664

I
| og, 0
deleckion |14 QD - 10"3
surface
43 .
near each point are noted
2 abreviations of IC's references
example: {81 means
Sn 54181 N (Texas Inst)
" SF.C 4 181 EM (Sescosem) 9
MiIC 541810 (1TT) 3
100% 10
00
S 02
%
8 37
%
1
100 | 7 43¢ gk o™ .'53
152 11
€ A C
5 o 20 il
g % 4
139
' 2
10 _ 1
i RN — L
456
2 155 1
%
5
" Sa e/ 2 e
1 | o/ i /e 323 83) 10 £y ' 33491
1] 5 10

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1976

150 @

& 20 25 n

Fig. 7. Length of a random input sequence to be applied as a func-
tion of n and o (given @p). Application to TTL integrated circuits.

sponding to 0.1 s) is for the arithmetic logic unit SN74 181,
noted by 181, withn = 14,0 = 1.

2) o/2" is the probability of detecting the most difficult
fault by one input vector. The length L is a function of this

ratio. So it becomes reasonable to use random testing for large.

circuits if they have a great o (we believe it is often true). The
multiplexer, noted by 150, has 21 inputs. It is testable in less
than 1 ms thanks to a great ¢ = 214,

3) The deciding factor in determining if random testing is
shorter than exhaustive testing is o. If ¢ > Log 1/Qp (where
Log denotes natural logarithm) we get a length of random
testing L < 27. This is the case for every circuit noted above
the dotted line in Fig. 7 (¢ = 7 for Qp = 1073).

IV. CONCLUSION

A distinction between testing quality and detection quality
has been introduced. These notions allow us to prove that only
the probability of not detecting the fault which is most diffi-
cult to detect has to be considered. The detection surface of a
combinational network is introduced, and two easy approach-
es to get a lower bound of this detection surface are given.
These properties are applied to combinational TTL integrated
circuits. It is shown that some of them are testable with a ran-
dom input sequence shorter than an exhaustive test.
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Several papers [1]-[4] have reported the use of the Monte
Carlo method for logic testing. In this method, the tests are
obtained from random inputs. The purpose of this correspon-
dence is to show that in a combinational logic tree, the proba-
bility of detecting a fault can be optimized by a proper selec-
tion of the probabilities of 0 and 1 in the random inputs. This
fact is used for improving the efficiency of test generation over
the commonly employed heuristics of equiprobable 0 and 1.
The results, which are derived from a probabilistic analysis of
a NAND tree model [5], are much simpler than other approach-
es [6]-[8] when applied to large circuits. Experiments on actu-
al logic boards of a computer show good agreement with the
analysis.

SELECTION OF INPUT PROBABILITY

Consider a fan-out-free tree network of n-input NAND
gates. Such a network was analyzed in [5] where the following
results have been derived. The probabilities of logical 0 or 1
occurring on a line in the /th level are

= (pl-)" =1 - pi-)" (1)

and
pl=1-pf=1-(pl)", 2

respectively, where the primary inputs are in the Oth level and
all the n inputs of a gate are assumed to be in the same level.
The detection probability, which is defined as the probability
of sensitizing a path from a primary input to the primary out-
put in the L-level circuit, is given by

H 3 (3)

This probability can be computed from the input probablhty
For example, if all the gates have a fan-in n = 2, and the pri-
mary inputs are 1 with probability ¢ and 0 with probability 1
— g, then P(L) is obtained from (3) by substituting the fol-
lowing:

P(L) =

The detection probability P(L) for various levels L is shown
in Fig. 1 as a function of q. In a majority of the reported work
on the Monte Carlo test generation, g is taken as 0.5, perhaps
on the basis of simple intuition. Fig. 1, however, shows that a g
somewhat greater than 0.5 will give better results due to the
increased detection probability. For example, for a nine-level
path, ¢ = 0.5 gives a detection probability of approximately
'0.001, which can be increased almost ten times by changmg q
to 0.64. A closer examination of (4) will reveal that, in general,
for any value of g, the probabilities p} and p? fluctuate widely,
attaining the values close to 0 and 1 in the alternate levels [5].
However, for optlmum mput probablhty, Qopt, these fluctua-
tions subside and p} and p{ remain constant for any . This is
particularly true for large logic chains. Thus for large L Gopt
can be obtained from the equation

(5)

for n-input gates. When n = 2, (5) gives gopt = 0.617. This is,
in fact, the value of g at which P(L) peaks for large L (Fig. 1).
Next, from (3), we have

PL) = 6)

There is no reason to believe that more frequent 1’s than 0’s

g=1-g¢"

(QOpt) L-

* at the primary inputs will give better results for all practical

circuits. If a similar analysis of a NOR tree network is carried
out, gopt Will turn out to be just the complement of the value
obtained above. Similarly, a NOT gate at an input can also
complement the input probability. For a practical circuit,
therefore, one must try both the input probabilities, i.e., gopt
as given by (5) and 1 — gqpt.

Further, the probability of sensitizing a path of L levels by
at least one out of M independent input patterns is given by

P(LM)=1-[1-P(L)M. (7

Since it is most difficult to sensitize the longest path in a cir-
cuit, its detection probability being the lowest among all the
paths, the number of patterns should be such as to make the
probability P(L,M) close to unity for the longest path. If L is
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Fig. 2. M(99 percent) as a function of levels for tree network of two-

input NAND gates.

TABLE I
Results of Test Generation

No.
‘ of
No. of Tests
Random Gen- Faults
Patterns erated Undetected

No. No.
of of Input
Circuit Lines Levels Prob.
Circuit 1 114 5 05
0.7
Circuit 2 115 10 0.5
0.617

31 19 0

17 7 0
>1000 35 8 percent

800 30 O

the maximum number of levels in a circuit, then for P(L,M) =
0.99, we have

M(99 percent) = In(0.01)/In[1 — P(L)]. (8)

Experimental results [5] have shown that M(99 percent) as
given by (8) provides a good estimate of the number of ran-
dom input patterns required for test generation for practical
combinatienal circuits having tree structure. If we use the op-
timum input probability, then for large L, (6) and (8) give

M (99 percent) =~ 4.6(qopt) L. )

This is shown in Fig. 2 for two-input gates (iie., n = 2, gopt =
0.617). For comparison, the corresponding curve for ¢ = 0.5 is
also given. As the number of levels increases, the need for
using the optimum input probability becomes greater. For ex-
ample, if L = 13, with ¢ = 0.5 the number of patterns required
is 300 million. This number reduces to 2000 if ¢ is changed to
0.617.

EXPERIMENTAL RESULTS

A Monte Carlo test generation program, similar to the one
described in [5], was used to generate tests for several of the
processing unit circuit boards of the Illiac IV computer [1], [3].
Only the stuck type of faults on the input lines were consid-
ered, assuming that these require the sensitization of the lon-
gest paths and hence are the most difficult to detect. Inputs
were determined by a random number generator which pro-
duced floating point numbers uniformly distributed in the in-
terval [0,1]. If the random number was less than g, the line

was set to 1; otherwise it was set to 0. All inputs were deter-
mined independently, but with the same q. A digital simulator
then determined all the line values, and a TEST-DETECT pro-
gram determined whether any of the input faults have been
detected. As explained earlier, both the input probabilities
gopt and 1 — gopt were tried. Pattern numbers 1, 3, 5, - were
generated with q = qopt,‘ and 2, 4, 6, - with ¢ = 1 — gopt. The
circuits had tree-type structures.and consisted of {AND, OR,
NOT} combinational logic. The fan-ins varied from 1 to 5, the
average fan-in being about 2.2. It is well known that such cir-
cuits can be realized by NAND or by NOR gates alone, and
therefore the analysis may be applicable to them. The resulfs
of test generation for two of the circuits are given in Table I
and Fig. 3.

Circuit 1 had 5 levels, and from Fig. 1, qopt = 0.7. All the
faults were detected with 17 random patterns which gave 7
tests. This circuit had 47 primary inputs. When the test gener-
ation was repeated with ¢ = 0.5, all faults were detected by a
sel of 19 tests generated by 31 random patterns. Circuit 2 had
10 levels and 56 primary inputs. Fig. 2 gives about 5000 pat-
terns for ¢ = 0.5. Indeed, the test generation was incomplete
when the program was stopped after 1000 patterns, leaving 8
percent of the faults undetected. When ¢ was changed to gopt
= 0.617, the test generation was completed after 800 patterns
(Fig. 3). All 'the faults were detected by 30 tests as compared
to the 35 generated in the former case. :

The above results lead to two interesting observations. 1)
Proper selection of the input probability can increase the effi-
ciency of test generation, resulting in reduced computer time,
and 2) since g.pt increases the detection probability, each pat-
tern, on the average, detects a greater number of faults. This
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results in a more compact test set as compared to the test set
obtained by other input probabilities (Table I).

CONCLUSION

The optimal input probability q.p: for Monte Carlo test
generation is found to be a function of the fan-ins of the gates
and the number of levels in the circuit. For practical circuits,
gopt can be obtained by using the average fan-in. It appears
that one should try random patterns with both probabilities
Gopt and 1 — gqpt while testing practical forms of {AND, OR,
NOT} logic when gp is obtained from the NAND model. Al-
though the variation of the input probability has been sug-
gested in earlier papers [6]-[8], the results of this correspon-
dence are easier to apply to large circuits. A further applica-
tion of this analysis is in logic testing without the prior test
generation [2].

The present analysis is statistical, and hence may be appli-
cable to large circuits only. Furthermore, the model used in
the analysis [5] restricts its applicability to tree-type combina-
tional networks.
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