since it continuously learns during debugging and
development. However, it is difficult to fix the problem if
reasoning-based learning incorrectly identifies the faulty com-
ponent on the board. Replacement of the entire reasoning
model is trivial, but could adversely affect the correct detection
of an observed failure. The investigators [130] kept the fixing
of their approach as an open problem for the future.

Another ML application [206] proposed a technique to
debug and repair board-level functional failures. It exploits
the connection between failure syndromes and repair actions
to train an ANN not to infer from visual inspection of log files
and data sets.

An SVM-based technique [203], [207] diagnoses boards by
learning incrementally to locate the root causes of failures.
The learning tunes the SVM kernel to achieve high accuracy
in diagnosis. The overall system training time improves with
the continuous incremental learning of SVM.

ANNs and SVMs are combined to have a diagnosis system
using a meta learning technique called weighted-majority vot-
ing (WMV) [109]. A proposed system combines the weights of
different repair suggestions generated by respective machines
to identify single pair of recommended repair suggestions.
WMV using ANN or SVM can further optimize repair [183],
[202]. There are three types of voting mechanisms: 1) unan-
imous voting, i.e., all experts agree on the same output, 2)
at least one or more than half of the experts agree on the
same output, i.e., simple voting, and 3) certain experts are
qualified and their votes are weighted to improve the overall
performance, i.e., weighted-majority voting.

Limited access to training data on the history of board
failures and the feature vector size for training the ML models
to diagnose failures are major concerns. A syndrome merging
technique has been proposed [184] to reduce feature vector
size. However, some syndromes that are not easily computable
do not allow merging. Another technique [90] can still diag-
nose a system with a non-computable or missing syndrome
using label-imputation and the so-called two-feature-selection
methods.

D. Fault Diagnosis

Defective ICs can provide failure logs for fault diagnosis,
but logging substantial data can be memory-expensive. Be-
sides, the analysis of the entire dataset is time-consuming
and may even be infeasible. ML can help decide when data
collection can be stopped without sacrificing the efficiency of
fault diagnosis [193]. The idea has been demonstrated by using
different types of ML approaches, namely, k-nearest neighbor
(kNN) [101], support-vector machine (SVM) [66], [156], and
decision trees [70]. Both, unsupervised and supervised learn-
ing methods can cooperate in identifying design bugs [126]. A
survey [78] of diagnosis using machine learning examines the
relevancy of failure log information for fault diagnosis, defect
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location in scan chain or functional logic block, and diagnosis
time.

Fault diagnosis plays a vital role in physical failure anal-
ysis (PFA), also known as failure mode analysis (FMA),
where too many candidate faults may diminish diagnostic
efficacy leading to low diagnostic resolution. For a diagnostic
procedure, the average size of group within which faults
cannot be distinguished from each other is referred to as
the diagnostic resolution (DR) [205]. The ideal resolution,
DR = 1, is often difficult to achieve. ML techniques try
to meet specific objectives such as, 1) mapping of diagnosed
faults onto corresponding defects based on the failure response
of the circuit [52], [57], and 2) tuning the set of candidate
faults to further improve the diagnostic resolution [200]. The
ANN used in these studies get help from the layout and logic
information of the circuit and failure response.

Conventional diagnostic tools claim to be highly accurate,
but fail to identify certain faults because they may not con-
sider layout information. Such faults occur due to systematic
defects, and EDA tools and yield learning methods such as
physical failure analysis (PFA) are incapable of handling them.
This can be addressed by analyzing the fail-logs of multiple
ICs, known as volume diagnosis. This involves analysis of
large amount of data, and is time-consuming and expensive.

An ML-based technique [82] can be included in the yield-
learning process to identify systematic defects and distinguish
them from random defects. Here, failure responses of defective
ICs are clustered using a procedure known as the farthest-
neighbor method [38]. Later work [195] extended this tech-
nique to identify defect locations in fanout-free regions by
observing how systematic faults affect the same set of outputs.
The circuit is first decomposed into fanout-free regions for a
specific kind of defect or defect class, which are then classified
based on failure outputs using SVM. When many ICs fail due
to a particular defect class, it is assumed that the ICs have
systematic defects. Volume diagnosis also produces multiple
failure features for an IC. At least two methods, namely,
statistical-learning approach [187] and Bayesian network ap-
proach [31], can evaluate the failure feature probability.

An ML-based volume diagnosis technique [195] has several
advantages: 1) It relies on certain decision-based subroutines,
and computation complexity is much lower than traditional
volume diagnosis methods; 2) It provides high-resolution
diagnosis and statistical data, which classifies defective chips
based on the defect location; and 3) The ML-based technique
also works for scan designs using test compression and locates
defects in most faulty ICs. The diagnosis methodology has
been compared with respect to run time to the traditional
analysis. Basic assumptions made are that faults in fanout
free regions can be activated, propagated through common
paths, and observed at common scan latches. According to the
available experimental results [195] the technique can detect
more than 90% of defective chips in a 50X output compacted
design, which is faster than the traditional diagnosis methods.
Besides, it could also detect 86% of defective chips with 100X
outputs compacted designs in a few milliseconds.
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Fig. 7. Pseudo-random pattern generation (PRPG) methodology [107].

An ML-based method that assists PFA [163] provides high-
resolution detection of defects. Defects are grouped in “defect
modes”. A statistical test, such as χ2 independence test, is
applied to the data obtained from layout-aware scan diagnosis.
This test evaluates the amount of correlation between the
defect and the “defect modes”. The “defect modes” have
corresponding p-values and rank the respective modes to
capture the correct systematic defects and eliminate the effects
of random defects (also treated as noise in this context of
statistical analysis).

E. Test Compression

Due to the continuing technology node shrinkage, the in-
creasing testing cost of high-density ICs has become a primary
concern. This cost includes test application time, which is
proportional to test data volume, and the cost of generating test
data. Traditionally, compressor/decompressor architecture, i.e.,
pseudo-random pattern generator (PRPG) along with decom-
pressor reduces the test cost by loading scan chains through
decompressors and compacting test responses in multiple
input signature registers (MISRs) [21]. However, the length
of a PRPG does impact the test time irrespective of various
circuit parameters [107]. The problem of PRPG length may
be resolved by using ATPG, but that too is time-consuming.
A PRPG length selection method is shown in Figure 7. It
uses a predictor based on the support vector regression (SVR)
model, which reduces test costs in the CODEC architecture.
The authors of that work [107] give a correlation-based feature
selection method applied to industrial designs for reducing the
test time with high prediction accuracy [138].

F. Testability Analysis

Testability analysis generally refers to linear, or at most
polynomial but not exponential, complexity procedures that
can identify test bottlenecks in a circuit [4]. The analysis
determines numerical measures representing controllability
and observability of signals. “Distance” or logic depth through
the circuit has been the simplest measure that was used in an
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ATPG algorithm [50]. Here the distance of a signal site in
terms of logic gates between PI and the site is considered
the controllability measure, and that to PO as the observ-
ability measure. Some of the other testability measures are
TMEAS [172], Sandia Controllability/Observability Analysis
Program (SCOAP) [51], CAMELOT [15], and controllability
and observability program (COP) [19]. The first four examine
the circuit topology and the last one, signal probabilities.
They have been used for improving digital circuit design or
for selecting one out of multiple choices that occur within
complex test generation programs. We discuss three areas
where machine learning has been applied.

1) Combining Testability Measures: Several of the testa-
bility measures listed above have been combined into a
composite measure using unsupervised learning [144]. For
every signal node, four testability measures have been de-
fined, 0-controllability, 1-controllability, 0-observability, and
1-observability [86]. The last two measures are often replaced
by a single measure, observability, leading to three measures
per node. The combination process has following steps:

• For testability measures, e.g., distances, SCOAP [51],
etc., to be combined, compute relevant values correspond-
ing to each signal node in the circuit.

• Normalize all quantities to the range [0,1].
• Phase correction - Consider SCOAP, which is a measure

of effort. Thus, low or closer to 0 0-controllability means
that the node is easy to set to 0. On the other hand,
COP [19] estimates probability and for the same node
the 0-controllability will be closer to 1. Assuming that the
combined measure is to have the probability interpreta-
tion, the normalized SCOAP values should be subtracted
from 1.0 in order to align with other measures.

• All measures are combined using the principal component
analysis (PCA) [76]. If n measures are being combined,
then PCA computes n values for each node of the circuit.
The largest of these is the principal component and is
used as the combined measure. The analysis is repeated
three times to generate the combined 0-controllability, 1-
controllability and observability for each node.

The PCA combined testability measure has been used to
guide the ATPG with notable performance improvement as
shown in Figures 8 and 9, and discussed in Section III-I. Other
applications such as finding hard to detect (HTD) faults or test
point insertion (TPI) candidate nodes are yet to be attempted.
Also, the effects of combining larger number of measures may
be explored in the future.

2) X-Sensitivity: Don’t care or unknown signal state (de-
noted as X), when present in simulation, degrades the quality
of fault detection. Their sources can be uninitialized memory
cells, bus contentions, anomalous analog-to-digital conversion,
and manufacturing defects during post-silicon validation. X-
sensitivity of a signal is a measure of degrading effect on fault
coverage from X on that signal. The support vector procedure,
a machine learning technique, has been shown [138] to predict
the sensitivity of X’s in a digital circuit. The method ranks

circuit nodes according to X-sensitivity, which is beneficial in
the post-silicon validation phase.

3) Signal Probability: Savir [155] conjectured that it would
be impossible to calculate a simple testability measure based
on signal controllabilities and observabilities in a circuit con-
taining re-convergent fanouts such that the measure will truly
represent the probability of fault detection. This is because the
reconvergence introduces signal correlations not accounted for
in simple testability measures. The difficulty is that almost all
industrial circuits contain re-convergent fanouts. Topological
analyses [141], [161] can detect re-convergent fanouts, but
they can be computationally burdensome. Toward application
of ML, recent work [83] has used ANN to predict signal
probabilities from minimal fanout information, resulting in
increased accuracy with reasonably small computation time.

G. Built-In Self-Test (BIST) and Test Point Insertion (TPI)

Logic built-in self-test (LBIST) often relies on pseudo-
random patterns, which may be economically generated in
hardware by a linear feedback shift-register (LFSR) [21].
However, an LFSR may not generate specific patterns to detect
random pattern resistant (RPR) faults. As an ML solution to
this problem, ANN has been used [42] to generate test patterns
to detect RPR faults as well as easy-to-detect faults.

The self-learning capability, suitable for an system-on-
chip (SoC), also deals with aging-induced degradation. This
proposed flow [42] uses existing LBIST and an ML-based
software predictor to remedy the problems arising from the
wear-out or aging of IC in the field. An ANN is developed
using LBIST patterns (converted from ATPG-generated tests
for transition delay faults) that activate critical or near-critical
paths. The results demonstrate that a gate-overlap and path
delay aware algorithm can select the optimum set of test
vectors. This methodology is area and test-time efficient.

To improve the fault coverage of LBIST, designers insert
test points (TPs) modifying the circuit’s internal signal values
to detect random pattern resistant (RPR) faults. Test point in-
sertion (TPI) [64] techniques find high-quality TPs to improve
fault coverage or reduce test vector count. These techniques
are classified based on the form of analysis used, namely,
fault simulation, probabilistic testability measures, or multiple
measurements [124], [182].

A deep learning technique to solve the TPI problem of
logic circuits has been proposed [114]. It uses a graph con-
volutional network (GCN) to classify signal nodes as either
easy-to-observe or difficult-to-observe. This ANN analyzes
attributes of each node and its neighbors, based on a testability
measure such as SCOAP [51]. Further work [151], [152],
[180] used fully-connected neural networks to evaluate the
impact of control-0, control-1, and observe test points on fault
coverage and found that an iterative TPI process improved the
fault coverage and significantly reduced TPI time. In another
extension [125], when randomly generated circuits were used
for training, the ANN still yielded a performance comparable
to that of ANN trained on benchmark circuits.
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A more recent investigation [181] has shown that optimizing
the complexity of the neural network can improve the LBIST
performance with higher fault coverage, fewer test points, and
shorter test length, while reducing the computation time to
find test points.

H. Power Supply Noise (PSN) and Signal Integrity

Reliability problems of integrated circuits center around
operating conditions, such as, temperature, speed, voltage, and
circuit aging. Many of these remain uncovered during the
conventional testing and may be found during the burn-in
test [88]. Some related concerns are power supply noise (PSN),
signal integrity, and timing failures.

IR drop is a significant concern in IC design and is often
referred to as power supply noise (PSN) [164], [188]. Un-
restrained PSN can lead to performance glitches and impact
timing [28], [89]. Also, excessive PSN during test can cause
false failure if a test pattern induces PSN that substantially
exceeds the functional mode behavior [49], [106], [194],
[196]. Hence, PSN simulation, though a nontrivial effort, is
important.

Timing analysis is vital because it determines the clock
frequency for the IC. However, circuit timing depends on static
and dynamic characteristics, because PSN impacts the supply
voltage reaching individual gates, it affects propagation delays
and slows down switching.

Applications of ML in this area include the use of sup-
port vector machine (SVM) [201] to predict voltage droop
in field-programmable gate array (FPGA) and dynamically
adjust the clock frequency of the circuit. However, without
feature extraction, the method is applicable only to small ICs.
Another ML-based technique [110] includes feature extraction
methods, such as ANN [36], SVM [18], [201], and least-square
boosting (LSBoost) [18]. Here, ANNs are found to be the best
predictors of circuit timing for test patterns.

A recent paper [129] gives a machine learning (ML)
solution for small delay fault (SDF) detection problem of
resistive opens. Such defects may not cause a failure of
timing specification but still present a reliability challenge.
The method uses tests at multiple voltages and frequencies
to examine the latent faults considering three ML techniques:
support vector machine [66], [156], k-nearest neighbors [101],
and random decision forests [70]. The results show that the
learning scheme based on random decision forest classifies the
embedded faulty cells with higher accuracy.

I. Machine Intelligence Applied to ATPG

An ATPG algorithm searches for an input vector to detect
a given fault. For a combinational circuit, the search space
consists of 2#PI vectors, where #PI is the number of primary
inputs (PIs). Thus, ATPG is a search algorithm whose size of
search space increases exponentially with circuit size, in terms
of #PI .

Roth’s D-algorithm [142] conceptualizes ATPG by defining
D-algebra and giving a complete search algorithm. The sym-
bol D represents a composite state of a signal in the fault-free

and faulty circuits. Thus, D means 1 in fault-free circuit and
0 in faulty circuit. D is the opposite condition.
D-algorithm has high complexity as it manipulates all

internal signals of the circuit. It can be particularly inefficient
for large circuits containing XOR gates and re-convergent
fanouts. The path oriented decision making (PODEM) [50]
algorithm improves the search efficiency by focusing on PIs.
In general, ATPG implementations use heuristics to speed up
the search. In summary, the relevant features of the PODEM
algorithm are,

• The search space is reduced from 2n for D-algorithm,
where n is the total number of signals (gates and PI) in
the circuit, to 2#PI for PODEM.

• A concept of X-path-check is introduced, where X refers
to an unknown or yet undetermined value of a signal. D-
algorithm may try to find a test even when the entire D-
frontier is blocked, but PODEM’s X-path-check verifies
that there is at least one D-frontier gate with access
to a primary output. Otherwise, it will backtrack to the
previous stage in the search process where an alternative
signal choice is available. D-frontier is the set of all gates
that have a D or D at their input but the output is still
X , i.e., undetermined.

• PODEM originally proposed a distance-based heuristic
to identify easy or hard to control inputs of logic gates
while backtracing to primary inputs, as opposed to D-
algorithm that traditionally chose any gate input. Several
other heuristics based on the circuit topology have been
used in the programmed implementations of both algo-
rithms. Similarly, while propagating the fault effect to an
observable primary output (PO), the gate closest to PO
will be selected from the D-frontier.

Many other ATPG algorithms, e.g., FAN [46], TOPS [94],
SOCRATES [158]–[160], EST [22], [29], [30], recursive
learning [99], TRAN [26], GRASP [119], NEMESIS [103],
TEGUS [171], and Boolean satisfiability (SAT) [23], [25],
[102], [103], have been reported. Although the search space
size remains 2#PI , researchers [68], [185] attempt to find tests
faster either by special subroutines to filter the search space
or through heuristics to select from available choices. It is this
second aspect of the ATPG that the ML techniques focus on.

Before machine learning was applied to ATPG, artificial
neural networks (ANN) were used to model digital circuits
where a bidirectional binary neuron would represent the state
of a signal [23], [25]. Each neuron has a threshold value
and its interconnects to other neurons have weights, which
together determine the energy of the ANN for any set of
neuron states. For any binary [0,1] states of primary input (PI)
neurons, the minimum energy of the ANN is attained only
when all neurons assume valid signal states corresponding
to the digital circuit. Given a target fault, the ANN for the
corresponding arbiter circuit is first constructed. The minimum
energy state of this ANN is then determined and the states of
PI neurons provide a test vector. The ATPG requires either
a physical neural network or a software model. In either
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case, the network energy function depends on a large number
of variables (all signals) and may have many local minima,
making the search for a test (minimum energy state) for some
faults rather difficult. A program, TRAN [24], [26], makes
this algorithm computable by using graph theoretic principle
of transitive closure.

Applications of quantum computing, although not ex-
actly considered machine intelligence, have also been re-
ported [166], [167]. While we discuss recent developments
in this section, one can find discussion of machine learning in
the context of ATPG as far back as 1987 [98].

The application of ML is related to the heuristic part of
the ATPG algorithm. All programmed algorithms have used
heuristics to speed-up the search. Typical heuristics base
decisions on distance, in terms of logic gates, from PIs or
POs to signal sites, testability measures, voting on fanout
stems depending on branches, learning techniques using im-
plication graphs, etc. In 1985, Patel and associate [132], [133]
conducted experiments to study the effectiveness of various
testability measures as heuristics in PODEM and proposed
a strategy for test generation. They observed that instead
of using a single testability measure with a high backtrack
limit, it is more efficient to use multiple testability measures
successively and with a low backtrack limit. Considering this a
traditional approach, machine learning (ML) as discussed next
will be quite different; multiple testability measures will be
combined and used all together. The result will be even greater
efficiency over the successive application approach [132],
[133].

Recent work [143] uses ANN and principal component
analysis (PCA) as ML models, relies on the conventional
gate-level circuit description, and uses a search algorithm
that, given unlimited computing resources, would guarantee
a test in significantly reduced CPU time by making fewer
unproductive algorithmic decisions requiring backtracks. The
ANN and PCA combine circuit topology information and
testability measures to create a novel heuristic to guide the
search. Since several available heuristics are being applied
together, we do not need a low backtrack limit as a stopping
criterion to avoid unproductive decisions.

PODEM [50] offers an ideal ATPG environment to apply
ML-based heuristic to choose a backtrace path to a primary
input (PI) for justifying a desired signal value at an objective
site. The ATPG benefits from the ML-based guidance, which
is found to reduce backtracks. Three approaches have been
reported to provide successively higher performances. All use
a conventional PODEM program with backtrace guidance
provided either by a PCA-combined testability measure [149],
[150], or by a trained ANN [145], [146], [148]. The former is
referred to as unsupervised learning, while the latter is called
supervised learning.

In the unsupervised learning model training data has no
specified correct output value (referred to as labels). The
goal of the learning algorithm is to explore the data and
find some structure or pattern within it. Popular learning
models include k-means clustering [61], partitioning around

medoids (PAMs) [92], ordering points to identify the clus-
tering structure (OPTICS) [7], principal component analysis
(PCA) [76], [134], minimum redundancy maximum relevance
(mRMR) [135], and self-organizing maps (SOMs) [96]. These
methods are typically used to segment text topics, classify
items, and identify data outliers.

Considering the present context, the PCA can combine
any number of data types relevant to the ATPG algorithm,
such as input-output distance (logic depths), and testability
measures from COP [19] and SCOAP [51] values into a set
of principal components (PCs). Then the largest (major) PC
would guide the PODEM ATPG backtraces [149], also known
as “PCA-guidance” methodology. The next case we examine
is a “optimally-trained-ANN” feature reduction methodology
to improve the ANN complexity and guide decisions that oth-
erwise would rely on heuristics, also known as “PCA-trained-
ANN” [146]. The result, not surprisingly, is the best achieved
among the aforesaid ML-based ATPG options studied.

The preceding evaluation is based on a combined ATPG
performance (number of backtracks and CPU time) for all or
a target subset of faults. However, in practical ATPG imple-
mentation an important criteria is the performance with respect
to the hardest-to-detect or even redundant faults. Thus, a fault-
by-fault micro-evaluation of the ATPG guidance techniques is
recommended for the future, and what follows next offers a
preview.

Statistical analysis of fault coverage for random and de-
terministic vectors [162] can assess circuit testability from
fault simulation, predict coverage from detection probabilities,
estimate test length for required coverage, and help generate
test vectors by fault sampling. On these lines, we discuss a
practical ATPG system where easy-to-detect faults are covered
by random vectors and hard-to-detect faults are left for a
PODEM-based ATPG with backtrace guidance coming from
either MI [143], [145], [146], [148], [149], or distance (logic
depth) heuristic [50], or controllability and observability pro-
gram (COP) [19], or SCOAP [51]. We find that MI-guided
ATPG shows significantly improved performance over others.

Unsupervised learning or PCA was applied only in the
backtrace step [149] in the early work, while the D-drive
used the conventional distance (logic depth) heuristic [50]. The
ATPG system we will examine now [150] applies principal
component (PC) to direct both backtrace and D-drive. In
addition, this is a complete ATPG system with random and
algorithmic phases and a fault simulator. The ML based
ATPG was applied only to faults left uncovered after the
random pattern fault simulation phase. The results showed the
effectiveness of guidance provided by PCA to PODEM ATPG.

In Figures 8 and 9 circuits are arranged left to right in
the order of increasing number of nodes. Figure 8 shows
combined backtracks and Figure 9 gives total CPU time for
all stuck-at faults left over from the random phase. Number
of backtracks (four bars in Figure 8) and CPU milliseconds
(ms) (four data points in Figure 9) for each circuit correspond
to the four versions of PODEM. These are PODEM programs
where backtraces and D-drives are directed, respectively, by
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from top), and PCA-combined measure (circular dot, bottom curve) [150].

distance (logic depth), COP, SCOAP, and the major principal
component from PCA combining distance, COP and SCOAP
measures. In Figure 9, a trend curve is obtained by power-
law fit to the experimental data from each PODEM version.
Notably, shorter black bars and lower black curve indicate
consistent improvement provided by PCA guidance.

These results demonstrate that guidance from PCA-
generated linear combination of multiple heuristics can reduce
ATPG backtracks and CPU times when compared with con-
ventional single heuristic guidance. Circuits b03, c432, b10,
b13, c880, b07, b05, b12, c5315, c7552, c1355, c2670, c3540,
b04, b11, b08, c499 and c6288 exhibit significant reductions
in backtracks and CPU times in Figures 8 and 9. PCA is
most frequently the best guidance for ATPG, but even when
it is not, it is never the worst. There are no reconvergent
fanouts in c17, b02, b01, and b06, and so there is no scope for

reducing backtracks as there would be none. An example of
zero backtracks by PCA-based PODEM ATPG is circuit b09
in Figure 8.

An obvious advantage of this procedure is its simplicity.
Besides, any number of testability measures can be combined
by PCA. For example, a measure that includes the information
on reconvergent fanouts may give additional benefit to the
ATPG. In general, all measures may have linear complexity
approximations, each retaining a different piece of informa-
tion. Thus, adding more measures in PCA should continue to
increase the benefit.

Another form of ML application employs artificial neural
networks (ANN) and is referred to as supervised learning.
Here, models are trained with input data where the desired
outputs are known. Supervised learning uses patterns to predict
labels on unlabeled data and is used in applications where
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Fig. 10. Total CPU times on Intel 8700 processor based workstation with 8-GB RAM to find a test or prove redundancy for all checkpoint faults in
ISCAS’85 [20] and ITC’99 [34] benchmark circuits. Three types of data points and trend curves are for PODEM ATPG guided by, respectively, basic-trained
ANN (round points, top curve), optimally-trained ANN (triangular points, middle curve), and PCA-trained ANN (square points, bottom curve) [146].

the history of data predicts likely future events. A supervised
learning algorithm receives inputs along with corresponding
correct outputs; the algorithm learns by comparing its outputs
against and correct outputs to find errors and modifies the
learning model accordingly to minimize errors. Some known
learning models are support vector machine (SVM) [66],
[156], one-class SVM [66] or one-class neural network [169],
decision trees (DT) [139], random forest (RF) [71], lin-
ear regression (LR) [128], multivariate adaptive regression
splines (MARS) [204], logistic regression [35], adaboosts [44],
ANNs [65], convolutional neural network (CNNs) [65], au-
toencoders [9], recurrent neural network (RNNs) [65], long
short-term memories (LSTMs) [48], and half-space trees (HS-
Trees) [186].

A recent study examined MI’s supervised learning ability
to enhance ATPG by reducing backtracks [145], also called
here as “basic training of ANN” methodology, by replacing
conventional heuristic to decide backtracing direction using
an ANN trained with PODEM data on hard-to-detect faults.
The training of ANN can be tuned for ATPG application [148],
which we will call “optimally trained ANN” methodology. In
this case, supervised ML uses sample ATPG data and circuit
information to train an artificial neural network (ANN), which
then provides the backtrace decisions for ATPG. In contrast,
unsupervised ML was more direct as it used neither sample
ATPG data nor the ANN.

Figure 10 [146] shows the ATPG results for the same
benchmark circuits (as in Figs. 8 and 9) now using supervised
learning. As the fitted trend curves show, these results are
similar to the unsupervised learning results of Figure 9 [150],
although they cannot be numerically compared. In the un-
supervised learning case the ATPG was applied only to the
checkpoint faults left undetected by random vectors, whereas
in the supervised learning experiment all checkpoint faults
were used. Another difference is that the data are arranged,
respectively, according to the number of signal nodes in

Figure 9 and logic depth in Figure 10. Noticeable difference
is seen, however, for several small and medium size circuits
in Figure 10 where the ATPG CPU time with the PCA trained
ANN guidance is negligibly small.

IV. MEMORY TEST AND REPAIR

A. ML-Based Built-In Self-Repair of DRAM

Device and interconnect geometries of VLSI circuits are
decreasing rapidly. As a result, manufacturing yield continues
to drop, owing to higher component density, complicated fab-
rication process, and greater susceptibility of shrunk features
to defects. Some faulty parts on chips are rescued by incor-
porating redundant components, and a reconfiguration scheme
that replaces the faulty component with a redundant one. A
dynamic random access memory (DRAM) is densely packed,
and redundant rows and columns are added to reconfigure
faulty cell rows and columns of memory sub-arrays using
electronically programmable latches. Optimal reconfiguration
and redundant component allocation is a classical problem
widely studied by researchers [45]. However, these algorithms
are not directly applied to memory sub-arrays as they are
neither controllable nor observable by external testers. This
problem is resolved by the introduction of built-in self-test
(BIST) that comprehensively tests memory arrays and discards
them if they fail. The scheme is further modified as “built-
in self-repair (BISR)”, and is used to salvage faulty memory
arrays.

Memory repair was first introduced in 64 kbit DRAM to im-
prove the chip yield using redundant rows and columns [170].
With technology advances, increasing memory size has made
the search space too large and the types of faults have also
become complex. Therefore, conventional repair algorithms,
both greedy [41] and exhaustive [37], became ineffective.
Since memory repair problem is NP-complete [58], heuris-
tic algorithms were introduced. These included branch and
bound [100], approximation [100], best-first search [62], and
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others [112], [197]. They have worst-case complexities that
are nearly exponential and are not easily implementable in
the built-in self-repair (BISR) mode. Focus next shifted [122]
to: (1) an efficient algorithm so that overall throughput im-
proves with the chip yield, and (2) hardware implementable
algorithms. A self-repair scheme using BISR [122] repairs
memory subarrays by reconfiguring redundant rows/columns.
As “Repair Most (RM)” is a simple and easily implementable
hardware, the performance of ANN-based memory repair
algorithm has been compared against RM [122].

ANNs have been used to tackle optimization problems,
e.g., the famous traveling salesman problem [47], for which a
solution was proposed by Hopfield [74]. Lyapunov’s energy
function can represent an optimization cost function, and
the convergence property of the ANN from a random initial
state to a local minimum state can reduce this cost by using
a gradient descent algorithm. However, this kind of ANN
formulation has low-quality, and therefore another proposed
algorithm [122] modifies the existing gradient descent to a
hill-climbing algorithm. This improves the solution quality and
raises the probability of finding a globally optimal solution.

Also, it is found that conventional repair algorithms run slow
on digital computers, whereas ANN’s collective computational
property provides a faster solution. A gradient descent algo-
rithm [122] can be 2-to-4 times better than conventional “RM”
algorithms in repair schemes as gradient descent minimizes
the network’s cost function in the locality of the starting
energy value, and the hill-climbing algorithm further bypasses
the local minima traps. It was empirically observed that the
hill-climbing algorithm can repair almost 98% of faults in
a large memory array as opposed to other conventional and
gradient descent algorithms with a certainty of approximately
20%. Both hill-climbing and gradient descent algorithms using
ANNs take minimal area overhead of approximately 3%. It
was also reported [122] that the chip yield increased from
10% to 100% by improved repair. Additionally, the ANN
hardware is more fault-tolerant and robust than conventional
logic circuits and therefore is the best candidate for a self-
repair circuit. However, three types of component failures have
been identified in neural networks, namely synapse-stuck-at
fault, bias fluctuations, and neuron stuck-faults to serve as fault
model. For each faulty synapse, either of synaptic weights can
be assumed as stuck, due to transistor-stuck faults or defective
memory cells that control the programmable synapses. Faulty
bias generators are modeled to fluctuate within one unit of the
pre-determined biases, and faulty neurons will have stuck-at
firing or stuck-at non-firing states. For unknown reasons, if the
ANN neurons are stuck-at firing or non-firing state, then its
ability to repair faulty memory cells degrades gracefully and
supports continual operation despite multiple faulty neurons
in the ANN.

B. Software-Assisted Self-Test of Flash Memory

Among the application domains of flash memory, automo-
bile industry is an important one. Embedded flash memory
cores occupy substantial portion in automotive SoCs with

significant impact on the final yield of devices. Automotive IC
testing must ensure correct chip function after calibration, test,
and repair of flash memories [118]. This requires redundant
memory cells, i.e., spare word lines (WLs) and bit lines (BLs),
and activation mechanism for the redundant structures. Re-
dundant component analysis can be done on-line in software-
assisted in-chip self-test (SIST) [118], but a major bottleneck is
efficient reconfiguration of redundant components quickly and
accurately. A bitmap scheme was originally used to reconfig-
ure faulty memory cells by downloading the cell coordinates,
but later it proved to be ineffective and time-consuming, which
prevented it from becoming a regular industry practice. The
strategies that maintain a trade-off between test time and mem-
ory costs with accurate reconfiguration to spare components
may lead to false-positive behavior and yield loss such as, (1)
identifying uncorrectable faulty memory by a repair algorithm,
which is not feasible or (2) discarding the correctable faulty
memory despite the availability of suitable spare components
owing to the repair algorithm’s inability.

One must deal with false fail identifications and prevent un-
necessary repairs [118]. If a replacement algorithm is heavily
constrained with execution time it may classify a repairable
memory core as irreparable, known as false fail. A vital step
in using an ML-based predictor to identify false fails is to
extract training features. Training features have been extracted
using a coloring algorithm [56], where every fault is assigned
a unique color and its occurrence is evaluated statistically.
This algorithm combines different faults with unique colors
to provide a chunk of datasets to the ANN.

A machine learning technique [118] works in two steps:
(1) in development phase, bitmaps are collected for selected
devices that compose training/test datasets, and (2) in produc-
tion phase, training features are extracted using the coloring
algorithm [56], and the discarded devices are labeled as
false failures. A detailed analysis is used to extract training
features and results are fed back to the coloring algorithm
designers. Supervised and unsupervised training techniques are
deployed to assess the false fails and to determine whether
or not they are correctly discriminated against in training
features. Artificial bitmaps are added to original bitmaps to
keep unaltered fail signature characteristics: bitwise AND,
OR, XOR, noise, and many more. These additional bitmaps
provide more comprehensive training datasets including false
fails, leading to significantly better prediction accuracy.

It is also found [118] that the training data sets are highly
unbalanced and therefore a confusion matrix is used. This is a
table whose rows resemble predicted labels and columns repre-
sent actual labels. The resultant square matrix provides useful
information, i.e., the correct prediction lies on the diagonal and
misclassifications, elsewhere. The best ML-based predictor
must be fast, reliable, easily hardware implementable, and
interpretable so that it does not affect the overall test time
of the IC production flow.

Experimental results [118] have shown that the ML-based
predictor of a model “decision tree” compared to other models
such as “random forest” and “feed-forward” have a better score
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and minimal variance with the fastest and easy-to-implement
subroutine. The overall approach is empirically proven on real-
time data and demonstrates that it is feasible to predict a false
fail device with better accuracy.

C. SRAM Yield Improvement using Statistical Blockade

As transistor size shrinks, the statistical blockade tech-
nique [168], discussed in Section II-B, is found to improve
the yield of SRAM ICs since they contain highly repeatable
components. Statistical blockade is conceptually an impro-
vised Monte Carlo method, employs ideas from non-traditional
sources such as extreme value theory (EVT) and machine
learning. This novel technique, proven to be more efficient
than the conventional Monte Carlo method, provides accuracy
and speedup of approximately two orders of magnitude across
circuits despite parametric variation.

V. HARDWARE SECURITY

Over the years, hardware security has evolved as a serious
topic of study [17], [191]. Many system-on-chip (SoC) design
companies today outsource their production across the world
to semiconductor foundries. This creates the threat of hardware
Trojan (HT) or malicious modification to a design to modify
its functionality such that an adversary gains control of the
system, interrupts the normal operation, or steals information.
Another form of risk known as counterfeiting of integrated cir-
cuits involves overproduction and marketing by unauthorized
individuals without the knowledge of the customer [54], [55].

A full-scale discussion of hardware security will be too long,
requiring a digression from the testing focus of this paper. We
will, therefore, restrict to introductory remarks only.

Recently, machine learning (ML) has been used for hard-
ware protection against malicious attacks. Hardware defense
techniques use ML algorithms to detect hardware Trojans and
IC counterfeiting. Countermeasures with and without a golden
chip are two broad categories of defense against hardware
Trojans. Methods extract training data from golden chips to
classify on-chip sensor data [67], [69], [75], [77], gate-level
design nodes [84], and traffic congestion sites on-chip [87],
[91], [95].

IC counterfeiting is an alarming threat in the IC manufac-
turing industry. Manual inspection and detection of counterfeit
ICs is accurate but time-consuming. An ML approach [8]
inspects ICs using ANN-based image classification. Support
vector machine (SVM) analysis [77] of on-chip sensor data
has been used to identify recycled ICs. Consider an FPGA
containing several ring oscillators (ROs), whose frequencies
may degrade due to aging [39]; supervised learning in the
form of SVM [77] and unsupervised learning such as k-means
clustering [61] have been used to examine frequencies of the
circuit to detect recycled ICs [6].

ML algorithms are used to identify hardware Trojans [11],
[12]. ML algorithms can also detect profiling and non-
profiling-based side-channel attacks, typically in cryptographic
secret extraction [104], [105], [111], [115], [136], [140],
[154]. Further, ML-algorithms can provide profiling-based

side-channel analysis for assembly language [117], [120],
[157].

VI. CONCLUSION AND FUTURE WORK

This survey has highlighted key aspects of machine learning
(ML)-based testing of analog, digital, memory, and radio
frequency (RF) devices. It motivates the integration of ML
into the IC testing process of the future. It is expected that
the use of ML would become routine in testing of the ICs of
the future in the defense, healthcare, space, and automotive
industries:

• Recently, ML has been at the cutting-edge in the IC test
industry, but the accuracy in classifying test data after
training an ANN is not fully convincing (i.e., may not
be close to 100%). Moreover, 100% training and test
accuracy will not fetch the correct classification of data
in a real-time, which may lead to a catastrophe in critical
systems.

• ML in counterfeiting detection can prove dangerous if
the attackers use ML-based model to attack either good
(false positive) or bad (false negative) ICs. The research
on defense techniques needs to stay ahead!

• Emerging technology designs and their conventional test-
ing is in a nascent stage and full of imperfections and
variations and, therefore, supplying products based on
these technologies using ML may not provide confidence
to IC suppliers and customers.

ML applications fall in two categories, experimental and
algorithmic. The first category includes defect diagnosis, i.e.,
locating and identifying defects, which is a part of manufac-
turing. Diagnosing defects, often different from the modeled
faults targeted by tests, is a problem that requires experience
and skill. Section II discusses analog and RF testing that does
not rely on fault models and signal parameter ranges must be
interpreted during test. This often requires human intervention,
which can be automated by ML. Subsection III-D and several
other subsections on digital circuit diagnosis and Section IV
on memory test and repair bring out the ML potential.

The second category consists of algorithms that need to
be programmed. Algorithms for digital test generation have
a complexity that grows exponentially with the circuit size.
A typical program uses heuristics to select among multiple
choices to direct the execution toward a quick solution. Several
subsections around Subsection III-D point to some very effec-
tive applications of ML in the supervised and unsupervised
learning modes.

For the future, there is ample research scope in new areas
like intelligent lithographic hotspot detection [199], expediting
device-level testing followed by circuit and SoC-level testing
using ML for some of the emerging technologies such as car-
bon nanotube field-effect-transistor (CNTFET) devices [10],
monolithic 3D (M3D) devices (specifically resistive RAMs
(ReRAMs)) [27] and many more.
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