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ABSTRACT

Methods are developed for interpreting the
information contained in testability measures. Two
types of inferences are sought. First, the relationship
between the testability measure for a fault and its
detectability is investigated. Second, the question,
how testability values can be used to predict the test
length required to achieve some given fault coverage,
is attempted. Real LS| circuits are used as
illustrations.

INTRODUCTION

As logic circuits become more dense, and more
complex, the problem of test generation, in general,
exceeds the capacity of existing computing resources
[1]. One well accepted approach for reducing testing
difficulties is to consider circuit testability as early as
possible in the design cycle. Several -algorithms for
measuring testability in digital circuits have been
proposed [2]-[6]. Each of these algorithms assumes that
testability is an inherent property of the circuit based
solely upon the circuit structure (or topology). This
assumption allows estimation of the circuit's testability
before test generation is begun. One basic requirement
of a testability analysis algorithm is that it should be
computationally simpler than the test generation. If the
testability calculation is fast and if it accurately predicts
the difficulty of test generation, then problem circuits
can be identified early in their design cycle, and
remedial actions can be taken as part of the design. If
the testability results are accurate for individual internal
circuit nodes, then areas of poor testability can be
identified. This information can be used to direct circuit
modifications which improve testability.

Clearly good, computationally fast and accurate
testability measures would be useful tools for digital
circuit designers. Some of the currently used testability
measure programs have been described in [7]-[9]. This
paper does not suggest a new testability algorithm. It
does not suggest modifications or enhancements to
existing testability measures. Instead, we ask what
useful information comes from a testability measure and
we propose exact statistical metrics to evaluate the
quality of information produced by a testability measure.

The examples use results from SCOAP, but the
statistical criteria can be applied to any testability
measure. Only recently, the workers in this area have
started looking into interpretations of testability
measures. Previous work [10]-[13] on evaluating
testability measures has been aimed at comparing the
composite testability of several circuits with actual test
generation experience. In contrast, we compare detailed
testability predictions for the faults within one circuit.

The key point here is that the utility of a designer’s
response to a testability measure will be determined by
the quality of information in the testability measure’s
results. An automobile driver may be able to fairly
accurately judge his speed by the level of engine noise
and external visual perception if his speedometer does
not work. In contrast, the rate of change of the amount
of gasoline in the fuel tank is a poor indicator of the
car's speed. The utility of a measure itself may also
depend upon how easy it is to compute and to analyze.

The statistical calculations proposed below evaluate
the utility of testability measures for the associated
designer task.

LIMITATIONS OF TESTABILITY MEASURES

In this discussion we will use one of the testability
measures, namely, SCOAP [5], [8]. Similar arguments
can be applied to other measures. SCOAP produces six
values for each node in a logic circuit: combinational
zero controllability CCO, combinational one controllability
CC1, combinational observability CO, sequential zero
controllability SCO, sequential one controllability SC1,
and sequential observability SO. The values of each of
these variables grow larger as the required testing effort
increases. These values 'provide a quantitative
measure of the difficulty of controlling and observing the
logic value of internal nodes from considerations of
circuit topology alone [5]'. The values are estimates
because of the simplifying assumptions made by the
algorithm. For example, Figure 1 shows two realizations
for a very simple digital circuit -- an inverter. The
SCOAP algorithm produces different (CCO) values for
the two realizations because it assumes all inputs to all
logic elements are independent. In this case, the
assumption is not valid for the NAND gate realization.

All testability measures have similar simplifying
assumptions so that all results are estimates. The
amount of information degradation resulting from such
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CC@(Z)=CCl(I)=I

a. Inverter realization
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CC@(Z)=CCI(A) + CCI(B)=2

b. NAND realization

Fig. 1 Two realizations of an inverter.

assumptions will vary with the circuit designs
themselves and with the way the values are interpreted.

A second limitation of testability measures involves
the restricted information source on which they rely. As
shown in Figure 2, testability measures produce their
results on the basis of circuit structure only. The actual
testing process also involves a test pattern generator
which is not considered by the testability measure.
Clearly, the actual expense and difficulty of testing will
depend heavily on the ability and sophistication of the
test pattern generator as well as the circuit structure.

Other limitations exist, but the point is by now clear.
Since the raw information from testability measures is
not exact, some evaluation of the utility of testability
values is necessary. This utility may vary considerably
based upon the way in which the values are used.

WHAT DESIGNERS WANT TO KNOW

Usually, the test generation process goes in the
following way. A set of single stuck-at faults is
postulated for nodes in the circuit. Sufficient tests are
generated to detect most of these faults. The results
are: (1) a set of test patterns, (2) the fraction of detected
faults (which serves as a figure of merit for the test set),
and (3) the set of detected (or undetected) faults.

Two questions seem to be the most common from
logic designers who are potential users of testability
measures. The first question is: "Will this device require
an inordinate amount of time, level of effort, and/or test
length in order to provide acceptable testing?" If the
answer to this question is "no", then the second question
is never asked. For the case of potential problem
designs, the next question is: "What are the problem
areas in the design where a modification can ease the
testing problem?"

The first question seems to be a simpler one than the
second because the first requires some general
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information about the entire design. In contrast, the
second question requires detailed information about
individual components of the design.

Testability measures usually produce values for each
node in the design. This information might be useful for
answering the second question. These details must be
combined in some way in order to provide information at
the higher, overall design level implied in the first
question.




Unfortunately, both questions are too vague to allow
a meaningful statistical evaluation of the utility of
testability measures. However, similar questions can be
formulated which allow exact statistical evaluation.

FAULT-SPECIFIC TESTABILITY DATA

Every design eventually produces the results
described in the last section--a set of test patterns and
detected/undetected fault sets. The statistical
measures presented below evaluate the accuracy with
which these results can be predicted based upon
testability analysis. All these measures compare the
testability predictions with actual test pattern generation
results for particular design cases.

SCOAP does not directly produce fault-specific data.
At a point p in the circuit, there will be three
combinational values:

1) CCO(p) ,
2) cC1i(p),
and 3) CO (p).

Note that if p is stuck-at-zero, then to detect the fault it
will be necessary to drive p to a logic one-- CC1(p) --
and also to observe the resulting logic value at p --
CO(p). Assuming that these tasks are independent, the
total effort is:

testability(p stuck at zero) = CC 1(p) + CO(p).
Similarly:
testability(p stuck at one) = CCO(p) + CO(p).

In this way, simple addition can be used to collect fault-
specific measures from SCOAP results. If desired, the
sequential SCOAP values (SCO, SC1, and SO) can also
be included, but from our experience it seems that the
combinational numbers are always much larger than the
sequential numbers so that including the sequential
parts in a simple summation makes little or no difference
in the final result. Other ways of including sequential
values in the above formulation were not investigated.

With the simple mapping described above, a
numerical value can be assigned to every circuit fault
based on SCOAP's testability values. The actual test
generation process produces information about which
faults are actually detected and which faults remain
undetected. These two pieces of information can be
compared statistically to measure the extent of
agreement between testability predictions and actual
fault detection results.

PROBABILITY OF DETECTION

Whether or not a fault is detectable is a deterministic
phenomenon. In particular, all the nonredundant faults
are potentially detectable. In practice, however, a test
generation procedure has limits with respect to human
effort, CPU time, number of test vectors, etc., and certain
(non-redundant) faults will remain undetected. Under
given circumstances, therefore, a fault will have only a
certain probability of being detected. Since testability
measures are often regarded as measures of the effort
of test generation, we assume that the probability of
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Fig. 3 Fault detection given testability for a large
combinational circuit

detection (for a given test generation procedure) should
be related to the testability measure.

CONDITIONAL PROBABILITY OF DETECTION GIVEN
TESTABILITY VALUE

We ask: Is the probability of detection of a fault in
fact dependent on its testability value? In order to
answer this question, a set of testability intervals is
selected. Each fault is assigned to exactly one
testability interval based upon its testability value. The
fraction of detected faults in each testability interval
corresponds to the probability of detection of faults in
the given testability interval. This statistical measure
can be evaluated many times as the test patterns are
applied during fault simulation. The result is a family of
fault coverage plots where each member of the family
corresponds to one testability interval.

Figure 3 shows an example of such results for a
large combinational circuit with over 3000 faults. Since
the testability values in SCOAP increase with required
test generation effort the faults with low testability
values are quickly detected, and their probabilities of
detection quickly approach one. In contrast, faults with
the greatest testability values are detected more slowly,
and their final probability of detection is only about 0.7 .
For this example, the testability information seems to be
good in that the fault detection performance consistently
improves as testability improves. However, note that
even the least testable faults have a .7 probability of
detection. Thus, if a designer tries to improve circuit
testability by reducing the testability values for all faults
in the highest interval, then 70% of the effort is wasted.

Figure 4 shows a second example of fault detection
performance given testability intervals. The two circuit
sizes are almost identical, but this circuit is sequential in
nature. For this case, the difference in fault detection
performance is not consistently indicated by its
testability value -- the plots cross one another, and
faults in the testability interval 401-600 have a higher
final probability of detection than those in the interval
201-400. Larger testability intervals would probably
produce results more like those of Figure 3.
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Fig. 4 Fault detection given testability for a large sequential
circuit

Generally, the conditional probability of detection
given testability value indicates how well the testability
measure predicts the detectability of fault sets with
similar testability values. This statistical measure also
suggests what fraction of the faults in each testability
inferval will be detected.

Different testability measures or different versions of
the same testability measure can be compared via this
analysis. The measure which most effectively
differentiates faults with high probabilities of detection
from those with low probabilities of detection is the most
desirable testability measure.

This statistical tool also can provide a figure of merit
for a testability measure by indicating what fraction of
faults in the least testable interval are in fact undetected
after the application of all test patterns. An ideal
testability measure would result in 100% of all of the
most testable faults and 0% of the least testable faults
being detected (for a suitable selection of testability
intervals).

COEFFICIENT OF CORRELATION BETWEEN
TESTABILITY AND DETECTION

A second statistical calculation provides one simple
numerical value which is an estimator of the testability
measure’s ability to predict which individual faults will
be detected and which individual faults will not be
detected.

One random variable --d(f;)-- is associated with
each fault, f;,in the circuit based on detection results. If
a fault is detected during simulation, the value +1 is
assigned to d(f;), if the fault is not detected, the value
—1 is assigned.

A second random variable --d(f;)-- is associated
with each fault in the circuit based on testability value.
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Fig.6  An example of zero correlation

If a fault's testability is below a threshold to be
discussed later, then a predicted detection is inferred,
and d(f;) is assigned the value +1. If a fault's
testability is above the_threshold, then a predicted non-
detect is inferred, and d(f;) is assigned the value —1.

_ The coefficient of correlation (o) between d(f) and
d(f) is a statistical estimate of the testability measure’s
performance in predicting whether or not faults will be
detected. The value of p will vary with the selected
threshold. In our analysis, all possible threshold values
are considered, and the threshold which maximizes p is
used.

Figure 5 shows one possible case where the two
random variables are perfectly correlated and p has the
value +1. Because (for this example) d and d have
zero mean and unit variance, p may be interpreted as
the slope of the best least-mean-square linear fit to the
data. In this case, the testability measure is a perfect
predictor of fault detection.

Figure 6 shows a second case where the two random
variables are uncorrelated and p has the value 0. Again
d and d have zero mean and unit variance, and the best
linear fit is a line with zero slope (o). In this case, the
testability measure gives absolutely no indication of fault
detection.

In actual circuits, the value of p will be expected to
have a value between +1 and 0. The closer p is to +1,
the better the testability measure’'s ability to predict
individual fault detections.
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Fig. 7 Coefficient of correlation versus fault coverage for a
large combinational circuit
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Fig. 8 Coefficient of correlation versus fault coverage for a
large sequential circuit

The statistical measurement described above can be
made at selected points in the test pattern sequence
during fault simulation. The results can be plotted as p
versus the circuit's fault coverage.

Figure 7 shows such a plot for the same
combinational circuit used to produce Figure 3. Figure 8
shows a similar plot for the same sequential circuit used
to produce Figure 4. Note that in both cases, the value
of p is always relatively small (less than 0.4).

Figures 7 and 8 indicate that for these two circuits
and their test sequences, the testability measure does a
relatively poor job of predicting which individual faults
will be detected and which individual faults will remain
undetected. On the other hand, Figures 3 and 4 indicate
that for the sameé circuits and test sequences, the same
testability measure does a better job of predicting which
fault sets have higher probabilities of detection and
which fault sets have lower probabilities of detection.

Such data suggest that there is a level of resolution
at which testability measures can provide useful
information. Attempts to extract more detailed

information about a fault have a small likelihood of
success. In particular, testability measures have little
chance of predicting individual fault detection
performance. Even so, general information at the entire
circuit level may be available via testability measures.

DETECTION PROBABILITY AS A FUNCTION OF
TESTABILITY MEASURE

In this section we give an analysis which predicts
fault coverage information from the testability measure.
Suppose a fault in a circuit has a testability measure t.
Let its detection probability p(t) be a function bounded
between O and 1. For SCOAP, t will be the sum of the
combinational observability and the combinational
controllability of the faulty line. Since 1<t=<co, we
assume

p(t)=e™™, (€))

where « is a parameter to be discussed later. Notice
that an infinite value of testability measure corresponds
to a zero probability of detection. In SCOAP the effort of
testing is represented by the computed values. Let us
consider a circuit with N faults having testability
measures tq, t,..ty. If the fault detection performance
of each test vector is statistically independent, then,
after applying v vectors, the probability of detecting the
ith fault is

1= [1-pt)|

The fault coverage is then given by

£(v) =—;I— §{1— [1—p(t,-)]v}

e _1_ —
] gt [ 1= p()]|’ (2
Substituting (1) into (2), we get )
= 1 —at; v
f(v)—1—wi-1[1—e ] (3)

The value of a should depend upon the test generation
procedure. In other words, o should relate the test
generator to the testability measure which is a function
of circuit topology alone.

We will determine « by an experimental procedure.
Suppose we have an ordered set of v vectors for a
circuit such that the ith fault, which has a testability
measure f;, is detected on the v;th vector. Then the
probability of this event is

[1=pt)]"™" pp.

We define the likelihood function or the joint probability
of detecting the faults in this particular order as

e ’_r:11[ e p(ti)]vi_1 p(t)

The value of o that maximizes this probability is called
its maximum likelihood estimate. Substituting from (1),
and taking logarithm, we get

N N o
InL=—-a3 t,-+2(v,-—1)ln[1—e ']
i=1 i=1

Paper 13.3
395



After differentiating with respect to a and setting the
derivative to zero, we obtain the maximum likelihood
estimate of o as follows:

i —at;
1 dL N N (vi—1)e 't
LI bk el =
L de i§1 ) i§1 1—e
N (vi—1) e "
of Y| Vl—o—sFT0 ™ 0 (4)
i=1 1—e

For a = 0, the left hznd side (LHS) in (4) is —co. Also,
for a =00, LHS = 3 t; >0. Thus (4) has a solution in

i=1
the range O0<a<oo.

For the 3,000 gate circuit considered in the previous
discussion, a set of 2,000 vectors was generated. Fault
simulation determined the vector number (v;) on which
the ith fault was detected. Of the 3949 nonredundant
faults 3371 faults were detected by the vector set. The
SCOAP program was used to calculate t; for each fault.
Solving (4) numerically, o« was obtained as 0.012. This
value when substituted in (3) gave estimated fault
coverage of 87 percent at 2,000 vectors, 92 percent at
4,000 vectors, and 95 percent at 10,000 vectors.

CONCLUSIONS

It seems clear that good testability information is of
significant use to logic designers especially if it is
available early in the design cycle. Existing testability
measures do provide some information about the circuit
as it is implemented. However, care and good
engineering judgement should be used in the
interpretation of testability results.

For the design cases which have been presented,
some conclusions can be drawn. First, the testability
data provide a relatively poor indication of whether or
not an individual fault will be detected by a given test.
Second, the testability data contain some indication of
the probability of detection of a fault. The quality (or
resolution) of these data seems to vary from one circuit
to another. Finally, statistical tools have been presented
to estimate the required testing effort for given testability
values. The useful applications of this estimate require
further investigation.

The statistical tools described here should be useful
for any design effort which employs testability measures
as part of the design process. They can be used to
indicate the level of confidence which should be given to
testability results. These same tools can also be used
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to compare various testability measures in terms of the
quality of information which they produce.
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