POLYNOMIAL TIME SOLVABLE FAULT DETECTION PROBLEMS

Srimat T. Chakradhar
Department of Computer Science & CAIP Research Center, Rutgers University, Piscataway, NJ 08855-1390
Vishwani D. Agrawal
ATET Bell Laboratories, Murray Hill, NJ 07974
Michael L. Bushnell
CAIP Research Center, Rutgers University, Piscataway, NJ 08855-1390

ABSTRACT — The problem of fault detection in
general combinational circuits is NP-complete. Very
little work has been done on identifying circuits for
which the fault detection problem is polynomial time
solvable. The only significant reported result is due to
Fujiwara who presented a polynomial time algorithm
for detecting any single stuck fault in K—bounded cir-
cuits. Such circuits may only contain logic blocks with
no more than K input lines and the blocks are so con-
nected that there is no reconvergent fanout among
them. We introduce a new class of combinational cir-
cuits called the (k, K)—circuits and present a polyno-
mial time algorithm to detect any single or multiple
stuck fault in such circuits. Any circuit can be rep-
resented as an undirected graph G, with a vertex for
each gate in the circuit and an edge between a pair
of vertices whenever the corresponding gates have a
connection. G for a (k,K)—circuit is a subgraph of a
k—tree, which, by definition, cannot have a clique of
size greater than k + 1. Basically, this is a restriction
on gate interconnections rather than on the function
of gates comprising the circuit. The (k, K)—circuits
are a generalization of Fujiwara’s K—bounded circuits.
‘We formulate the fault detection problem as an energy
minimization problem using the bidirectional neural
net model we proposed earlier. A minimizing point of
the energy function corresponds to a test. In this pa-
per, we present a polynomial time algorithm to solve
the single and multiple fault detection problem for the
(k, K)—circuits by recursively eliminating variables in
the energy function.

1. INTRODUCTION

The problem of detecting a fault in a general combi-
national circuit is NP-complete [8] and it is unlikely that
a polynomial time algorithm exists for solving it. Con-
sequently, it is of interest to identify circuits for which
a polynomial time fault detection algorithm exists. The
number of primary inputs and the number of signals in
the digital circuit are generally considered as the the in-
put size for the fault detection problem. Very little work
has been done on identifying such circuits. Such work is
important for two reasons. First, solving special instances

CH 2877-9/80/0000/0056/$01.00 — 1990 IEEE

usually provides better insights into the solution methods
for the general problem. Second, combinational circuits
can be designed as special circuits that are easily testable
and easy for redundancy identification.

The previous reported result in this area is due to Fu-
jiwara [6] who defined K —bounded circuits. He assumed
that logic blocks with no more than K input lines are
connected so that no reconvergent fanout exists among
these blocks. Essentially, the undirected graph G, with a
vertex for each block and an edge between a pair of ver-
tices whenever the corresponding blocks are connected, is
a tree. He showed that for such circuits, the single stuck-
at fault detection problem is polynomial time solvable.

In this paper, we define a much larger class of cir-
cuits, we call the (k, K)—circuits, and present a poly-
nomial time algorithm to detect any single or multiple
stuck-at fault. The logic blocks in (k, K)—circuits are still
K —bounded, i.e., they have no more than K input lines.
However, we permit certain cycles in the associated graph
G. Specifically, G is a partial k—tree [9). Any subgraph of
a k—tree (a graph with no cliques [2] of size greater than
k + 1) is a partial k—tree. Thus, the main difference be-
tween a K—bounded circuit and a (k, K)—circuit is that
the latter can have certain reconvergent fanouts among
the blocks while the former has none.

Any combinational circuit can be considered as an in-
terconnection of several sub-circuits called blocks. A block
can have several inputs and outputs. For example, an in-
verter is a block with one input and one output and a
two-input AND gate is a block with two inputs and one
output. In general, a block may have several gates. The
union (U) of two blocks is defined as the set of gates in
both blocks and an intersection (N) is the set of gates
common to both blocks. We define an arbitrary combi-
national circuit C as an interconnection of blocks Cjy...C;
such that C = C;UC2 U ...UC; and C; N Cj = 0 where
iFj,1<i<tand 1 <j <t We will refer to the set
m = {C1,C2,...,Ct} as a partition of C (see Table 1). A
circuit can be partitioned in several ways. With a parti-
tion 7y, we associate an undirected graph Gy, (V, &) hav-
ing a vertex set V' and an edge set £. The graph has
a vertex for every block C; in the partition and there is
an edge from vertex ¢ to vertex j if the corresponding

56

Proc. Twentieth IEEE International Symp. Fault-Tolerant Computing, Junel 990

c, V%
x
? C, Xg C, X3
b & —
Cy 7
Xy

Figure 1: A (2, 2)-circuit.

e‘:.e edi

(a)

)
Q

(b) (¢)
Figure 2: Graphs of circuit in Figure 1. (a) Gy,, (b) Gx,,
and (c) Ga,-

blocks have at least one signal in common. For exam-
ple, the circuit in Figure 1 can be partitioned into four
blocks Cy, C3,C3 and Cy4. Each block has one gate. Fur-
thermore, {zs,x7, 25} is the set of signals in block C;,
{z1,z5,z6} is the set of signals in C3 and so on. The
corresponding graph G, is shown in Figure 2(a). Notice
that there is an edge between vertex C3 and C, since they
share the signal z5.

1.1 FUJIWARA'S RESULT
A combinational circuit C is K—bounded [6] if it can
be partitioned into blocks such that:

1. Ci (1 €i<t) has at most K inputs and
2. Gy, has no cycles.

For example, the circuit in Figure 3 is 2—bounded since it
can be partitioned into three blocks ¢, g and h, each with
at most two inputs. Furthermore, it is easy to see that
the corresponding graph does not have a cycle. Also, the
circuit in Figure 1 is not 2-bounded since the correspond-
ing graph (shown in Figure 2(a)) has a cycle consisting of
vertices Cz, C3 and Cj.

The single stuck-at fault detection problem in
K —bounded circuits, for a fixed K, is solvable in polyno-
mial time O(g), where g is the number of signals in the
circuit [6].

1.2 CONTRIBUTION OF THE PRESENT WORK

In this paper, we relax the restriction on the graph
G, by allowing certain types of cycles. We define a new
class of circuits called the (k, K)—circuits which can be
partitioned into blocks such that

1. Gi (1 <i<t)has at most K inputs and

2. Gy, is a partial k—tree.

57

a — c
b |
h
d g
e |

Figure 3: Example logic circuit.

A partial k—tree graph is a subgraph of a k—tree [9]. A
k—tree is a graph that can be reduced to the k—complete
graph (i.e., a fully connected graph on k vertices) by a
sequence of removals of degree k vertices with completely
connected neighbors [9]. A constructive definition of a
k—tree is given in Section 4. A graph G, with no cycles
is a special case of a partial k—tree (partial 1—tree) and
thus, all K—bounded circuits are (1, K')—circuits.

Note that in K—bounded circuits, the parameter K im-
poses a limit on the number of inputs to a block and these
blocks are assumed to be connected such that the asso-
ciated graph has no cycles. In (k, K)—circuits, all blocks
still have at most K inputs but the parameter k gives
greater freedom in interconnecting the blocks. Observe
that we are imposing a restriction on gate interconnec-
tions rather than on the function of gates in the circuit.
Fixed values of k and K specify a class of circuits. By
varying the two parameters, a whole family of circuits can
be defined.

We show that the single and multiple stuck-at fault
detection problem is solvable in polynomial time for
(k, K)—circuits. Our proposed algorithm for doing this
is radically different from the traditional fault detection
algorithms [1]. Using the recently proposed neural net
model [4, 5] of logic circuits, we formulate fault detection
as an energy minimization problem and show that a min-
imizing point of the energy function can be determined
in time complexity that is a polynomial function of the
size of the circuit.

Section 2 reviews the neural net modeling of logic cir-
cuits [4]. Section 3 presents the formulation of the fault
detection problem as an energy minimization problem.
Section 4 reviews partial k—tree graphs and discusses no-
tation and terminology used in this paper. In Section 5,
we present a polynomial time algorithm for detecting any
single or multiple fault in a (k, K)—circuit.

2. LOGIC CIRCUIT MODELING
Our model represents the function of a digital circuit as
an interconnection of computing elements called neurons.

2.1 DEFINITION OF A NEURON

A binary neuron is a computing element that can as-
sume one of two possible states: 0 or 1. A neural net is
an interconnection of neurons. We use Hopfield neural

networks [7] in which the connections are bidirectional.
Thus, neuron i may be connected to another neuron j
by a link which is characterized by a weight T;;, where
Tij = Tji- Each neuron in the network has a threshold.
A neuron computes its state as follows: (1) it computes
a weighted sum of the states of its neighboring neurons
and (2) if the result exceeds its own threshold then it sets
itself to the 1 state, otherwise it enters the 0 state.

2.2 MODEL FOR A BOOLEAN GATE
Figure 4 shows an AND gate and its neural net model.
Each signal is represented by a neuron having a threshold.

a—/
c
b—|

Figure 4: AND gate and its neural net model.

The neurons for signals a and b have 0 thresholds and the
neuron for signal ¢ has a threshold of —6. All links are
bidirectional and their labels show their weights. The
energy function of this three-neuron net is written as [4]:

(1)

Variables a, b, and ¢ can assume only binary values. All
operations are arithmetic and not Boolean. It is easily
verified that only those values of a, b, and ¢ that conform
to the truth table of the AND gate will satisfy Eqanp = 0.
Similar models and the corresponding energy functions
are derived for all other logic gates [4, 5].

Eanp(a,b,c) = —dec(a+ b) + 2ab + 6¢

2.3 CIRCUIT MODELING WITH NEURONS

Consider the three gate circuit in Figure 3. Each AND
gate has an energy function given by Eqn. (1). The energy
function for the entire circuit is obtained by summing the
individual gate energy functions. Thus,

Eckgr = EAND(a! b! C) + EAND(‘L €, g) + EAND("\ g, h‘)
(2)
This simple procedure can model circuits with any con-
nectivity and any types of gates. We have shown the
existence of neural net models for all logic circuits [4].
Since the models are defined only for two-input gates,
gates with larger fan-in are represented as combinations
of two-input gates. Any solution of Ecgr = 0 is a con-
sistent set of signals for the entire circuit. For example,
logic simulation will require a solution of this equation
when the primary input signals assume given values.

3. TEST GENERATION VIA ENERGY MINI-
MIZATION

A formulation of the test generation problem as an en-
ergy minimization problem requires that for any given

58

fault, we create a copy of the sub-circuit affected by the
fault [4]. The corresponding outputs of the fault-free cir-
cuit and the faulty circuit are passed through exclusive-
OR gates. The outputs of these exclusive-OR gates are
fed to an OR gate whose output is constrained to be 1. In
addition, for a s-a-0(1) fault, the signals at the fault site
in the fault-free and faulty circuits are constrained to be
1(0) and 0(1), respectively. Any set of consistent signal
values now corresponds to a test.

This formulation captures the necessary and sufficient
conditions that any set of signal values must satisfy to be
a test: First, the set of values must be consistent with
all gate functions in the circuit. Second, the two signals
in the fault-free and faulty circuits at the fault site must
assume opposite values (e.g., 0 and 1 respectively, for a
s-a-1 fault). Third, for the same primary input vector,
the fault-free and faulty circuits should produce different
output values.

4. NOTATION AND TERMINOLOGY

Consider a combinational circuit C consisting of an in-
terconnection of inverters and 2-input Boolean gates. Let
the total number of signals (primary inputs and gate out-
puts) be g. Let my ={Cy, Ca,...,C¢} be the partition as-
sociated with the circuit C. We will refer to C; as the ith
block of C. A block consists of one or more gates. An
input or output signal of a block is called a port signal
and a signal that is not an input or output signal of a
block is called an internal signal. Let g; be the number
of signals in the ith block. For example, in Figure 1, 24,
zs and z¢ are the port signals of block C3. None of the
blocks have internal signals.

Consider a graph G(V,), where V is the vertex set
and £ the edge set of G. G\ v will denote the subgraph
induced by the set V \ v (i.e., all vertices except v) where
v is a vertex in the graph. A fully connected graph on k
vertices is called a k—complete graph [2]. A k—tree [9]isa
graph that can be reduced to the k—complete graph by a
sequence of removal of degree k vertices with completely
connected neighbors. This vertex removal sequence is
called the k—perfect elimination scheme of the k—tree.
For example, the graph in Figure 2(a) is a 2-tree because
it can be reduced to a 2-complete graph as follows (see
Figures 2(b) and 2(c)): Vertex Cj is a degree 2 vertex
with completely connected neighborhood comprising of
vertices C2 and Cj3. If we remove C; then C> becomes a
degree 2 vertex with completely connected neighborhood
comprising of vertices C3 and Cy. Removal of vertex Cs
leaves us with a 2-complete graph consisting of the single
edge (Ca, Cy). The sequence of removing C; and C; is a
perfect elimination scheme for this graph. In general, a
graph can have several perfect elimination schemes. For
example, Cy, C} is another perfect elimination scheme of
the graph in Figure 2(a).

The class of k—trees is defined recursively as follows [9]:

1. The complete graph with k vertices is a k—tree.

Table 1: List of symbols.

g number of signals in circuit C.
t number of blocks in circuit C.
C; ith block in circuit C.
¢gi number of signals in block C;.
7; the partition of circuit C' minus the first i — 1
blocks, i.e., the set {C;, City, ..., Ci}.
G, undirected graph corresponding to partition ;.
N; set of neighbors of block C; in graph G,,.
Ji set of variables of all blocks in N; except the
variables in blocks Cy, Cs, ..., Ci_;.

2. A k—tree with n + 1 vertices (n > k) can be con-
structed from a k—tree with n vertices by adding a
vertex adjacent to all vertices of one of its k—vertex
complete subgraphs.

For example, the graph in Figure 2(a) can be constructed
from the 2-complete graph consisting of the edge (Cs, Cy)
as follows. Add vertex C; adjacent to all vertices in the
2-complete graph of vertices Cs3 and Cy. This results in
the edges (C2,C4) and (C3,Cs). Similarly, add vertex
C) adjacent to all vertices in the 2-complete subgraph
consisting of the edge (C3, C3). This results in the edges
(Cz, C1) and (Ca,C],).

A partial k—tree is a subgraph of a k—tree. For exam-
ple, consider the 2-tree graph in Figure 2(a). The sub-
graph with vertices Cy, C, and C3 is a partial 2-tree. So
is the subgraph with vertices Cy, C3 and Cj. Obviously,
since the entire graph can be treated as a subgraph, the
entire graph is a partial 2-tree. The perfect elimination
scheme for the partial k—tree is the same as the elimina-
tion sequence for the corresponding k—tree. The problem
of finding the smallest number k such that a given graph
is a partial k-tree is NP-complete [3]. Table 1 lists the
symbols used in the sequel.

5. A POLYNOMIAL TIME TEST GENERA-
TION ALGORITHM

We will first consider the problem of detecting a pri-
mary output fault in a (k, K)—circuit and then show how
an arbitrary single or multiple fault in a (k, K)—circuit
can be detected in polynomial time, O(g?).

5.1 PRIMARY OUTPUT FAULT

Consider a single-output circuit C with a s-a-0(1) fault
on the primary output. The test must simply control
the output to 1(0). It is, therefore, unnecessary to create
a faulty circuit copy. We constrain the primary output
signal to assume the value 1(0). Let E; be the energy
function associated with the ith block. If the block has
more than one gate, then E; is the sum of the individual
gate energy functions. The energy function for the entire

59

circuit is Ecxr = Ey + E2 + ... + E;. We can simplify
Eckr by substituting the value of the primary output
signal. Now, any solution of Ecgr = 0 is a consistent set
of signals for the entire circuit and, hence, corresponds to
a test for the fault. If no solution is possible, then the
fault is redundant.

To show that a minimizing point of E¢gz, and hence,
a test for the fault, can be obtained in polynomial time,
we will need the following lemmas.

Lemma 1: Let C be a (k, K)-circuit with a partition
™ = {C]_, C, ...,Cg} and let (Cl.C‘g,...,Cg_k) be the
k—perfect elimination scheme of the graph G,,. Let
Ei¢ = Eckr be the energy function for C. The mini-
mization By, can be reduced in O(g) time to the mini-
mization of a function E;, that depends on variables in
blocks C3, C3, ..., Cy but not on the port variables of block
Ci. Also, the function E,; has at most a constant number
(2*¥%) of terms more than the function Ey,.

Proof: In order to construct the function E,,; from E, ,,
we explicitly write the terms of E, ; corresponding to the
variables in C; (1 < i € ¢t — k) that are excluded from
C1,Cy,...,Ci_;. We also construct a list of terms that
involve variables in blocks Cj, t —k + 1 < i < ¢, but not
in the first £ — k blocks. The function E;,; has O(g) terms
since each gate contributes at most six terms [5]. Our
representation can be obtained in O(g) time by scanning
through the terms of E, ..
We can rewrite the function E,, as:

By fi+hy

where the function h; contains all terms that do not in-
volve variables in block C; and fi contains only terms
involving variables in block C;. Let N, ={i: C; is con-
nected to C1} be the set of neighbors of block C; in Gy, .
Since Gy, is a partial k—tree, block Cy is connected to at
most k other blocks. Therefore, f; has at most Yien, Ui
variables other than the variables in block C;. Let Jy be
the set of these ¥, N, 9i variables. Note that in any con-
sistent labeling of the circuit C, all blocks C; (1 <i<t)
are also consistently labeled. Although a block has gi
variables, there are at most only a constant number (2K)
of consistent labelings of the signals in block Cj, because
the block has at most K inputs. Similarly, there can be at
most 2*X consistent labelings of the blocks {C; : i € N}
Therefore, the 3, v, i variables in set J; can assume at
most a constant number (2*%) of combinations of Boolean
values. For a given vector « of values for the variables in
the set Jy, we can evaluate f; for all 2% combinations of
values of the variables in block €. Let fi(a) denote the
minimum value the function f, attains for the vector .
Clearly, there exists a minimizing point of function Ey .,
say (B8°,a"), where B8* is a vector of values for the vari-
ables in block C; and a* is a vector of values for variables
in the set Jq, such that the minimum value of fi1 for the

given vector a* is attained at 8*. Also, 3* is a non-zero
vector (i.e., a vector with at least one non-zero compo-
nent) iff fi(a*) < 0. This leads us to define a function
¥y that depends only on the), g variables in set J;,
such that

Y1 = Y min(0, fy(a)) x Ta

aEM,

3)

where M, is the set of a constant number (2*X) of consis-
tent labelings (vectors) of the blocks {C; : i € Ny} and T,
is the product of literals corresponding to vector a (i.e.,
Ta = HL_, where I, = [if variable I is 1 in vector « and
leJ,
l, =Tifl = 0). We evaluate f; at all combinations of val-
ues of variables in Jy and min(0, fi(«)) is the minimum
value the function f, attains, given a particular vector «
of values for the variables in J;. Therefore, functions fi
and v, have the same minimum value.
Let

By = tr+hy (4)

We have thus reduced the problem of minimization of
the original function F;, that depends on all the blocks
C; (1 < i < t) to the minimization of E,; ., that only
depends on blocks C; (2 < i < t). Since, block C; is
eliminated, the partition corresponding to Ey, is 7 =
{C2,Cs,...,Ci}. A minimizing point (8" a*) of Eyy can
then easily be traced back from any minimizing point a*
of E; 4 as explained later. Also, since 1 can have at most
a constant number (2¥X) of terms, E;, can have at most
a constant number of terms more than E;; and the rep-
resentation of E;+ can be obtained in O(g) time.]

Example: Consider the s-a-1 fault on signal zs in the
circuit of Figure 1. We construct the energy function
for the circuit and find a minimizing point by recursively
eliminating the variables of blocks in the order C1, Cs,
C3, Cs. Here, we illustrate the elimination of variables
of block C; from the energy function of the circuit. The
elimination of other blocks is discussed later, The energy
function for the circuit is:

Ey+Ey+ E;+ Ey

= —dzg(z6 + z7) + 2zez7 + 625
—4z7(z4 + 25) + 22425 + 627
—4ze(z1 + 75) + 22125 + 626
—4zs(z2 + z3) + 22223 + 625

Eckr

Since signal zg is constrained to assume the value 0, we
can simplify Eckr by substituting zg = 0. Let E; 4 be
the simplified Ecxr. The first row in Table 2 gives the
terms of Ey 4 that involve variables in block C; (i.e., zg,
z7 and zg). The second row gives the terms involving
the variables of block C, that are not in block C, (ie.,
z4 and z5). The last row gives the terms that have only

Table 2: Terms of E; 4.

Block Terms
C 22627 + 26(6 — 4z, — 4z5) + 27(6 — 4zy — 4x5)
[22475 + 25(6 + 22y — 424 — 433]

Cs, Cy 2z323

Table 3: Possible values of f;.

fi min f;
2z6z7 + 6(z6 + z7) 0
2zez7 + 2{2:3 + x7) 0
2z¢27 + bzg + 227 0
2z6z7 + 226 — 227 -2
2227 + 226 + 67 0
2zery — 226 + 227
2zgz7 + 226 + 227 0
2$5:I:7 == 2% ~ 2z,

&
%
<]
-
[x}
o

el el e ===
Ll = =T o —]

=T S R e I]

those variables of the last two blocks C3 and Cj that are
not in blocks C; and C2. The first row in Table 2 is the
function f;. The terms in second and third row belong to
the function hy. Ny = {C3,C3} is the set of neighbors of
block Cy. The set of variables in f; that are not in block
Cyis J; = {z1, 24, z5}. Table 3 shows the minimum value
of fy for each combination of values of the variables in set
Ji. For example, when z; = 0, z4 = 0 and z5 = 0,
f1 = 2z6z7 + 6(z6 + z7) and it assumes a minimum value
0 when zg = 27 = 0. Only the fourth, sixth and eighth
rows of min f; contribute to 1,. We multiply the min f;
value by the corresponding , =4 and =z literals. From
Eqn. 3,

Y1 = —2Tizszs + T1Tzs + T12425)
= =2(T1z4z5 + 7175) (5)
and from Eqn. 4,
Ers = 1+ hy (6)

The terms of E» 4 are obtained from E14 (Table 2) as
follows. Remove the row for block €. Since the two
terms in 4, (Eqn. 5) involve variables from block C», add
these two terms to row Cs. The complete E; 4 is shown in
Table 4. This eliminates block €. Thus, minimization
of E) 4 is reduced to minimization of E; 4. Removal of
vertex C from the partition 7, gives the new partition
7y = {C3,C3,Cy} and the corresponding graph Gy, is
shown in Figure 2(b).

Lemma 2: If graph G, is a partial k—iree with elimina-
tion sequence (Cy, Cy, Cs, ..., Ci_t) then Gy, is also a par-
tial k—tree with elimination sequence (Cy, Cs, ..., Ci—).

Proof: Let H denote a k—tree containing Gr,,
the graph corresponding to function E;,. Also, let
(C1,C3,Cs, ..., Ci_) be a k—perfect elimination scheme

Table 4: Terms of E; 4.

Block Terms
C, 224?}5(1 - 2:_1) + 135(6 — 4z, — 4:!'-‘3)
C;;, Cq 2222‘:3

of H and Ny ={i : C; is connected to C;} be the set of
neighbors of block C) in G,,. Notice that N; induces
a complete subgraph in H. Moreover, Gy, is identical
to Gy, \ C1, except possibly for some edges between ver-
tices of Ny (since 1; depends only on the variables in Ny).
Therefore, G, is also a subgraph of H\ C;, and the claim
follows. ']

Lemma 3: A minimizing point of the function E); can
be obtained in O(g?) time.

Proof: Using Lemma 1, we can eliminate block C; to
generate the new function E,, in O(g) time. From
Lemma 2, the elimination sequence for the correspond-
ing graph G, is (C3,Cs,...,C;). Continuing the elim-
ination process in Lemma 1 for blocks C3,Cj,...,Ci_k,
successively, we produce two sequences of functions
Ez¢, Est, ..., Bt—py1, and 91,%2,..., % where E;,,
(1 <i <t—k+1) does not depend on any variable
in blocks Cy,C3,...,C;. From Lemma 1, elimination of
a single block involves O(g) work. Since the number of
blocks is less than g, the work in eliminating the blocks
{Ci:1 < i<t—k}is bounded by O(g?). The function
E;_k41,+ depends at most on k blocks and the minimum
value and a minimizing point of Ey_j 1 can be obtained
by examining at most a constant number (2¥X) of com-
binations of values for the variables in the k blocks that
Et_j+1 depends on. This can be done in time O(g). Note
that the minimum value of the function E;_j1 is also the
minimum value of E, ,. Given a minimizing point for the
function E;41,, a minimizing point for function E;, can
be obtained in O(g) time using back substitution and,
therefore, a minimizing point for E; ; can be obtained in
O(g*) from the minimizing point of Ey_j 41, Hence, a
minimizing point of E,,can be obtainedin 0O(g?)
time. |

Continuing the previous example, a minimizing point
of Fy 4 is found by eliminating the remaining blocks. C,
is eliminated first. The row for C, in Table 4 gives
f2. The sum of the terms in the remaining rows is h,.
Nz = {C3,C4} is the set of neighbors of block C, and
J2 = {z1,%3,23}. The minimum value of f, for each
combination of values of variables in J; is given in Ta-
ble 5. Therefore, from Eqn. 3,

2

~2z223(z1 + T1)
—2322:3

= (7)

and from Eqn. 4,

By = t2+hy

—2z323 + 22223
0

Minimization of E; 4 is now reduced to the minimization
of E3 4 which does not depend on the variables z4 and zs.
In fact, F3 4 = 0 and hence, it does not depend on any
variable. Clearly, the minimum value of Ej 4 is 0. Values
of variables z,, z; and z3 are normally determined from
E34 However, since B34 = 0, they can assume any
values, say, ; = 23 = z3 = 1 and there exists a test for
the output s-a-1.

With the elimination phase over, we proceed to find a
minimizing point of E; 4 from a minimizing point of E; 4.
From Table 5, fa(z; 3 = x4 = 1) = 22475 — 225
which assumes a minimum value of —2 when z4 = 0 and
zs = 1. Hence, z; = z5 z3 zs = 1, z4 = 0 is
one minimizing point of E; 4. Similarly, we can find a
minimizing point of E; 4 from that of F; 4. From Table 3,
fi(z1 = 1,z4 = 0,z5 = 1) = 2z6z7 — 226 + 227 which
assumes a minimum value of —2 when zg = 1 and z7 = 0.
Therefore, z) =z = z3 = zs =26 = 1, 24 = z7 = (
is a minimizing point of E; 4 or Ecgr. The input z; =
zz =23 = 1, 24 = 0 is a test for the primary output s-a-1
fault.

Theorem 1: There exists a polynomial time (O(g?)) al-
gorithm that either detects any primary output fault in a
(k, K)—circuit or identifies the fault as redundant.

Proof: We give a constructive proof. Let C be a
(k, K)—circuit with a partition m; = {C}y, Cs,...,C¢} and
let (C1, C3, ..., Ci—k) be the k—perfect elimination scheme
of the graph G, . The algorithm is as follows:

1. Construct the energy function Ecgr corresponding
to the stuck-at primary output fault in circuit C.
This can be done in O(g) time [4].

. Find the minimum value of Ecgr and the corre-
sponding minimizing point. Using Lemma 3, this
can be done in O(g?) time.

. Check whether minimum value of Ecxr = 0. If so,
the minimizing point corresponds to a test. Other-
wise, identify the fault as redundant.

Table 5: Possible values of f.

1 Tz I3 fa min fa
0 0 0 bzs 0

0 0 1 2z 0

0 1 0 2z 0

0 1 1 —2z5 -2

1 0 0 2z475 + 625 0

1 0 1 | 2z425 + 225 0

1 1 0 22:41:5 + 2.\1‘5 0

1 1 1 2z425 — 2z -2

6l

x| , ,
Cl Xg
C, Xg
Figure 5: ATPG circuit for z¢ s-a-0.
Clearly, the above algorithm runs in O(g?) time. |

5.2 ARBITRARY SINGLE FAULT

We assume that the (k, K)—circuit C only has one pri-
mary output. The case of more than one primary outputs
will be discussed later. To detect an arbitrary fault in C,
we construct the fault-free and faulty circuit as described
in Section 3. Since the circuit has just one output, we can
avoid the use of exclusive-OR gates. An inverter between
the outputs of the fault-free and faulty circuit will ensure
that the two circuits produce different outputs [4]. This
inverter is treated as a part of the block that contains the
primary output signal. This circuit, as shown in Figure 5
is called the ATPG circuit. Note that the inverter is used
only for the neural net model which contains bidirectional
links.

Lemma 4: The ATPG circuit is a (k, 2K)-circuit.

Proof: We will show that the ATPG circuit is a (k, 2K)-
circuit by constructing a partition 7 such that G, is a
partial k—tree graph. Let vy = {Cy,C3,...,C:} be the
partition of the fault-free (k, K)—circuit C. We partition
the ATPG circuit as follows: Observe that for every block
C;, in the fault-free circuit, that lies on a path from the
fault site to the primary output, there is a correspond-
ing block C} in the faulty circuit. We merge these two
blocks into one block M;. Therefore, M; = C; UC!. Since
C; and C} each have at most K inputs, the new block
M; will have at most 2K inputs. Also, if a block Cj is
not on a path from the fault site to a primary output,
M; = C;. Therefore, * = {M;, M3, ..., M;} is a partition
of the ATPG circuit and Gy is clearly a partial k—tree
graph since it is isomorphic to the partial k—tree graph
Gr,. |

Example: The ATPG circuit for a s-a-0 fault on signal
z6 in Figure 1 is shown in Figure 5. Only block Cy isona
path from the fault site to the primary output. The corre-
sponding block in the faulty circuit is C}. The graph G
corresponding to the partition =’ = {C}, Cs, C3, Cy, Ci}
is shown in Figure 6(a). Merging blocks Cy and C{ causes
the edges (Cy, C}) and (C3, C}) in graph G, to disappear.
Also, M, = C; UC}. Since none of the other blocks in

62

@‘Z’@

(a) (b)
Figure 6: Graphs of the single fault ATPG circuit. (a)
Gy and (b) G

the fault-free circuit are on a potential fault propagation
path, My = C3, M3 = C3 and My = C4. The graph G,
corresponding to the partition = = {My, My, M3, My} is
shown in Figure 6(b). Clearly, G is isomorphic to the
partial k—tree graph G, in Figure 2(a).

Theorem 2: There ezists a polynomial time (O(g?)) al-
gorithm that either delects any arbitrary given fault in a
(k, K)—circuit or identifies the fault as redundant.

Proof: Let signal z; be s-a-0(1). The following algorithm
either detects the fault or identifies it as redundant:

1. Construct the energy function E rpg corresponding
to the ATPG circuit for the fault. Simplify Esrpg
by substituting z; = 1(0) and z; = 0(1) where x;
and z! are the signals in the fault-free and faulty
circuits, respectively, corresponding to the fault site.
Also, from Lemma 4, the ATPG circuit is a partial
k—tree with (My, M», ..., M;_}) as a perfect elimina-
tion scheme.

. Find a minimizing point of Eqrpe. From Lemma 3,
such a point can be obtained in O(g?) time.

. Check whether at the minimizing point Eqrps = 0.
If so, the minimizing point corresponds to a test.
Otherwise, identify the fault as redundant.

Clearly, the above algorithm runs in O(g?) time. [|
Multi-output circuits: For (k, K)—circuits with more
than one primary output, we repeat the above procedure
for each primary output that is reachable from the fault
site. Since the number of primary outputs of the circuit is
bounded by g (the number of signals in the circuit), the
procedure may have to be repeated only a polynomial
number of times. An alternate method would be to con-
struct the ATPG circuit for the multi-output circuit [4],
find an elimination scheme, and use the procedure just
once to generate a test. Due to space limitations, we will
not discuss this further.

5.3 MULTIPLE FAULTS

We again assume that the (k, K)—circuit C only has
one primary output. The case of more than one pri-
mary outputs will be discussed later. To detect a mul-

L Y R ,
. C1 Xy
L3 J——
. .
1 x
X2
c, Xs
X3
X
C: Ll
X4

Figure 7: ATPG circuit for the multiple fault zg s-a-0, z7
s-a-0.

R D

Figure 8: Graphs of the multiple fault ATPG circuit. (a)
G and (b) G,.

tiple fault in C, we construct the fault-free and faulty
circuit in a similar fashion as described in Sections 3
and 5.2 except that we duplicate all blocks that are on
the path from any of the multiple fault sites. For ex-
ample, the ATPG circuit for a multiple fault on signals
rs and z7 is shown in Figure 7. Block C; is dupli-
cated and #' = {C}, C,,C3, Cy4, C}} is a partition of the
ATPG circuit. The corresponding graph G, is shown
in Figure 8(a). Merging the blocks on the fault propa-
gation paths gives the partition = = {M,, M,, M,, M,}.
The corresponding graph is shown in Figure 8(b). From
Lemma 4, it follows that the ATPG circuit is a (k, 2K)-
circuit,

Theorem 3: There ezists a polynomial time (O(g?))
algorithm that either detects any maultiple fault in a
(k, K)—circuit or identifies the fault as redundant.

Proof: The foll swing algorithm either detects a multiple
fault or identifies it as redundant:

1. Construct the energy function Earpg correspond-
ing to the ATPG circuit for the multiple fault. Sim-
plify Earpc by substituting appropriate values for
the variables in the fault-free and faulty circuits cor-
responding to the multiple fault sites. Also, from
Lemma 4, the ATPG circuit is a partial k—tree
with (My, Ma,..., M;_;) as the perfect elimination
scheme.

2. Find a minimizing point of E4rpg. From Lemma 3,
such a point can be obtained in O(g?) time.

63

3. Check whether the minimum value of E rpe = 0.
If so, the minimizing point corresponds to a test.
Otherwise, identify the fault as redundant.

Clearly, the above algorithm runs in O(g?) time, &

Multi-output circuits: For (k, K)—circuits with more
than one primary output, we repeat the above procedure
for each primary output that is reachable from the fault
site. Since the number of primary outputs of the circuit is
bounded by g (the number of signals in the circuit), the
number of times the above procedure may be repeated
is bounded by O(g). An alternate procedure will be to
construct the ATPG circuit for the multi-output circuit,
find an elimination scheme, and use the procedure just
once to generate a test.

6. CONCLUSION

We have identified a class of combinational circuits in
which the single and multiple fault detection problem
can be solved in polynomial time. A novel test gener-
ation method is presented. This is a significant result
in test generation and in the identification of redundan-
cies. Work is underway to extend the fault detection al-
gorithm for (k, K')—circuits to general combinational cir-
cuits. Also, we are investigating the design of combina-
tional functions as the easier-to-test (k, K)—circuits.

REFERENCES
(1] V. D. Agrawal and S. C. Seth. Test Generation for
VLSI Chips. IEEE Computer Society Press, Washing-
ton, D.C., 1988.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley Publishing Company, Reading, Massachusetts,

(3] é.g;:ir.nborg, D. G. Corneil, and A. Proskurowski. Com-
plexity of Finding Embeddings in a k-Tree. SIAM J.
on Alg. Disc. Meth., 8(2):277-284, April 1987.

[4]S. T. Chakradhar, M. L. Bushnell, and V. D. Agrawal.
Automatic Test Pattern Generation Using Neural Net-
works. In IEEE Proc. of the Intl. Conf on
Computer-Aided Design, pages 416-419, Nov. 1988.

[5]S. T. Chakradhar, M. L. Bushnell, and V. D. Agrawal.
Toward Massively Parallel Automatic Test Genera-
tion. IEEE Trans. on Computer-Aided Design, 1990.
To appear.

[6] H. Fujiwara. Computational Complexity of Controlla-
bility/Observability Problems for Combinational Cir-
cuits. In Proc. of the 18th Int’l. Symp. on Fault
Tolerant Computing, pages 64-69, June 1988.

[7]J. J. Hopfield. Artificial Neural Networks. IEEE Cir-
cuits and Devices Mag., 4(5):3-10, Sept. 1988.

(8] O. H. Ibarra and S. K. Sahni. Polynomially Complete
Fault Detection Problems. IEEE Trans. on Comput-
ers, C-24(3):242-249, March 1975,

[9] D. J. Rose. On Simple Characterizations of k-trees.
Discrete Mathematics, 7(3,4):317-322, Feb. 1974.

