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Abstract—The exponential complexity of automatic test pattern
generation (ATPG) necessitates the use of heuristics in making
choices during test generation. However, in practice no single
heuristic fits all situations. Unsupervised learning can combine
any number of known heuristics, such as input-output distance
(logic depths), gate type, fanout information, and testability mea-
sures like Controllability and Observability Program (COP) and
Sandia Controllability/Observability Analysis Program (SCOAP)
through principal component (PC) analysis, and then the ma-
jor PC can guide ATPG choices. This study combines three
heuristics, distance, COP, and SCOAP. Some heuristic data are
complemented and two major PC are obtained. These PC guide
backtrace directions in a PODEM ATPG program. For most
circuits, the number of backtracks either matches the best of the
three heuristics or is lower than all.

Index Terms—ATPG, digital testing, unsupervised learning,
principal component analysis, tracing, heuristics

I. INTRODUCTION

Depending on context, the definition of machine intelligence
(MI) is, either 1) data-driven trends in deep learning, or
2) mimicking human cognitive capacities. Such biologically-
mimicking intelligence aims to solve cognitive tasks by re-
placing human decisions or expensive analytical processes.
MI has found numerous applications across scientific domains
such as computer vision, speech recognition, forensic analysis,
autonomous vehicles, and many more. Integrated circuit (IC)
testing is one such field, as existing literature testifies [1]–[6].
Robust, dependable, and resilient IC manufacturing requires
substantial investment, but much data in IC manufacturing
processes remains unexplored. Data mining can extract mean-
ingful correlations using MI, leading to changes away from
conventional test techniques, and result in cost-effective and
better test quality.

II. PRIOR WORK

Nearly two decades ago, artificial neural networks (ANNs)
were first applied to test generation: they modeled digital
integrated circuits with neurons representing the values of
signals [7]. When this ANN model is modified by an injected
fault, the minimum energy state (i.e., the stable state) of the
network produces a test in the form of primary input (PI)
states. However, using this model for automatic test pattern
generation (ATPG) requires a physical ANN or a software
model, which causes practicality issues: the ANN energy
function, being non-linear, has many local minima making the
test search difficult for some faults.

Backtrace guidance for tracing the best path is an important
problem in ATPG [8]. The use of human intuition, as heuris-
tics, has long been practiced. But, it is realized that no single

heuristic works best for all situations and proposals for using
multiple heuristics in a program can be expensive [9], [10].

Recent work [11] has demonstrated that MI using a su-
pervised learning algorithm in the form of an ANN combines
multiple heuristics. This ANN can then replace any heuristic in
PODEM [8] and speedup the ATPG. However, that work [11]
lacked a formal ANN training method. Further work [12]
produced a structured and formal methodology to train the
ANN, effectively improving the previously reported perfor-
mance [11]. But, combining several heuristics increases the
training data volume that overloads the ANN to the extent
that its efficiency suffers.

Principal component (PC) analysis (PCA) [13], [14] can
combine training features to enhance supervised learning of
ANNs in the MI-based PODEM ATPG. The concept is still
under research, since ANN training time and complexity may
add to ATPG cost from the use of PCs. This work uses
unsupervised learning to guide a test generator that outper-
forms conventional heuristic-based PODEM ATPG in terms
of reduced backtracks and CPU time, with no dependency on
any ANN or training.

III. PRESENT CONTRIBUTION

Machine intelligence (MI) has two phases: learning from
problem-specific data and then using that knowledge to solve
problems. In supervised learning, these phases may be ANN
training and ANN guidance. In contrast, unsupervised learning
would use statistical tools such as PCA [13], [14] and k-means
clustering [15]–[18]. In the first phase, the tool analyzes the
problem-specific data to extract relevant characteristics, which
in the second phase, directly help to solve problems.

We apply unsupervised learning to the ATPG problem using
the principal component analysis (PCA) as the statistical tool.

A. Dimensionality Reduction
One could say that data has become more precious and

expensive than crude oil. To meet the challenges of storage and
computation, data mining and pruning techniques are sought.
In spite of the discovery of the principal component analysis
(PCA) and its extensions almost a century ago [13], [14], its
demand burgeoned when computer-based applications spread
across multiple disciplines. PCA is a statistical technique that
drastically reduces the dimensionality of data through new
variables known as principal components (PC). Each PC is
a linear function of the original data, which maximizes the
variance of uncorrelated data while preserving statistical infor-
mation. Evaluating PCs instead of original data narrows down
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decision making to an eigenvalue/eigenvector (also known as
eigen decomposition method) or singular value decomposition
(SVD) [16]. PCs can be chosen based on either a covariance
matrix or correlation matrix, and the choices are independent
of any pre-defined functions [16]. In short, PCA is descriptive
and adaptive rather than inferential.

This study uses SVD to obtain PCs based on a parameter
known as explained variance [19]. PCs represent the
same amount of information as the original data, i.e., the
original data can be restored from the PCs. Moreover,
the total variances of the original and transformed data
are the same but are redistributed unequally among the
PCs. The first PC (also known as the major PC) has the
highest variance, as shown in Fig. 1. The standard quality
measure explained variance πj of the jth PC is the ratio of its
variance λj to the total variance (sum of variances of all PCs):

πj =
λj∑p
i=1 λi

where, p is the number of PCs and λi is the individual
variance of ith PC. The progressive nature of PCs means that a
proportion of total explained variance for a subset S of q PCs
is expressed as a percentage of the total variance:

∑
i∈S πi. It

is a common practice to set a threshold for this total variance
to decide how many PCs to use; only first one, two, or three
PCs may be required. However, there are circumstances, such
as outlier detection [16] or image analysis, where the last few
PCs may be of interest.

B. Multi-Heuristic Guidance for ATPG

This study combines multiple heuristics, such as, shortest
distance D to primary inputs [8], COP controllabilities [20],
and SCOAP testability measures [21] in the present illustra-
tion. From 0 and 1 signal probabilities of COP, CC0 and CC1,
we only use CC1 because of their complete dependence on
each other as CC0 = 1 − CC1. SCOAP 0 and 1 combinational
controllabilities are denoted here as SC0 and SC1. For every
node in the circuit four quantities, D, CC1, SC1, and SC0, are
computed using known linear-time algorithms [8], [20], [21].
Each quantities is normalized to [0,1] range with respect to its
maximum value over all nodes.

The same heuristic data have been used in supervised
learning-based PODEM ATPG [11], [12]. There, a backtrace
choices are directed by a trained artificial neural network
(ANN) that computes relative metrics for the available nodes.
Highest metric implies best chance of finding a test without a
backtrack. For training the ANN, the information about how
each heuristic influences success is derived from ATPG runs on
sample circuits. In the unsupervised learning system, however,
no ANN is used. Instead, multiple heuristic data are combined
through PCA for directly guiding the backtrace.

C. Principal Component Analysis (PCA)

In combining heuristics, it is necessary that they work
cooperatively without contradicting each other in comparing
the effectiveness of inputs of a logic gate while justifying the
output value. Table I shows how individual heuristic works.
For example, consider a backtrace through an AND gate with
two or more inputs being guided by D. To justify the output

TABLE I
HEURISTIC-BASED INPUT SELECTION CRITERIA FOR BACKTRACING

THROUGH A GATE TO JUSTIFY OUTPUT VALUE.
Gate D CC1 SC1 SC0 P

Value→ 0 1 0 1 0 1 0 1 0 1
AND min max min min max max min min ? ?

NAND max min min min max max min min ? ?
OR max min max max min min max max ? ?

NOR min max max max min min max max ? ?

TABLE II
PRINCIPAL COMPONENTS (P0 AND P1) FOR GATE OUTPUT = 0 AND 1.
Italicized DECISION CRITERION (min OR max) SHOWS COMPLEMENTED

HEURISTIC DATA TO ACHIEVE SYNCHRONIZATION.
Gate D CC1 SC1 SC0 P0 P1

Value→ 0 1 0 1 0 1 0 1 0 1
AND min max min max min max min max min max

NAND max min max min max min max min max min
OR max min max min max min max min max min

NOR min max min max min max min max min max

value 0, the backtrace must take the input closest to primary
inputs (PI) [8]. In Table I, this is indicated by “min” under D
for AND gate and value = 0. To justify a 1 at the output, the
backtrace follows the input with highest D, shown as “max”.
We observe that the four heuristics do not agree for any of the
gates. Hence, if combined by PCA, the major component (P)
cannot be given guidance criteria.

Table II takes a two-step approach to overcome the above
difficulty. First, selected heuristic data are complemented. For
example, when AND gate output is 1, at its inputs, CC1 is
replaced with 1 − CC1 and SC0, with 1 − SC0. Also, when
the AND gate output is 0, SC1 is replaced by 1 − SC1. This
reverses the corresponding backtrace criteria now shown in
italics. Similar changes are made for NAND, OR and NOR
gates, giving complete synchronization of the choice criteria
for all heuristics. However, it necessitates separate PCAs for
gate outputs 0 and 1, respectively, requiring two major PCs, P0
and P1, with corresponding backtrace criteria (see Table II).

D. Preprocessing and ATPG

To run ATPG, circuit netlist is preprocessed to compute
four values for each signal node, namely, D [8], CC1 [20],
and SCOAP combinational measures SC0 and SC1 [21].
Complemented values are computed according to Table II and
P0 and P1 are from PC analyses for all gate outputs assumed
as 0 and 1, respectively. PCA results for ISCAS’85 [22] and
ITC’99 [23] benchmarks are shown in Figures 1 and 2. The
blue bars show the major PCs, P0 and P1.

IV. EXPERIMENTAL RESULTS

A workstation containing an Intel i7-8700 processor and
8 GB of RAM performed all experiments. Tools were im-
plemented in C++ using the MSVC++ 14.15 compiler with
maximum performance optimization, and all PCA activities
were executed in Python. PODEM ATPG [8] is reproduced
along with event-driven fault simulation [24] such that any
heuristic (distance [8], COP [20], SCOAP [21], or PC) can
be applied across ISCAS’85 [22] and ITC’99 [23] benchmark
circuits without favoring a single heuristic.

This study will surely polarize electronic design automation
(EDA) vendor mindset to deploy MI in their ATPG software.
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Fig. 1. PCA for ISCAS’85 and ITC’99 benchmarks. Heuristic data are
complimented according to Table II assuming 0 output for all gates. The
major PC, P0, is shown in blue.
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Fig. 2. PCA for ISCAS’85 and ITC’99 benchmarks. Heuristic data are
complimented according to Table II assuming 1 output for all gates. The
major PC, P1, is shown in blue.

However, EDA vendors hesitate to divulge their program
source code, and it is impossible to conduct research-based
experiments using the executable. Therefore, this study prefers
to run the experiments using the in-house EDA tools.

Experiments used testable and redundant faults to prove the
efficacy of guidance provided by PCA to PODEM ATPG [8].
Figure 3 (circuits are arranged by logic depths) and Figure 4
show relevant findings on ATPG CPU time (ms) and the
number of backtracks with respect to distance [8], COP [20],
SCOAP [21], and PCA (P0 and P1 guidance).

This experiment demonstrates how combining multiple
heuristics into a linear combination through PCA can achieve
better ATPG CPU time and fewer backtracks compared to con-
ventional single heuristics. Circuits c1355, c2670, c3540, b04,
b11, b08, c499 and c6288 show improvement of reduced back-
tracks, but these circuits needed more backtraces, thus CPU
time increased. Most frequently, PCA is the best guidance for
ATPG, but when it is not it is never the worst performing.
Circuits c17, b02, b01, and b06 have no reconvergent fanouts,
and therefore have no scope for reducing backtracks. Circuit
c880 is the good example of zero backtracks in PCA-based
PODEM ATPG compared to other conventional heuristics,
which is significant in terms of the ability to achieve no
backtracks.

V. DISCUSSION AND FUTURE WORK

MI, big data, and data mining are hot-topics with ample
media coverage, upcoming start-up companies, and outstand-
ing mergers and acquisitions. In the past few decades, MI
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Fig. 3. CPU time for detecting all faults with ATPG using conventional
heuristics and PCA.
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Fig. 4. Total backtracks for detecting all faults with ATPG using conventional
heuristics and PCA. Four circuits on the left required no backtracks and c880
required no backtracks only when PCA was used.

allowed the extraction and use of domain-specific knowledge
to solve computationally hard problems. VLSI design and test
have benefited too: MI has been in use for analog, digital, and
memory testing, along with emerging technology-based device
test and hardware security [3]. A recent discovery of solving
test generation problem using MI opened ample research
avenues [11], [12]. Nevertheless, proposed MI techniques are
supervised and need ANNs that must be trained and used in
place of heuristics. The result is fewer erroneous backtraces
(i.e., fewer backtracks) and more efficient ATPG. But, the
increase in the volume of heuristic data may overburden the
ANNs, making it more complex, leading to increased training
time. This study used no ANN, and instead opted for a trivial
statistical analysis technique, i.e., PCA, which can be used
with the least additional cost to implement PODEM ATPG.

This PCA-based ATPG implementation outperforms con-
ventional heuristics in terms of backtracks and CPU time.
Circuit c880 (although small) shows the possibility of no
backtracks using a linear combination of multiple features.
Though previous work [9], [10] has reported that no single
heuristic performs well in all cases, the present results show
that the major PC combines multiple heuristics effectively and
either outperforms or matches the best standalone heuristic
on most circuits with few exceptions, as shown in Figures 3
and 4. Although performance improvements diminish for
larger circuits, further improvement may be possible with more
ANN features (reminiscent of the recent work [11]), such as,
reconverging signal characteristics, fanout information, etc.

PCA-based ATPG is promising and also opens up new

 

Authorized licensed use limited to: Auburn University. Downloaded on July 01,2021 at 13:48:34 UTC from IEEE Xplore.  Restrictions apply. 



avenues and future research directions. First, reconvergent
fanout-free circuits do not have any backtracks, but backtraces
in reconvergent fanout-free circuits can still be reduced and
lead to more efficient tests requiring fewer PI assignments.
Second, eliminating backtracks has a cost in CPU time;
finding a ‘sweet-spot’ may be feasible where one can get the
optimized number of backtracks for minimal CPU time. Third,
one can detect redundant faults quickly to expedite ATPG
using MI-guided ATPG. Fourth, MI was used in backtracing
guidance of PODEM ATPG, but never used for D-Frontier
drive selection in PODEM ATPG to witness more ATPG
performance improvement. Fifth, using k-means clustering as
the second technique of unsupervised learning and comparing
it against PCA may give some interesting observations. Sixth,
state-of-the-art ATPG tools find challenges in detecting some
faults in a circuit either due to circuit size or atypical fault
characteristics. Seventh, this study uses academic benchmark
circuits instead of large industry-standard circuits; this study’s
authors believe that the trends of MI-guided ATPG perfor-
mance are encouraging and likely to apply to larger circuits
and show immense capabilities in future.

Finally, the efficacy can always be improved by maximizing
the explained variance. The usual practice of PCA is to keep
only the first k < p principal components, where k is the
dimension of transformed subspace that comprises of PCs and
p is the dimension of the original space. PCA is an orthogonal
transformation that projects data from a p-dimensional space to
a k-dimensional subspace, and the remaining p−k dimensions
vanish in this kind of projection. It is rational to minimize
variability in those p−k directions and maximize the variance
of the first k variables as the total variance of both p and k
dimensional spaces is constant. Fig. 1 shows that the major
PC (or the first PC) of some circuits do not reach close to 1,
which signifies that there is room to maximize the explained
variance of such circuits by adding more isomorphic features
to the original dataset. In the future, one will make choices
in PCA based on specific objectives: 1) PCA is a orthogonal
transformation and will need maximum variance in the first k
components and minimum variance in p − k components; 2)
choosing the first k components for maximum variability; and
3) choosing large k to reduce information loss and variance
of p− k components.

VI. CONCLUSION

For the first time, this study attempted to integrate unsuper-
vised learning of MI with PODEM ATPG to demonstrate the
effectiveness of ATPG in terms of reduction of backtracks and
ATPG CPU time. This study used PCA to combine multiple
features. A linear transformation projects conventional ATPG
backtracing heuristics into a new major PC (the first PC),
which is considered to be the carrier of maximum variance
and replaces the traditional single-heuristic guidance of ATPG.

The conjecture about zero backtracks [11], [12] is supported
once again by benchmark circuit c880 (although small from
any standard), which gives a possibility (light at the end of the
tunnel) of an ATPG with no backtracks. However, this claim

may be too ambitious for large circuits with reconverging
fanouts. For those cases, finding a ‘sweet-spot’ in the CPU
time versus backtrack curve would be an acceptable choice
with minimal ATPG CPU time despite backtracks.
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