
Machine Intelligence for Efficient Test Pattern
Generation

Soham Roy, Spencer K. Millican, and Vishwani D. Agrawal
Department of Electrical and Computer Engineering

Auburn University, Auburn, AL 36849-5201
{szr0075, millican, agrawvd}@auburn.edu

Abstract—This study examines machine intelligence’s (MI)
ability to enhance automatic test pattern generation (ATPG)
by reducing backtracks. In lieu of a conventional heuristic
to decide backtracing directions, this study uses an artificial
neural network (ANN) trained through PODEM on hard-to-
detect faults. Training data contains topological data, testability
measures, and backtracking history, and when trained on this
data, the ANN guides backtracing in directions unlikely to
backtrack. When trained with a single feature (e.g., COP), ATPG
performance is comparable to conventional PODEM, and using
multiple features further reduces backtracks and ATPG CPU
time.

I. INTRODUCTION

Automatic test pattern generators (ATPGs) are NP-hard
algorithms [1]–[3], thus ATPGs use heuristics to reduce test
generation time. Creating effective heuristics for all situations
is difficult, but advances in machine intelligence (MI) can
create effective heuristics with minimal programmer effort:
MI algorithms automatically program themselves using past
experience when a designer’s decisions cannot be easily pro-
grammed. Several studies applying MI to circuit testing (see
Section II-B) improved algorithm outcomes and reduced CPU
time, thus one can foresee the same advantages when MI is
applied to ATPG.

This study replaces conventional backtracing heuristics in
ATPG with artificial neural networks (ANNs) and observes
their impact on ATPG CPU time. This article presents pro-
cedures for collecting training data, training an ANN, and
integrating the trained ANN into an ATPG algorithm. To
evaluate the ANN’s utility, training data contains features
used by conventional ATPG heuristics, and the effect of using
various feature sets is examined. The ANN is used in the
PODEM [4] ATPG, but the ANN can be applied to any
ATPG algorithm that traces through a circuit. The specific
contributions of this study include:

• A procedure to collect training data for backtrace-guiding
ANNs.

• An exploration of ANN training with varying ANN
complexity.

• Comparison of CPU time and other performance parame-
ters of ANN-based ATPG against conventional heuristics.

Section II introduces relevant literature on ATPG algorithms
and applications of MI to test problems. Section III shows how
to train an ANN to guide backtracing in ATPG. Section IV
explores training of ANNs on several sets of training data.
Section V evaluates the performance of ANN-based PODEM

against PODEM using conventional heuristics. Section VI
suggests future research directions and concludes the article.

II. PRIOR WORK

A. ATPG algorithms and role of heuristics
ATPG algorithms search for input vectors to detect faults.

For a combinational circuit (or a full-scan circuit), the search
space consists of 2#PI vectors, where #PI is the number
of primary inputs (PIs) (which can include scan latches as
pseudo-primary inputs). Roth’s D-ALG [5] first conceptual-
ized ATPG by defining the D algebra and giving a complete
search algorithm, and Goel’s PODEM [4] improved the search
efficiency by restricting search decisions to only PIs.

Backtracing identifies PIs to assign to meet ATPG objec-
tives (e.g., exciting or propagating faults). All modern ATPG
algorithms have search space of 2#PI , but using backtracing
heuristics to strategically select PIs can quickly find a test in
the search space. This study’s ANN-based heuristic, “MAR”
(named after the authors), is one such heuristic.

B. Machine intelligence in test
Artificial neural networks (ANNs) are MI architectures

modeled after the human brain. Using ANNs trained through
supervised learning requires 1) selecting an ANN structure
(fully-connected, convolutional, etc.), 2) generating training
data by solving sample problems, and 3) training the ANN
with the training data. After this, the ANN can solve problems
similar to training data.

Many VLSI test studies used ANNs for circuit modeling
and in algorithms. Digital circuits and the ATPG problem
have been modeled as ANNs with bidirectional links where
neurons represent the states of signals [6]: the network energy
function of the circuit is minimized to find a test, but this
minimization depends on many variables (all signals) and the
function has many local minima, which makes searching for
a test difficult. Recent studies on digital circuits used ANN
for diagnosing scan chains [7], classifying fault models [8],
testability analysis [9], and test-point insertion [10], [11].
ANNs were also been proposed to classify the results of analog
and RF tests [12].

III. MACHINE INTELLIGENCE (MI) APPLIED TO ATPG
This study’s ANN guides backtracing by prioritizing the

available choices, as opposed to the conventional guidance
provided by some circuit levels [4] or COP [13]. The feed-
forward ANN [14] consists of inputs, a single hidden layer

Short Paper
978-1-7281-9113-3/20/$31.00 ©2020 IEEE

INTERNATIONAL TEST CONFERENCE 1

Input Nodes

(Features)
Hidden Layer

Neurons

Output

Neuron

(Label)

Bias Node
X0 = +1

X1

X2

XM

Y1

Y2

YN

Z

w(X0,Y1)

w(XM,YN)

Fig. 1. The artificial neural network (ANN) in this work consists of inputs
(features), hidden layer neurons, and an output neuron (label), connected
through weighted edges. The weights, found through training, determine the
function of the ANN.

of neurons, and an output neuron, as shown in Figure 1. The
state of a neuron (i.e., it’s output) is a value in the range [0, 1]
as is calculated using an activation function, f (in this study,
the sigmoid function). Inputs (i.e., features), X0, X1, · · · , XM ,
are also driven by values in the range [0, 1]. X0 is a bias input
fixed at 1.0. Hidden layer neurons, Y1, Y2, · · · , YN , perform
calculations using their inputs, as does the output neuron, Z
(i.e., the label). This article denotes the value of an input or
a neuron in lower case, i.e., the output values of Xi, Yi and
Z are xi, yi and z, respectively. All neurons are connected by
“dendrites”: each dendrite from A to B is assigned a weight,
w(A,B), which is a signed floating point number in the range
of [−1, 1]. For a given input, {x0, x1, · · · , xM}, each yj is
computed as follows, and z is a similar computation based on
yj’s.

yj = f(

M∑
i=1

xi × w(Xi, Yj)) (1)

Training patterns contain the values of input features and
the expected output, and training finds edge weights to satisfy
input-output relationships in the training data with minimum
error. Finding edge weights for small ANNs can be done
manually, but this is impractical for moderate to large ANNs.
Instead, training algorithms compute weights that map input
features onto expected output labels and minimize the output
error over training patterns. These algorithms start with ran-
dom weights, and over several iterations, the output label is
computed across the training patterns to find the average error,
i.e., the average difference between the desired and computed
label. This error is reduced by iteratively retraining with
different “hyper-parameters” (e.g., different sizes of the hidden
layer, learning rates, activation functions, optimizers, etc.).
Find the optimal weights by searching all possible weights
is expensive, but iterative searches can find useful ANNs (see
Section IV).

A. ANN input features and output label

For a circuit line, the input features of the ANN contain the
following.

1

2

3

4

5

6

7

8

9

11

10

12

13

14

16

Stuck-at-0

15

Fig. 2. Training patterns resulting from PODEM ATPG while generating the
test 110X10X for line 15 stuck-at-0 fault in Figure 3.

• The type of gate driven by the line represented as one-
hot encoded format, e.g., AND = 000000001, NAND
= 000000010, OR = 000000100, etc. If necessary, the
number of code bits can be expanded.

• The COP controllability, CC (i.e., probability of line be-
ing logic-1), and observability, CO (i.e., probability that
line value is observed at PO). A one-time computation
through the circuit finds approximated probabilities for
all lines [13], and recalculation is not required during
ATPG.

• The circuit level of line being traced, i.e., shortest dis-
tance to any PI from the line. This value is normalized
in the range [0,1] by the maximum depth of the circuit.

During backtrace, the ANN returns the probability backtrac-
ing on a given line will result in a test (i.e., not be undone by
a backtrack). When backtracing through a gate with multiple
inputs, the ANN is evaluated at each circuit input, and the
input which is most likely to result in a test is chosen. This
is akin to COP-based or level-based easy-hard heuristic [15]
that selects the line with the largest/smallest value depending
on the desired characteristics.

B. ANN training data generation
Training data is obtained from successful (test found) and

unsuccessful (backtracked) backtraces from ATPG trials. All
backtraces to a PI assignment that generate a test for the
target fault are labeled as “success” (1) and backtraces that
are undone by backtracks are labeled as “failure” (0). Training
data is generated using a random tracing heuristic (i.e., no set
of rules is followed while backtracing). During this ATPG,
the history of backtraces is recorded: when a backtrack is
performed, backtraces that lead to undone PI assignments are
labeled as “failures” (z = 0); when the ATPG finds a test, all
remaining backtraces are labeled as “success” (z = 1).

As an illustrative example, the following steps produced the
training data of Figure 3 to detect line 15 stuck-at-0 fault in
the circuit of Figure 2:

• To excite the fault, an objective of “1” on line 15 is
set. Backtracing through 14-5 assigns “1” to PI 5. Logic
simulation shows that the objective is yet to be met.

• Another backtrace through 14-10-6 assigns “0” to PI 6,
but still the objective is not met.

• Backtracing through 13-12-8-1 assigns “0” to PI 1. Sim-
ulation verifies that the objective of “1” on line 15 is met,
but a “1” on line 11 blocks the fault effect from being

Short Paper INTERNATIONAL TEST CONFERENCE 2

Input Features Output label

 Gate type COP(CC) COP(CO) Distance Success/Failure

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 z

Line 5 0 0 0 0 0 0 0 0 1 0.500 0.012 0.1 1

Line 14 0 0 0 0 0 0 0 0 1 0.375 0.016 0.3 1

Line 6 0 0 0 0 0 0 0 1 0 0.500 0.004 0.1 1

Line 10 0 0 0 0 0 0 0 0 1 0.750 0.008 0.3 1

Line 14 0 0 0 0 0 0 0 0 1 0.375 0.016 0.3 1

Line 1 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 1

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 1

Line 12 0 0 0 0 0 0 1 0 0 0.750 0.023 0.4 1

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 1

Line 1 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 0

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 0

Line 12 0 0 0 0 0 0 1 0 0 0.750 0.023 0.4 0

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 0

Line 3 0 0 0 0 0 0 0 1 0 0.500 0.012 0.1 1

Line 9 0 0 0 0 0 0 1 0 0 0.750 0.023 0.3 1

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 1

Line 2 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 1

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 1

Fig. 3. ANN training patterns derived from a ATPG trial for line 15 stuck-
at-0 fault in Fig. 2. Each entry corresponds to a backtracing decision made:
z = 1 if it resulted in a test or z = 0 if required a backtrack.

propagated to the PO. Therefore, a backtrack assigns the
alternative value “1” to PI 1. Thus, the choices used in
the previous backtrace through 13-12-8-1 are “failure”
patterns with z = 0.

• After the backtrack, line 15 becomes “X”, or unknown.
To achieve the objective of 1 on line 15, backtracing
through 13-9-3 assigns “0” to PI 3. On simulation, the
objective of “1” on line 15 is met. The state of line 15
is denoted with D, where D means fault-free state is 1
and faulty state 0.

• To propagate line 15 value D to the PO, line 11 is now
given an objective value “0”. A backtracing through 8-
2 assigns PI 2 to “1” and a test 110X10X is found.
Therefore, all backtracing history without a label are
assigned “success” labels with z = 1.

IV. EXPERIMENTAL RESULTS - TRAINING

To generate training data, PODEM is run on 100 “hard-to-
detect” faults of benchmark circuits c6288, b05, and c3540:
this study calls these “training” circuits, while others are
“evaluation” circuits. Because easy-to-detect faults may be
detected without backtracks, they might not produce useful
training data, therefore hard-to-detect faults were selected
using COP [13] testabilitity values: detection probabilities are
calculated as CC × CO and (1 − CC) × CO for stuck-at 0
and stuck-at 1 faults, respectively, and the 100 faults with the
lowest detection probability from these circuits were used for
ANN training data generation.

Experiments were performed on industry-standard work-
stations with Intel i7-8700 processors and 8 GB RAM.
All programs were written in C++ and compiled using the
MSVC++14.15 compiler with maximum optimization param-
eters. This software implements the PODEM algorithm [4],
and it is programmed to allow any one of the four heuristics
(random, MAR, distance-based, or COP-based) for backtrac-
ing. The Adam optimizer [16] is used for ANN training.

0.001

0.010

0.100

1.000

1 2 3 4 5

A
v

e
ra

g
e

 t
ra

in
in

g
 e

rr
o

r

Training data size (in millions of pattern)

HN=1 HN=10-69

Fig. 4. Adding more training data decreases ANN error, but only to a certain
point. The point which minimized error in this study was 3,730,724 patterns.

0.010

0.100

1 10 100

A
v

e
ra

g
e

 t
ra

in
in

g

e

rr
o

r

Number of hidden neurons

1.0

Fig. 5. As more hidden neurons are added to the ANN, error drops (ANN
accuracy improves), leveling off at 25 hidden neurons, only to increase again
beyond 70 neurons.

Figure 4 illustrates the impact of training data volume on
ANN accuracy (i.e., average training error). As more training
patterns are used, the accuracy of the trained ANN increases
until a certain point, indicating that too much training data can
negatively impact the accuracy. Following this observation, a
set of 3,730,724 training patterns is used.

Figure 5 illustrates the impact of the number of hidden layer
neurons on ANN accuracy when 3,730,724 training patterns
are used. The training error is minimized at 25 neurons.
Additionally, the error dramatically increases for more than
70 hidden neurons. From this, 25 neurons is used for this
study’s ANN.

The 3,730,724 training patterns were collected in 4.8 min-
utes, and ANN training required 5.1 minutes. Because training
data generation and ANN training are one-time investments,
they are not considered relevant costs while assessing the
computational effectiveness of ANN-based ATPG.

V. EXPERIMENTAL RESULTS - ATPG

A. Evaluating ANN Input Features

Before evaluating a trained ANN against conventional
backtracing heuristics, this study examines the effect of us-

Short Paper INTERNATIONAL TEST CONFERENCE 3

TABLE I
EFFECT OF INPUT FEATURES ON TOTAL BACKTRACKS IN ANN-GUIDED PODEM FOR 100 HARD-TO-DETECT FAULTS.

Circuit PODEM with PODEM with machine intelligence (MI), ANN trained with features listed in subheading
name random heuristic Untrained Gate type Dist. COP Dist.+COP Gate type+Dist. Gate type+COP Gate type+COP+Dist.
c6288 12,157 10,831 10,414 12,013 11,929 10,334 8,481 10,612 5,062
b04 46,061 43,053 46,061 46,061 46,061 45,683 46,061 46,061 16,973
c432 84,080 80,725 73,352 81,041 73,440 76,956 71,918 81,365 24,898
b08 164 164 164 164 164 164 164 164 118
b03 27 27 27 50 27 50 14 47 3
b01 1 1 1 1 1 1 1 1 0

TABLE II
BACKTRACKS FOR 100 HARD-TO-DETECT FAULTS BY PODEM GUIDED BY CONVENTIONAL HEURISTICS AND THE TRAINED ANN.

Circuit Distance heuristic COP heuristic MAR (ANN trained for Gate type, COP, Dist.)
name CPU time (ms) #backtraces #backtracks CPU time (ms) #backtraces #backtracks CPU time (ms) #backtraces #backtracks
c6288 81,915 19,478 17,914 52,547 13,633 119,74 35,391 6,950 5,062
b04 45,577 24,151 22,631 32,687 19,207 17,581 39,656 18,555 16,973
c432 21,416 42,290 40,979 40,010 87,131 85,041 17,714 26,940 24,898
b08 2,655 1,414 210 1,651 2,487 1,306 562 1,327 118
b03 262 603 38 397 662 42 222 606 3
b01 120 408 1 101 389 1 266 413 0

ing different sets of input features, i.e., gate types, COP
testability measures [13], and shortest distances to PIs (see
Section III-A). This experiment runs ATPG on the 100 hardest-
to-detect faults in a subset of ISCAS’85 [17] and ITC’99 [18]
benchmark circuits, namely, c6288, b04, c432, b08, b03, and
b01: this restricted choice in faults and circuits is created by
limited computational resources. The results random-guided
PODEM and of ANN-guided PODEM trained with various
combinations of input features (and with no training) are given
in Table I.

The results of these ATPG runs show several trends. First,
using an “untrained” ANN is comparable to random back-
tracing, which indicates training an ANN is an absolute re-
quirement. Second, ANNs trained with a subset of features do
improve backtracing quality compared to random backtracing,
but there is no clear indication of one subset of features
outperforming the others. Third, using all input features
outperforms all other configurations, often substantially: this
implies there is a way to combine features into a backtracing
heuristic to obtain superior results, but that combination may
be impossible without the assistance of MI.

B. ATPG performance for hard-to-detect faults

This second experiment shows the performs of the ANN
with all input features compared to conventional COP-based
and distance-based heuristics, when used in PODEM, on the
same 100 hard-to-detect faults. Table II shows these results
in terms of CPU time, number of backtraces, and number
of backtracks. “MAR” shows substantial improvements for
several benchmarks, and when it does not perform the best,
its detriments are marginal.

C. ATPG performance for all faults

This third experiment performs ATPG on all checkpoint
stuck-at faults in 21 evaluation circuits and 3 training circuits
from the ISCAS’85 [17] and ITC’99 [18] benchmarks. Be-
cause PODEM takes exorbitant time to run exhaustively, some
faults may be aborted. A suitable per-fault time limit is used
to produce similar fault coverage with all heuristics.

-50

50

150

250

350

450

550

650

750

850

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

b
a

ck
tr

a
ck

s[
(h

e
u

ri
st

ic
 -

M
A

R
)/

M
A

R
]*

1
0

0

Benchmark Circuits

Dist. COP

1
3
0
1
7

2
8
3
3

1
8
9
1

7
3
5
0

1
7
4
9

Fig. 6. When comparing the increase in backtracks when conventional
heuristics are used for backtracing compared to an ANN, it is clear that
using an ANN provides consistent and often substantial benefits. Positive
bars indicate fewer backtraces by MAR over conventional heuristic.

Figures 6, 7, and 8 plot the backtracks, backtraces, and CPU
times of PODEM using the distance (Dist.) heuristic, the COP
heuristic, and ANN-guided heuristic (MAR), respectively. Re-
sults are shown as percentage increase compared to the MAR
heuristic, i.e., positive results favor MAR. Circuits are ordered
by increasing depth.

From these figures, one can conclude that ANN-based
backtracing consistently decreases backtracks, often substan-
tially, but one can potentially see a drawback of ANN-based
backtracing worth addressing. First, a reduction in backtracks
did not consistently translate to a reduction in backtraces:
given that fewer backtraces can also reduce ATPG time (i.e.,
by finding a test in fewer PI assignments), training the ANN
to reduce backtraces may be beneficial. Second, the impact on
CPU time for MAR in Figure 8, although frequently positive,
is not as positive as the impact on backtracks, which implies
that CPU time of evaluating the ANN is significant.

VI. CONCLUSION AND FUTURE DIRECTIONS

This study explores the effectiveness of ANN heuristics in
ATPG. Results show using ANN-based backtracing, “MAR”,
most often reduced backtracks and CPU time compared to
other conventional heuristics, which suggests ANNs can assist

Short Paper INTERNATIONAL TEST CONFERENCE 4

-50

50

150

250

350

450

550

650

750

850

950

1050

1150

1250

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

b
a

ck
tr

a
ce

s[
(h

e
u

ri
st

ic
 -

M
A

R
)/

M
A

R
]*

1
0

0

Benchmark Circuits

Dist. COP1
7
4
9

Fig. 7. Total backtraces for checkpoint faults in PODEM ATPG with
conventional (distance or COP) heuristic and with ANN guidance (MAR).
Positive bars indicate fewer backtraces by MAR over conventional heuristic.

complex EDA problems like ATPG with few drawbacks. A
major benefit of the presented MI approach is the ability to
combine the benefits of multiple heuristics, which may be
difficult otherwise.

Although the ANN-based ATPG is promising, negative
results encourage future research directions. First, the training
data selection was arbitrary, and it appears selecting “100
hard-to-detect” faults did not provide quality training data:
this is indicated by ATPG results on c3540, which were
detrimental despite being a training circuit; an algorithm that
strategically selects training data may benefit ATPG results,
or the ANN may train itself during ATPG (i.e., use recur-
sive learning in lieu of supervised learning) to form a new
“evolving” ATPG and create a new market of ever-improving
EDA tools. Second, although backtracks were consistently
decreased, decreases in backtracks did not directly translate
into decreases in CPU time: this may be due to CPU-intensive
ANN evaluation, and using novel ANN evaluation techniques
may remedy this. Third, the proposed ANN features were
rudimentary and limited in scope: expanding the ANN features
(like SCOAP [19] and re-convergent fan-out information) or
evaluating larger sub-circuits may decrease backtracks further,
although this must be balanced with increased CPU time from
complex ANN structures. Fourth, given ATPG algorithms be-
yond PODEM [4], like FAN [20] and SOCRATES [21], further
decrease CPU time by adding ATPG subroutines but still
require backtracing, “MAR” may improve these algorithms
as well.

REFERENCES

[1] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection
Problems,” IEEE Trans. on Computers, vol. C-24, pp. 242–249, 1975.

[2] H. Fujiwara and S. Toida, “The Complexity of Fault Detection Problems
for Combinational Logic Circuits,” IEEE Transactions on Computers,
vol. 31, pp. 555–560, 1982.

[3] G. Seroussi and N. H. Bshouty, “Vector Sets for Exhaustive Testing of
Logic Circuits,” IEEE Trans. Information Theory, vol. 34, pp. 513–522,
1988.

[4] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” IEEE Transactions on Computers, vol.
C-30, pp. 215–222, 1981.
in Logic Circuits,” IEEE Transactions on Electronic Computers, vol.
EC-16, pp. 567–580, 1967.

[5] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algo-
rithms to Compute Tests to Detect and Distinguish Between Failures

-50

0

50

100

150

200

250

300

350

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

C
P

U
 t

im
e

[(
h

e
u

ri
st

ic
 -

M
A

R
)/

M
A

R
]*

1
0

0

Benchmark Circuits

Dist. COP 1
9
2
6

1
9
0
1

Fig. 8. Total CPU time for checkpoint faults by PODEM ATPGs guided
by conventional (distance or COP) heuristics and ANN (MAR). Positive bars
indicate lower CPU time by MAR compared to heuristic.

[6] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, Neural Models
and Algorithms for Digital Testing. Springer, 1991.

[7] M. Chern, S.-W. Lee, S.-Y. Huang, Y. Huang, G. Veda, K.-H. H. Tsai,
and W.-T. Cheng, “Improving Scan Chain Diagnostic Accuracy Using
Multi-Stage Artificial Neural Networks,” in Proceedings of the 24th Asia
and South Pacific Design Autom. Conf. (ASP-DAC), 2019, pp. 341–346.

[8] L. R. Gómez and H.-J. Wunderlich, “A Neural-Network-Based Fault
Classifier,” in Proc. IEEE 25th Asian Test Symp. (ATS), 2016, pp. 144–
149.

[9] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High Performance Graph Convolutional Networks with Applications
in Testability Analysis,” in Proc. 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[10] Y. Sun and S. K. Millican, “Test Point Insertion Using Artificial Neural
Networks,” in Proc. IEEE Computer Society Annual Symp. on VLSI
(ISVLSI), 2019, pp. 253–258.

[11] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural
Networks to Delay Fault Testing: Test Point Insertion and Random
Circuit Training,” in Proc. IEEE 28th Asian Test Symp. (ATS), 2019,
pp. 13–18.

[12] D. Maliuk, H.-G. Stratigopoulos, H. Huang, and Y. Makris, “Analog
Neural Network Design for RF Built-In Self-Test,” in Proc. International
Test Conference (ITC), 2010, pp. 23.2.1–23.2.10.

[13] F. Brglez, “On Testability Analysis of Combinational Circuits,” Proc.
International Symp. Circuits and Systems, pp. 221–225, 1984.

[14] J. Zhang and A. J. Morris, “Selection of Proper Neural Network Sizes
and Architectures - A Comparative Study,” Neural Networks, vol. 11,
no. 1, pp. 65–80, 1998.

[15] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits.

[16] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” Proceed-
ings of the IEEE Int. Symposium on Circuits and Systems (ISCAS), pp.
677–692, June 1985.

[18] F. Corno, M. S. Reorda, and G. Squillero, “RT-Level ITC’99 Bench-
marks and First ATPG Results,” IEEE Design & Test of Computers,
vol. 17, pp. 44–53, Jul. 2000.

[19] L. Goldstein, “Controllability/Observability Analysis of Digital Cir-
cuits,” IEEE Trans. Circuits and Systems, vol. 26, pp. 685–693, 1979.

[20] Fujiwara and Shimono, “On the Acceleration of Test Generation Algo-
rithms,” IEEE Trans. on Computers, vol. C-32, pp. 1137–1144, 1983.

[21] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly
Efficient Automatic Test Pattern Generation System,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 7,
pp. 126–137, 1988.

Short Paper INTERNATIONAL TEST CONFERENCE 5

