
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-022-06016-9

Applying Artificial Neural Networks to Logic Built‑in Self‑test:
Improving Test Point Insertion

Yang Sun1,2 · Spencer K. Millican1

Received: 16 November 2021 / Accepted: 15 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This study applies artificial neural networks (ANNs) to increase stuck-at and delay fault coverage of logic built-in self-test
(LBIST) through test point insertion (TPI). Increasing TPI quality is essential for modern logic circuits, but the computational
requirements of current TPI heuristics scale unfavorably against increasing circuit complexity, and heuristics that evaluate
a TPs quality can mask the effects of delay-causing defects that are common in modern technologies. Previous studies show
ANNs giving substantial benefits to a wide array of electronic design automation (EDA) problems, including design-for-
test (DFT), but their application to various DFT problems is in its infancy. This study demonstrates how to train an ANN to
evaluate test points (TPs) and demonstrates a substantial decrease in TPI computation time compared to existing heuristics
while delivering comparable stuck-at and delay fault coverage.

Keywords Artificial neural networks · Built-in self-test · Stuck-at faults · Delay faults · Test point insertion

1 Introduction

For modern technologies, creating high-quality digital tests
is a challenge that, if fulfilled, provides several advantages to
circuit developers and manufacturers. Semiconductor manu-
facturing is an imperfect process despite decades of semi-
conductor research [15], and the release of defective devices
has both economic (e.g., loss of reputation) and catastrophic
(e.g., loss of life) consequences. This latter consequence is
of growing concern for modern technologies, since devices
are more frequently deployed in life-critical applications
(e.g., self-driving cars and implanted medical devices). For
these reasons, creating high-quality manufacturing tests is
necessary to detect and to prevent the release of defective
circuits or to fuse-off defective portions and release par-
tially-good circuits. Additionally, high-quality tests may
need to be applied in-the-field to ensure continuing circuit

reliability: aggressive technology scaling accelerates post-
manufacturing degradation and the occurrence of intermit-
tent soft errors [21], and like pre-delivery tests, tests must
detect (and possibly remedy) these in-field defects.

Logic built-in self-test (LBIST) is an ideal test mech-
anism for delivering high-quality manufacturing and
post-manufacturing tests. LBIST uses on-chip stimulus
generators, typically in the form of pseudo-random pat-
tern generators (PRPGs), to stimulate and set the state of
logic circuits while observing circuit responses. The logic
circuit industry uses LBIST to apply manufacturing tests
since LBIST can obtain significant fault coverage while
decreasing test application time, which in turn reduces
manufacturing test costs. Additionally, in-field tests can
use LBIST since embedded LBIST circuits can test circuits
with minimal functional interruptions by saving the circuit
state, applying test-enabling signals, and then reloading the
circuit state to resume normal circuit operation.

However, keeping LBIST quality high is challenging
under aggressive technology scaling since logic circuit
complexity is growing faster than design-for test (DFT)
techniques can remedy. LBIST tests have difficulty detect-
ing random pattern resistant (RPR) faults (see Sect. 2.1),
which is unfortunate since these faults become more
common as logic circuitry becomes more complex. Many
DFT techniques attempt to detect RPR faults during
LBIST, such as weighted random pattern testing [27] and

Responsible Editor: E. Amyeen

 * Spencer K. Millican
 millican@auburn.edu

 Yang Sun
 yzs0057@aburn.edu

1 Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849, USA

2 Marvell Technology, Inc., Santa Clara, CA 95054, USA

/ Published online: 4 August 2022

Journal of Electronic Testing (2022) 38:339–352

http://orcid.org/0000-0003-3682-4610
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06016-9&domain=pdf

1 3

deterministic pattern seeding [17]. One particular tech-
nique, test point (TP) insertion (TPI) [1, 11, 19, 22, 26],
is the focus of this article, since TPI can be used in con-
junction with other techniques to further increase LBIST
quality. Unfortunately, the computational complexity of
the algorithms that implement TPI increase faster than the
size of logic circuits [24]. Since computational resources
are in high demand by several electronic design automa-
tion (EDA) tool users during circuit development, design-
ers must sacrifice testability or other circuit qualities if
EDA tool designers do not increase algorithm efficiency.

New computing methods, such as artificial neural net-
works (ANNs), can increase algorithm efficiency and keep
LBIST quality high. ANNs can solve complex problems,
such as image and speech recognition, and significantly
increase the quality of existing algorithms while simul-
taneously decreasing computation time. Recently, studies
applied ANNs to several EDA problems with noteworthy
success [11], but applying ANNs to DFT problems is in
its infancy.

This article demonstrates how ANNs can increase TP
quality when applied to TPI while drastically decreas-
ing algorithm runtime. This article is the accumulation of
several years of work [13, 22] which made the following
contributions:

1. The creation, training, and use of an ANN that evaluates
the stuck-at fault detection effectiveness of TPs (which
this article further improves), and a comparison of TPI
stuck-at fault coverage against heuristic-based TP evalu-
ation.

2. The creation, training, and use of an ANN that evaluates
the delay fault coverage impact of a TP, and a compari-
son of delay fault coverage when used in TPI against
heuristic-based TP evaluation.

3. A thorough run-time analysis of TPI and a conclusive
demonstration of an ANN’s ability to reduce TPI runt-
ime by orders of magnitude.

Beyond the accumulation of previous studies, this arti-
cle makes the following contributions not seen in previous
literature:

1. The ability to train a TP-evaluating ANN to consider
the number of LBIST vectors, which makes the method
more applicable to typical LBIST uses.

2. An improvement to the TP-evaluating ANN’s output
label based on its meaning and relevance during an
LBIST test.

3. A detailed exploration of the impact of ANN complex-
ity; experiments compare three ANNs with different fea-
ture sizes and observe the impact of increased accuracy
in lieu of possible longer computation time.

The remainder of this article is organized as organized as
follows. Section 2 provides background and motivation for
this article’s contributions to TPI. Section 3 presents exten-
sions to previously published work [22], which is an ANN
used for stuck-at fault detection, and Sect. 4 shows how a
similar ANN can be used for delay fault detection. Section 5
shows how ANN training and hyperparameters – i.e., the
structure and complexity of the ANN – can significantly
affect an ANN’s quality. Section 6 evaluates the ANN-
based TPI method compared to equivalent heuristics, and
Sect. 7 concludes this article and proposes future research
directions.

2 Background & Motivation

2.1 Test Points

In the context of LBIST, TPs aim to make detecting RPR
faults easier for circuits under pseudo-random stimuli. A
typical example of an RPR fault is the output of a 64-bit
wide OR gate (e.g., a global error-detecting circuit which
polls 64 individual error lines) stuck-at logic-1. Exciting
this fault requires driving the faulty line to logic-0, which
requires every input to the OR gate to be logic-0. Under
truly random stimulus (i.e., every input to the OR gate has a
50% chance of being logic-0/1), the probability of this input
vector occurring is 2−64 ≈ 0.

To make RPR faults easier to detect, TPs make circuit
lines either (1) easier to control or (2) easier to observe. In
the above example, when forcing a subset of input pins to
logic-0 during test, the probability of exciting and detecting
the fault doubles for every pin forced.

Several implementations of LBIST TPs exist in literature,
but the typical implementation consists of control points
and observe points. Intuitively, a multiplexer can force cir-
cuit lines during test: a test enable (TE) signal controls the
multiplexer, which leaves the circuit function intact when
inactive but forces a desired value when active. This imple-
mentation is wasteful: circuit lines requiring direct control
typically need only a single value forced since the other
value is already easy to obtain. Alternatively, TE can force
the desired value with a single gate, as illustrated in Fig. 1,
thus making a control point. Likewise, a new circuit output
can be added to hard-to-observe locations, thus making an
observe point. Since a line may be simultaneously hard-to-
control and hard-to-observe, such a line may need both a
control and observe point.

The additional signals for control/observe points can
either be pins or scannable latches, and tests do not need to
activate all control points simultaneously. Although algo-
rithms typically model TE and observe points as pins for
simplicity (similar to how scannable latches are typically

340 Journal of Electronic Testing (2022) 38:339–352

1 3

modeled as circuit inputs and outputs by test generators),
implementing them as circuit pins is impractical given their
high cost. Instead, scannable latches implement these “pins”:
observe points feed the input to latches and TE is the output
of a latch, and tests exclusively use these scannable latches.
When using such latches, it is possible to have multiple TE
signals for different sets of control points, and activating
sub-sets of TE signals can increase TP effectiveness [18,
25]. The effectiveness of partial control point activation is
not in the scope of this article; this study presumes that a TP
method that is effective for universal control point activation
will likewise be effective for partial control point activation.

2.1.1 Problem – Computational Difficulties

The challenge of TPI is to place the fewest number of TPs
while maximizing fault coverage. Each TP requires logic
circuitry, which in turn creates the undesirable overheads
of static and dynamic power, delay, and non-functional cir-
cuit area. Designers typically allocate budgets to TPs (and
other DFT hardware), thus TPs must increase LBIST fault
coverage to acceptable levels while enforcing a TP hardware
budget.

The problem of selecting optimal TP locations (and many
other DFT problems) is a known NP-hard problem [24], thus
existing TPI methods rely on heuristic approaches to select TP
locations. Inserting T TPs into a circuit among T ′ candidate
TPs creates C(T �,T) possible TP choices, and finding the fault
coverage impact of a choice requires computationally-intensive
fault simulation. TPI heuristics address this by replacing fault
simulation with less accurate fault coverage estimations [6, 26]
while simultaneously using greedy-algorithm approaches. The
most common approach is iterative [11, 19, 26]: heuristically
evaluate candidate TPs to find the one which increases fault
coverage the most, insert it, and repeat this process until no
more TPs are desired or needed.

Unfortunately, the computational complexity of iterative
TPI grows faster than available computing resources. Let G
be the growth in a size of a circuit, i.e., the number of gates
in a circuit that grows with every technology generation. To
insert a single TP, every candidate TP’s impact on fault cov-
erage must be evaluated to find the best one, and the number

of candidate TPs in a circuit is proportional to the size of the
circuit, i.e., one or more candidate TPs can exist on every
gate input/output (or in equation form, T � ∼ G): this creates
a CPU run-time complexity of O(G) to select a single TP if
the time to calcualte a TP’s quality is constant. However,
the complexity of TP-evaluating heuristics is not constant:
heuristics must evaluate the TP’s effect on fault coverage on
every gate in the circuit, which itself is an O(G) time calcula-
tion. Although TPI methods attempt to minimize this time by
only evaluating areas of the circuit effected by the TP (e.g.,
up/down-stream of the TP [26]), such areas can still encom-
pass the majority of the circuit. Likewise, simulation-based
TPI methods [23] still require some degree of re-simulation
with the TP in-place to find the TP’s true impact on fault
coverage. Besides increasing the time to evaluate a TP’s
impact on fault coverage, increasing circuit complexity also
introduces more circuit faults (denoted as F ∼ G), and thus
requires more TPs to obtain reasonable fault coverage. All
these factors put together implies TPI CPU time grows with
respect to O(T ⋅ G ⋅ F) , and since all of these variables are
related to circuit complexity, this can be simplified as O

(

G3
)

 .
Even if computing resources grows with respect to circuit
complexity (i.e., more complex circuits give faster comput-
ers) – thus dividing this growth by G – the CPU time still
grows at a quadratic rate of O(G3∕G) = O(G2).

2.1.2 Problem – Delay Defect Masking

As newer technologies implement logic circuits, tests must
model and detect nuanced defects, most notably delay
defects. Tests must still detect stuck-at faults, but technol-
ogy scaling makes delay-causing defects more common
[16]. To detect these defects, LBIST (and other tests) must
perform at the circuit’s designed clock speed and create the
transitions necessary to excite and propagate failing transi-
tions to observable locations. For these reasons, LBIST is an
ideal technique for delay fault testing, as applying tests with
chip-internal hardware eliminates the need for slow external
pattern generators.

Many studies demonstrated TPs effectively testing stuck-
at faults, but control points can lower delay fault coverage
when TPI targets stuck-at faults. Delay faults require transi-
tions on faulty lines to both excite and propagate a fault’s
effect to observable locations, but this is impossible when
control points are active: control points force constant val-
ues, and therefore transitions can never occur on a controlled
line, as illustrated in Fig. 2.

Ad hoc remedies can improve delay fault coverage when
using TPs, but such approaches create undesirable complica-
tions. Existing TPI methods may forbid control points (i.e.,
control points will not be in the candidate TP list), but this is
impractical. First, control points require less area and power
overhead compared to observe points (one gate and a shared

Control-1 TP Control-0 TP Observe TP

TE TE
Output

Fig. 1 The typical implementation of LBIST TPs. Control TPs require
an extra test enable (TE) signal and observe points require an extra
output pin or scannable latch

341Journal of Electronic Testing (2022) 38:339–352

1 3

TE latch vs. one latch per observe point). Second, control
points may be the best TP choice for some circuits, since
some faults (stuck-at or delay) may require forced circuit
lines, which observe points cannot create.

2.2 Artificial Neural Networks

An ANN is a model of a biological neural network (i.e., a
brain) in software or hardware. ANNs excel at solving prob-
lems when manually-developed heuristic algorithms falter.
ANNs “learn” by providing problems with known solutions
(i.e., training data) and “train” themselves until correct/accu-
rate results are achieved for each training problem. In the
past, ANNs were infeasible to implement due to a lack of
training data [8], but many industries today use ANNs, with
handwriting and speech recognition being notable examples.

Creating and training ANNs is described in other sources
[8], but below is a brief summary. For readers with an EDA/
DFT background, some ANN terms can cause confusion
since they are used in common in English but have a par-
ticular meaning in ANN research; for clarity, such terms are
highlighted in italics below.

Creation (ANN Structure Selection) Many ANN structures
exist in literature, but Fig. 3 illustrates the prototypical
ANN structure. ANNs contain neurons, and some neurons
are input feature and output label neurons. Dendrites mul-
tiply (weigh) and add/subtract (bias) neuron outputs as well
as connect the neurons. Neurons have activation functions
that calculate the neuron output based on neuron inputs.

Many choices exist for neuron activation functions and neu-
ron arrangements (e.g., the number of levels and neurons
per level), and these hyperparameters are best optimized
through trial-and-error.

Training Training finds weights and biases such that a set of
example inputs will provide desired outputs. Depending on
the ANN configuration, the number of features and labels,
and the amount of training data, this can be computationally-
intensive and is not an optimal process. Time permitting,
repeated training using various hyperparameters will opti-
mize weights, biases, and the ANN topology.

Recently, studies applied ANNs of various forms to DFT
testing problems, including scan-chain diagnosis [4] and
fault diagnosis [7], but few studies applied ANNs to TPI.
Ma et al. [11] applied ANNs to TPI, but this study limited
its scope and application. The study used observe points
exclusively, analyzed only four benchmarks, did not analyze
CPU time, and modeled only stuck-at faults.

3 ANN for Stuck‑at Fault TPI

This section describes the function, training, and use of an
ANN for increasing stuck-at fault coverage through TPI
while also minimizing TPI CPU time. This ANN is an
enhanced version of the ANN described in [22]: modifica-
tions to the ANN allow (1) more accurate predictions of
TP quality under varying amounts of random stimulus and
(2) more relevant fault coverage impact metrics to further
enhance TP quality.

The final result of training will be several different ANNs.
Each ANN will predict a single TP type’s (i.e., control-0,
control-1, or observe) impact on a type of fault coverage
(i.e., stuck-at fault coverage, with the next section’s ANNs
predicting the impact on transition delay fault coverage).
For example, one ANN will judge the impact a control-1
TP has on stuck-at fault coverage, and a separate ANN will
judge the impact an observe TP has on delay fault coverage.
Although it is possible to train a single ANN with multiple
outputs, this would increase training time and complexity.
Once the ANNs are trained, it can be re-used for any cir-
cuit without re-training. The final configuration of ANNs is
described in Sect. 6.1.

3.1 Function, Use, and Input Features

The proposed ANNs evaluate TPs and can be used in any
iterative TPI algorithm [11, 19, 26]. In each iteration, the
algorithm evaluates every individual TP to find the “best”
TP (i.e., the TP which increases fault coverage the most),
and the algorithm inserts this TP into the circuit. This

Logic

Control-1TE

Normal

Faulty

Active TP

Circuit & TP Observed Behavior

End of Clock Period

Fig. 2 Active control points force values and block transitions: this pre-
vents delay-causing defects from exciting and propagating to observ-
able locations

a) Single Neuron b) Neural Network

Fig. 3 An example of a a single neuron with input signals, input weights,
and an activation function, and b a neural network composed of multiple
layers

342 Journal of Electronic Testing (2022) 38:339–352

1 3

iterative selection continues until (1) the number of TPs
inserted reaches a pre-designated limit (representing hard-
ware overhead), (2) the predicted fault coverage reaches a
pre-designated limit (i.e., no more TPs are necessary), (3)
no TPs are predicted to increase fault coverage, or (4) a CPU
time limit is reached.

The ANNs evaluate TPs using circuit probability infor-
mation, i.e., the same controllability-observability program
(COP) values [2] that many other TPI methods use [11, 19,
26], but unlike other TPI methods, the ANNs do not require
recalculating this information when evaluating a TP. Every
TP selection requires recalculating these values only once,
but evaluating a single TP does not require recalculating
COP values. This is a noteworthy potential advantage of the
ANNs over TP-evaluating heuristics that require recalculat-
ing values when evaluating every TP (see Sect. 2.1.1), since
calculating COP values for a circuit with G gates requires
O(G) time (although some algorithms attempt to minimize
unnecessary recalculations [26]). Performing COP once per
TP selection as opposed to once per TP evaluation reduces
the time to evaluate a single TP from O(G) to O(1) , which
reduces the time to select the best TP amongst T TPs from
O(T ⋅ G) to O(T) . However, for ANN-based TPI, long train-
ing times might negate this benefit. The overall effect on
TPI time (with and without training) will be explored in
Sect. 6.3.

In contrast to conventional TP-evaluating heuristics, the
ANNs perform their evaluation on a transformed subcir-
cuit centered around a candidate TP location as opposed
to estimating a TP’s impact on the entire circuit. This is a
consequence of ANNs’ rigid structure: the input size of an
ANN must be of a set size, whereas logic circuits can be of

any size and topology. In theory, the ANNs can analyze an
entire circuit, but this requires infeasibly large ANNs that
are impossible to train. Instead, the ANN analyzes features
around a TP’s location by analyzing a subcircuit L levels
forwards and backwards of the indicated location, as Fig. 4
illustrates.

Using a subcircuit to analyze a TP’s impact on an entire
circuit presents a potential detriment. The ANNs use less
information for their TP-evaluating calculations and may
return less accurate qualifications. The ANNs will be as
accurate (or more) as a heuristic using identical input fea-
tures only if L is large enough to capture the entire circuit,
but this creates infeasibly large ANNs that are impossible
to train. Section 6.2 explores whether analyzing subcircuits
decreases the ANNs’ performance compared to heuristics.

A nuance of the ANN subcircuits is they must have a par-
ticular circuit configuration (hence “transformed” in trans-
formed subcircuits): every gate must have at most two inputs
and two fan-outs. The ANN input features represent values
at N +M locations going backwards and forwards, respec-
tively, through L circuit levels, with each location in the
array representing the features at a gate. Figure 5 illustrates
this feature array and the locations corresponding to each
array location. The training algorithm and TP-evaluating
subroutine transforms circuits that are not in this two-input,
two-fanout form. The transformation replaces gates with
more than two inputs with a tree of gates that implement
the same function, and it replaces nets with more than 2
fan-outs with trees of buffers. For gates with one input or
one fan-out, “default values” replace missing values in the
feature string: non-existent lines have 50% controllability
and 0% observability, and non-existent gates are replaced

Fig. 4 Since the input sizes of
the TP-evaluating ANNs are
constant, training and ANN
evaluation extracts subcircuits
with a two-input, two-fanout
structure. Here, “CUT” rep-
resents circuit under test, “X”
marks the TP location

CUT

X

Sub-circuit

0

1

2 N+2

N+1

X

L levels L levelsX
N

...
...

...

M+N

...

Fig. 5 The ANN input features
are the COP controllabilities
(CC), COP observabilities
(CO), one-hot encodings of gate
types (Gate) before and after the
TP location, and the number of
LBIST test vectors (V)

CC0,CC1fo,CC0a,CC0b,CC2fo,CC1,CC2,…,CCNb,CCN+1a,CCN+1b,…,CCN+M-1,CCN+M,
CO0,CO1fo,CO0a,CO0b,CO2fo,CO1,CO2,…,CONb,CON+1a,CON+1b,…,CON+M-1,CON+M,
Gate_0,Gate_1,Gate_2,…,Gate_N,Gate_N+1,Gate_N+2,…,Gate_N+M, V

0

1

2

0a

0b

1fo

2fo

N+1

N+2

N+1b

N+2a

N+1a

N+2b

……
N M+N

… …

NN Input Vector

343Journal of Electronic Testing (2022) 38:339–352

1 3

with a none-hot encoding as opposed to a one-hot encoding
(e.g., 0001 = AND, 0010 = OR, …, 0000 = no gate). During
TPI, only TPs on lines present in the original circuit will be
evaluated and inserted.

The final ANN input is the number of pseudo-random
vectors applied during LBIST, which is an addition to pre-
vious studies [22], which presumed every test applied ten-
thousand vectors. Depending on the number of LBIST vec-
tors to apply, the optimal location of TPs can change. To
account for this, this study appends the number of vectors
to apply, V , to the ANN feature string and expands the train-
ing data generation process (see the next section) to train
the ANN with this additional feature. Industrial users can
benefit by training their ANN with a wide range of V values
representitive of typical industrial practices – e.g., 1 K, 256
K, and 1 M vectors – and should gather many such training
vector ranges as part of their large training databases. This
academic study constrains itself to fewer than ten-thousand
vectors.

3.2 Training and Output Labels

Training the ANN is a two-step process: first, fault simula-
tion with TPs obtains training data; second, a training algo-
rithm uses this data to train the ANN while exploring hyper-
parameters to maximize accuracy. This section describes
both processes.

The ANN’s output label is the number of additional (or
possibly fewer) faults detected in the subcircuit when insert-
ing a TP into a subcircuit’s center “X”, as shown in Fig. 4.
This label contrasts with the label from previous studies
[22], which was the relative change in fault coverage in
the subcircuit. This new label more accurately models the
impact of partial subcircuits on the entire circuit: TPs on
separate subcircuits can have the same impact on subcir-
cuit fault coverage (e.g., +10%) while detecting a different
number of faults because one subcircuit is filled with more
default values that do not contain faults to detect, which
makes the TP that detects more faults the better choice. If
a TP will decrease the number of faults detected (i.e., by
masking faults), the label is a negative number.

Using the change in the number of faults detected in a
subcircuit, as opposed to the number of faults detected in the
entire circuit, poses a challenge: the quality measure may not
adequately represent the TP’s impact on the entire circuit. It
is possible that many faults will be detected in the subcircuit
but fewer faults will be detected outside the sub-circuit and
vice versa. Section 6.2 explores if this potential detriment
has a negative impact on fault coverage after TPI.

Fault simulation collects training data for the ANNs, but
additional techniques must reduce training data collection
time. Conceptually, simulating V vectors, inserting a TP

(randomly or deterministically), and repeating fault simu-
lation to find the change in the number of faults detected
gives a TP’s true impact on fault coverage, and this result
is more accurate than any heuristic-based methods that use
less accurate fault coverage calculations [2]. However, fault
simulation is computationally demanding: fault simulat-
ing V vectors in a circuit with G gates and F faults requires
O(V ⋅ G ⋅ F) time, therefore collecting S training samples
requires O(S ⋅ V ⋅ G ⋅ F) time. To collect this training data,
reducing V is not an option, since LBIST typically applies
many vectors. This study attempted to collect training data
through the direct application of vectors to circuits, but in
reasonable overnight runs, only hundreds of training samples
were collected, and the resulting ANNs selected TPs that
consistently failed to increase fault coverage regardless of
training effort.

The first training speedup technique is to apply fault sim-
ulation to subcircuits with assistance from circuit probabil-
ity calculations (i.e., COP values). Compared to performing
fault simulation on an entire circuit, performing fault simula-
tion on subcircuits significantly reduces both G and F since
the number of faults in a subcircuit is proportional to the
number of gates, which in turn reduces fault simulation time.
However, applying random subcircuit inputs and directly
observing subcircuit outputs is not realistic: under (pseudo-)
random circuit inputs, subcircuit inputs are not truly random,
nor are subcircuit outputs always observed. To account for
this, the training data generation program first calculates
COP controllability and observability values [2] once per
training circuit. This additional one-time O(G) calculation
time is negligible when taking a significant number of sub-
circuit samples from a circuit. Then, fault simulation weighs
each subcircuit input vector using these COP controllability
values. Additionally, if a fault’s effect reaches a subcircuit
output, fault simulation probabilistically detects it using the
COP observability values of subcircuit outputs. Although
this technique significantly decreases training data genera-
tion time, the technique may hinder the ANNs’ ability to
select high-quality TPs since subcircuit controllability and
observability values are not one hundred percent accurate [2].
Section 6.2 explores this potential detriment.

A second technique reduces training data generation
time by eliminating redundant vectors. In this study, sub-
circuit sizes are small enough that applying V vectors will
guarantee redundant vectors: the number of possible vec-
tors to apply to a circuit with I′ inputs is 2I′ , and V ≫ 2I

′ .
Subcircuit input probabilities exacerbate this, since they
make some vectors more likely to occur than others. To
remedy this, the training data generation program applies
each vector v′ among the 2I′ possible subcircuit input vec-
tors at most once. This is done by calculating the prob-
ably a vector will be applied to a sub-circuit if V vectors
are applied to the entire circuit, denoted as pV (v�) . COP

344 Journal of Electronic Testing (2022) 38:339–352

1 3

values can calculate the probability a sub-circuit vector
is applied with a single random circuit vector, denoted
as p1(v�) , which in turn can find the probability of not
applying the vector among V vectors, denoted as (pV (v�)).
This is calculated using the following equation: v′

i
 are the

binary values for each subcircuit input in v′ , and CCi

(

v′
i

)

is the probability this value will occur, which is calcu-
lated using circuit-wide COP values using the following
equation.

After creating the training data, the collected data trains
an ANN under various ANN hyperparameters to minimize
ANN error (in this study, mean squared error, or MSE).
Finding a truly optimal ANN for a given training data set
is an NP-hard problem [8], and small changes in initial
training conditions and hyperparameters can significantly
impact the resulting ANN’s quality, thus a trial-and-error
process minimizes this error. Section 5 explores the effect
of different ANN hyperparameters on the ANN error.

3.3 ANN Use in TPI Flows

The use of a trained ANN in a TPI algorithm is analogous
to the use of a TP-evaluating heuristic in an iterative TPI
algorithm [26]. A trained ANN calculates a candidate
TP’s quality, and after doing so for every candidate TP,
the highest quality TP is inserted. A comparison of TPI
flows is shown in Fig. 6.

pV
�

v�
�

= 1 − pV (v
�) = 1 −

�

1 − p1
�

v�
��V

= 1 −

�

1 −
∏

∀i∈I�
CCi

�

v�
i

�

�V

4 ANN for Delay Fault TPI

As Sect. 2.1.2 discussed, TPs can block delay faults from
propagating through a circuit or from being excited, and
TPI should try to prevent this. This section’s TP-evaluating
ANNs presume using observe points exclusively (as dis-
cussed in Sect. 2.1.2) is unacceptable to designers. There-
fore, these ANNs target TP locations that increase delay fault
coverage as much as possible when using conventional TP
architectures (i.e., both control and observe points).

To apply the techniques from Sect. 3 to delay fault cover-
age, the ANNs’ output labels must change from the num-
ber of stuck-at faults detected to the number of delay faults
detected. This change is a two-step process. First, the train-
ing data collection program uses the transition delay fault
(TDF) model in lieu of the stuck-at fault model. Alternative
delay fault models exist, but studies show the TDF model
represents industrial faults, and implementing the TDF
model requires minimal changes to stuck-at fault simulators
[23]. Second, instead of probabilistically simulating 2I′ vec-
tors for each subcircuit, the training data generation program
probabilistically simulates 22⋅I′ vector pairs because delay
faults require two vectors to detect: one to set the initial state
and another to launch the circuit transition. Like the prob-
ability of applying a single vector, the probability of apply-
ing a vector pair {V1,V2} , can be calculated: pv

(

v1
)

⋅ pv
(

v2
)

 .
Also, since V ≪ 22⋅I

′ , all vector pairs are still simulated (and
faults observed) at most once.

Like the stuck-at fault-qualifying ANNs, the delay fault-
qualifying ANNs train under various ANN hyperparameters
to minimize error. The hyperparameters of these ANNs may
not be the same as the stuck-at fault-qualifying ANNs, but
to allow for a fair comparison of the two, the following

Fig. 6 The flow of ANN-based
TPI is much like other LBIST
TPI algorithms, except the
subroutine which evaluates a
TP’s impact on pseudo-random
fault coverage is replaced with a
trained artificial neural network.
Note that once the network is
trained, it can be re-used for any
number of circuits

345Journal of Electronic Testing (2022) 38:339–352

1 3

sections’ evaluations use the same amount of training time
for both ANNs. This presents a potential detriment as gen-
erating a training data sample takes more time for the delay
fault-targeting ANN, as fault simulation applies 22⋅I′ vector
pairs per sample instead of 2I′ . Section 6.2 explores the final
effect of this potential detriment.

5 ANN Training Experiments

This section explores the impact hyperparameters have on
ANN quality, while the next section determines the ANNs’
final ability to evaluate a TP. As previous sections noted,
hyperparameters greatly affect the quality of an ANN, which
includes the ANN topology (convolutional, deep neural net-
works, fully/sparsely connected, etc.), the number of neu-
rons, the number of hidden neuron layers, and activation
functions. Additionally, training parameters and effort sig-
nificantly influence ANN quality, e.g., step size (how much
to change dendrite weight and bias magnitudes each itera-
tion) and initial conditions.

Given the vast parameter exploration space, this article
limits itself to showing the exploration of two hyperparam-
eters: training data set size and the number of ANN neu-
rons. In these explorations, all other hyperparameters are
constant. These constant hyperparameters are the neuron
arrangements (two hidden layers, with variable amounts of
neurons in the first hidden and a single neuron in the second
hidden layer, and neurons using sigmoid activation functions
[12]) and training parameters (using the Adam optimiza-
tion algorithm [10] with a 0.01 training step size). Training
performs 55,000 iterations for each ANN. For every ANN
in this study, ANN error stops decreasing before these itera-
tions are complete.

5.1 Training Data Set Size

A known roadblock to previous ANN implementations is
the lack of available training data [8]: if there’s not enough
training data to find a correlation between input features and
desired output labels, then creating a useful ANN is impos-
sible. However, providing too much training data increases
training time and can degrade ANN quality through “overfit-
ting” [9]. For these reasons, this article explores how much
data is required to minimize ANN error. Whether this ANN
is useful at evaluating a TP is best explored after training
(see Sect. 6).

A random selection of ISCAS’85 [3] and ITC’99 [5]
benchmarks serve as training circuits, and ANN training
experiments are based on these benchmarks. ISCAS’89
benchmarks were not used since the combination of the
ISCAS’85 and ITC’99 benchmarks provide sufficiently
diverse sizes of circuits. Table 1 lists these benchmarks,

their physical qualities (the number of gates, inputs, and
outputs), and the number of randomly-extracted training
samples per circuit. The number of samples extracted per
circuit is proportional to the size of each circuit, i.e., larger
circuits have more samples extracted from them. In the table,
circuit Inputs and Outputs include the outputs and inputs of
latches (respectively); this study presumes circuits are tested
in a full-scan environment and thus latches are fully observ-
able and controllable during test. Note that some circuits are
small and easy to test with pseudo-random stimuli; this is
desirable for generating training data, since bad/useless TPs
must be accurately evaluated as much as good TPs in order
to avoid choosing them during TPI.

Figure 7 shows the impact different training data sizes
have on a stuck-at fault-targeting, control-1 TP-evaluating
ANN’s error. Each horizontal point corresponds to select-
ing a different number of randomly-selected training sam-
ples: 2,097 samples, 10,457 samples (used for training the
ANNs in Sect. 6, and samples from individual circuits are
given in Table 1), 20,910 samples, and 27,181 samples,
which corresponds to 0.1%, 0.5%, 1%, and 1.3% of all
possible sample locations, respectively. The first hidden
ANN layer consistently has 128 neurons. The plot labeled
Training time in Fig. 7 shows the time required to train the
ANN. The plot labeled Training error shows the final MSE
of the ANN; ideally, this would be 0% (i.e., the output
label obtained precisely matches the expected label for

Table 1 Training Benchmark Circuits

Benchmark
Circuit

Inputs Outputs Gates Training Samples

c17 5 2 13 2
b02 5 5 32 2
b06 11 15 65 2
b08 30 25 204 4
b10 28 23 223 5
c499 41 32 275 6
c1355 41 32 619 12
b04 77 74 803 16
b12 126 127 1,197 26
c2670 233 140 1,566 25
c6288 32 32 2,480 50
c7552 207 108 3,827 72
b14_1 277 299 7,145 165
b15_1 485 519 13,547 311
b21_1 522 512 14,932 345
b20_1 522 512 14,933 342
b22_1 767 757 22,507 516
b17_1 1,452 1,512 41,080 949
b18_1 3,357 3,343 111,802 2,520
b19_1 6,666 6,672 226,066 5,087

346 Journal of Electronic Testing (2022) 38:339–352

1 3

training samples). The plot labeled Testing error shows
the MSE for 2,244 additional randomly-selected samples
that are not used for training, which shows the ANN’s
accuracy on not-yet seen samples: these samples are taken
from 0.1% of all possible samples on circuits not used for
training (see Table 2).

Figure 7 shows clear trends regarding ANN training
time and error. Training requires more time when using
more data; this is because minor changes in ANN weights
and biases are more likely to create error among more
training data samples. Likewise, using more training data

can increase the error, since finding ANN weights that
satisfy all training samples becomes more difficult.

Since using 20,910 samples doubled training time with a
marginal impact on error, future experiments will use ANNs
trained with 10,457 training data samples.

5.2 ANN Complexity

Many hyperparameters impact ANN complexity, but this
study simplifies complexity to a single variable: the number
of neurons present in the first hidden layer. Like the previ-
ous experiment, Fig. 8 gives a plot of ANN training time,
training error, and testing error. 10,457 data samples train
the stuck-at fault targeting, control-1 TP-evaluating ANN
with all other parameters matching the previous experiment.

As with the previous experiment, Fig. 8 shows that more
neurons in the first layer translates to more time needed to
minimize ANN error, but training error and testing error also
decrease. This is because using training with more neurons
can find more accurate correlations between features and
desired labels, but at the same time, training with more neu-
rons requires more time to learn these correlations.

6 ANN vs. Heuristic TPI Experiments

6.1 Experimental Setup

Industry-representative workstations performed this study’s
fault simulation and TPI using original software. These
workstations use Intel i7-8700 processors and possess 8 GBs

Fig. 7 Increasing ANN training data typically increases ANN accu-
racy, but large training data sets make ANN training difficult at the
expense of increased training time

Table 2 TPI Experiments

Benchmark Information TPI Time(s)

Bench Inputs Outputs Gates Test Vectors TPs [26] ANN (L = 3) ANN (L = 4) ANN (L = 5)

c432 36 7 203 9984 2 13.89 0.08 0.06 0.18
c880 60 26 469 9984 4 45.45 0.08 0.07 0.8
c1908 33 25 938 9984 9 911.08 0.44 0.36 4.17
c3540 50 22 1741 9984 5 1831.23 0.66 0.53 4.39
c5315 178 123 2608 9984 6 1806.72 1.76 1.39 7.45
b03 34 34 190 9984 1 1.21 0.89 0.73 0.07
b05 35 70 1032 9984 10 727.15 1.20 1.01 5.38
b07 50 57 490 9984 4 56.16 8.76 7.14 0.86
b09 29 29 198 9984 1 2.04 5.55 4.63 0.07
b11 38 39 801 9984 3 119.14 4.37 3.73 1.16
b13 63 63 415 9984 4 9.74 7.60 12.46 0.63
b14 277 299 10343 960 1 5031.64 5.27 4.47 5.69
b15 485 519 9371 1920 1 6472.05 5.71 4.85 5.27
b17 1452 1512 33741 256 1 26607.69 11.57 9.73 15.65
b20 522 512 20716 448 1 14479.94 11.67 9.91 11.52
b21 522 512 21061 448 1 14972.79 19.80 15.87 11.86

347Journal of Electronic Testing (2022) 38:339–352

1 3

of RAM, and all software is implemented in C++ through
the MSVC++ 14.15 compiler with maximum optimiza-
tion parameters. This study uses original software in lieu of
industry tools to obtain a fair comparison of the proposed
ANNs against methods from literature: only the code which
analyzes the TPs differs between the methods, thereby mini-
mizing other sources of CPU time differences.

The goal of this study is to observe the impact of replac-
ing critical subroutines with creatively-trained ANNs, thus
in lieu of industrial-designed TPI tools with many difficult-
to-isolate sources of CPU time, the conventional stuck-at
fault TPI method used for comparison is from Tsai et al.
[26]. Conveniently, this article’s ANNs can directly replace
the TP-evaluating subroutine in Tsai et al. [26], which elimi-
nates other sources of fault coverage and CPU time differ-
ences. This heuristic is admittedly aged compared to con-
temporaries, like Maghaddam et al.’s [14], but the purpose
of this study is not to propose a new TPI technique/algorithm
itself. Instead, this study shows the efficacy of using ANNs
in lieu of circuit-wide heuristics can have on a TPI time and
quality, thus it is logical to presume applying this study’s
methods to the heuristics of more contemporary TPI – like
Maghaddam et al.’s [14] – will yield similar trends in CPU
time reduction and fault coverage improvement. Also, indus-
trial tools will presumably be optimized to run on larger
circuits, but trends seen in this study’s experimental data do
not appear to degrade as circuits get larger, thus this study’s
contributions will presumably apply to both large and small
circuits.

Further modifications to Tsai et al. [26] implement a com-
parison delay fault-targeting TPI algorithm: the calculation
proposed by Ghosh et al. [6] replaces Tsai et al.’s [26] TP-
evaluating subroutine that estimates the detection probability

of a stuck-at fault (the controllability of a line multiplied by
the observability of the line). Ghosh et al. [6] calculated the
probability a TDF is observed as the controllability of a line,
multiplied by the inverse of this controllability, multiplied by
the observability of the line. Again, since the proposed ANN
uses the same circuit information to evaluate the quality of a
TP (i.e., COP values), the only difference in run-time and fault
coverage quality is from this calculation.

ISCAS’85 [3] and ITC’99 [5] benchmark circuits not used
for training are used for performing TPI; this prevents a bias
favoring the ANN. Table 2 gives details of these benchmarks.

LBIST tests from a 64-bit PRPG generate different
numbers of vectors for each benchmark circuit. These tests
obtained 95% fault coverage without TPs, applied 10,000
vectors, or took at most 15 min to simulate. This represents
an industrial environment where either (1) the circuit does
not obtain 95% fault coverage without TPs and TPs are
placed to increase fault coverage as much as possible, or (2)
10,000 vectors do not obtain 95% fault coverage and TPs
attempt to increase fault coverage to acceptable levels. Since
this study performs experiments in an academic setting, fault
coverage results may be less compared to industrial environ-
ments, but industrial environments should still benefit from
this study. For this study’s original software, fault simulation
may not obtain significant fault coverage in reasonable time
(e.g., b14 obtains a minuscule 13% fault coverage in 15 min
when applying 960 vectors), but this study presumes high-
performance industrial programming will remedy this and
that fault coverage trends seen in this study will apply when
simulating more vectors.

To explore the impact of ANN subcircuit sizes, this study
trained several ANN models. For larger subcircuits, the num-
ber of neurons in the ANN increases to capture more com-
plex relationships between input features and the output label.
The number of neurons in each ANN model is 128 for L = 2 ,
256 for L = 3 , and 512 for L = 4 . All other hyperparameters
are identical. With all these configurations, this means a total
of 2 ⋅ 3 ⋅ 3 = 18 neural networks were trained, which each
being trained for a combination of fault model (stuck-at fault
or transition delay fault), TP to analyze (control-0, control-1
and observe), and subcircuit size to analyze.

All TPI runs insert the same number of TPs, which is
restricted to 1% of all gates or a 15-min TPI runtime. This
limits larger circuits to a single TP, but industrial tools and
contemporary TPI algorithms will presumably see similar
TPI time and fault coverage trends when inserting more TPs.

6.2 Fault Coverage

6.2.1 Stuck‑at Fault Coverage

These experiments find the stuck-at fault coverage of the
four TPI methods: the stuck-at fault-targeting heuristic

Fig. 8 Increasing ANN complexity can decrease ANN error, but
because training time increases substantially, investments in complex-
ity may not always be warranted

348 Journal of Electronic Testing (2022) 38:339–352

1 3

(“SAF Heuristic”) [26], the ANN targeting stuck-at faults
(see Sect. 3), the delay fault-targeting heuristic (“TDF Heu-
ristic”) [6, 26], and the ANN targeting delay faults (see
Sect. 3.3). Figures 9 and 10 plot the base stuck-at fault cov-
erage (i.e., the original circuit with no TPs) and the change
in stuck-at fault coverage after TPI.

Performing stuck-at fault simulation shows several note-
worthy trends. First, all ANNs consistently obtain favorable
stuck-at fault coverages, but the heuristic [26] sometimes
(i.e., for b05) chooses TPs that decrease stuck-at fault cover-
age: this can occur because the heuristic chooses a control
TP that (when active) may test for some new faults, but previ-
ously detected faults are no longer excited or prevented from
propagating through the circuit [19]. Most ANNs select bet-
ter TPs than their conventional counterparts, especially for
larger ANNs that always outperform their conventional coun-
terparts. Second, as the ANN analyzes larger subcircuits, it
selects higher quality TPs and further increases stuck-at fault
coverage, presumably because TP evaluation is more accu-
rate. Third, as shown in Fig. 10, it appears that methods that
target stuck-at faults (both heuristics and ANNs) are not con-
sistently better at increasing stuck-at fault coverage compared
to delay fault-targeting TPI. This implies that targeting only
delay faults for TPI (and perhaps other test methods) can be
more than sufficient to detect stuck-at faults, but it also begs
the question of how to meet sufficient stuck-at fault coverage
if delay fault coverage is not one hundred percent, which is
typical in industry. This warrants future studies.

6.2.2 Delay Fault Coverage

Like the previous experiment, this experiment simulates
delay faults (more specifically, TDFs). 64-bit PRPGs load
the scan chains and apply vectors using a launch-off-scan
method (a.k.a. “skew load” [20]). Although this was also
done for the previous experiment, it was not relevant for
stuck-at fault simulation. Figures 11 and 12 plot the delay
fault coverage in terms of the base delay fault coverage (i.e.,
the transition fault coverage with no TPs) and the change
in fault coverage with TPs inserted with the different TPI
methods.

The first observation from Figs. 11 and 12 is that all
ANN-based methods consistently obtain favorable delay
fault coverage results. On average, ANNs select TPs that
increase delay fault coverage more than heuristics do,
regardless of which faults the ANN targets. Also like the
stuck-at fault-targeting ANN, as the delay fault-targeting
ANN analyzes larger subcircuits, the fault coverage is
increased by selecting higher quality TPs.

From these results, it is clear that ANNs can effectively
evaluate TPs for increased fault coverage, and the accuracy
concerns posed in Sect. 3 were overcome. However, if find-
ing these TPs requires substantial CPU time, then these
results are moot, thus motivating the next section.

0

10

20

30

40

50

60

70

80

90

100

-15

-10

-5

0

5

10

15

20

25

30

c
4
3
2

c
8
8
0

c
1
9
0
8

c
3
5
4
0

c
5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

Ba
se

Fa
ul
tC

ov
er
ag
e
(%

)

∆
SA

F
C
ov
er
ag
e
(%

)

Benchmarks
Conventional SAF TPI ANN SAF TPI (L=3)

ANN SAF TPI (L=4) ANN SAF TPI (L=5)

Base fault coverage

Fig. 9 As subcircuit sizes grow, the stuck-at fault-targeting ANNs improve
stuck-at fault coverage more and better outperform its heuristic counterpart

-10

-5

0

5

10

15

20

25

c
4
3
2

c
8
8
0

c
1
9
0
8

c
3
5
4
0

c
5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

∆
St
uc
k-
at

Fa
ul
tC

ov
er
ag
e
(%

)

Benchmarks

Conventional SAF TPI SAF ANN (L=4)

Conventional TDF TPI TDF ANN (L=4)

Fig. 10 Although counterintuitive, using delay fault-targeting TPI meth-
ods does not degrade stuck-at fault coverage

349Journal of Electronic Testing (2022) 38:339–352

1 3

6.3 Time to Perform TPI

An additional result extracted from the previous experiments
was the time required to perform TPI. This is given Fig. 13 in
under the heading “TPI Time (s)” for the stuck-at fault-targeting

heuristic (“Conventional TP”) and stuck-at fault-targeting ANNs
with vector subcircuit sizes in Fig. 13. The times for other ANNs
and heuristics are omitted for brevity, as trends are analogous.
This figure has separate plots for the ANNs that include and
exclude the training data generation and ANN training time; the
plots with this training data generation and training time distrib-
ute this time among benchmarks by circuit size (i.e., by adding
more time to circuits with more logic gates). ANNs with L = 3
(785 s), L = 4 (2,353 s), and L = 5 (5,753 s) have different times
for generating training data and training the ANN.

The TPI time results from Table 2 and Fig. 13 definitively
show that performing TPI using an ANN requires orders
of magnitude less time than conventional methods, which
justifies motivations given in Sect. 2.1.1. Additionally, as
the previous section showed, fault coverages obtained with
these ANNs are comparable or superior to heuristic-derived
results, which means the decreased TPI time does not sacri-
fice TP quality. Beyond this orders-of-magnitude decrease
in runtime, the variations in runtime between the ANNs
are noteworthy: it is unpredictable which ANN will be the
fastest for smaller circuits, and runtimes converge for larger
circuits. This is likely due to other system processes (i.e., the
operating system) dominating the ANN computation time,
which implies the evaluation time between large and small
ANNs is minimal, thus larger ANNs can be trained and used
with minimal (if any significant) impact on CPU time. This
implies industrial users should attempt to train the largest
ANNs they can as long as they can be trained.

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

c
4
3
2

c
8
8
0

c
1
9
0
8

c
3
5
4
0

c
5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

Ba
se

Fa
ul
tc
ov
er
ag
e
(%

)

∆
D
el
ay

Fa
ul
tC

ov
er
ag
e
(%

)

Benchmarks

Conventional TDF TPI ANN TDF TPI (L=3)

ANN TDF TPI (L=4) ANN TDF TPI (L=5)

Base Fault Coverage

Fig. 11 As subcircuit sizes grow, the delay fault-targeting ANNs improve
delay fault coverage more and ANNs further outperform heuristic coun-
terparts

-15

-10

-5

0

5

10

15

20

25

c
4
3
2

c
8
8
0

c
1
9
0
8

c
3
5
4
0

c
5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

∆
D
el
ay

Fa
ul
tC

ov
er
ag
e
(%

)

Benchmaks

Conventional SAF TPI SAF ANN (L=4)

Conventional TDF TPI TDF ANN (L=4)

Fig. 12 Like stuck-at fault-targeting experiments, the delay fault-targeting
heuristic and ANNs may not increase delay fault coverage compared to
their stuck-at fault-targeting counterparts

Fig. 13 Regardless of the ANN size and complexity, using ANNs sig-
nificantly decreased TPI time, even when considering training time

350 Journal of Electronic Testing (2022) 38:339–352

1 3

When accounting for ANN training data generation and
training time, the time to perform TPI still favors ANN-
based TPI. The authors argue that not including this time is
more representative of an industrial environment, i.e., when
the EDA company trains the ANN and then circuit develop-
ers re-use the ANN numerous times. If developers re-use the
tool enough times, the impact of training time becomes neg-
ligible. However, when distributing the training time among
TPI instances, computational time still favors ANN-based
TPI methods. This would represent a technique of training
specifically for a single user; although this is impractical,
this still out-performs heuristic TP evaluation.

7 Conclusions & Future Directions

Results showed that using ANNs to select TPs obtains better
results compared to conventional heuristics in substantially
less time. This article extended work done in previous stud-
ies [13, 22] by analyzing features relevant to LBIST tests
(i.e., the number of vectors in the test), explored a more
relevant label for evaluating a TP in the context of an LBIST
test, and made a thorough exploration of the impact ANN
complexity has on TPI outcomes. The results showed that
by using ANNs to evaluate TPs, TPI time can be reduced by
orders of magnitude without sacrificing LBIST quality and
ANNs can be trained to evaluate TPs under more complex
fault models (i.e., TDFs).

The authors anticipate continuing this work by finding
features and training methods that further increase TP qual-
ity while inserting TPs under additional constraints, espe-
cially methods that consider test power while using nuanced
delay fault models. This study chose features used by exist-
ing heuristics, thus making a fair comparison possible;
however, additional features (e.g., circuit structure, critical
paths, etc.) may drastically increase the ANN’s quality and
reveal nonintuitive causes of fault coverage degradation.
Additionally, leveraging high-performance computing can
further increase the ANN’s complexity and performance.
Adding constraints to TPI (e.g., area, power, and delay) will
require such methods, which the authors believe is critical
to applying this work to industrial circuits. The authors are
also exploring extending the proposed method to other fault
models, like path delay faults and cell-aware testing.

Applying ANNs to DFT challenges is a relatively new
field of study, and the authors will continue exploring the
benefits ANNs can bring to these challenges. Many DFT
problems are still based on heuristics that do not scale
favorably with increasing circuit sizes, which includes
weighted random pattern selection, automatic test pat-
tern generation (ATPG), fault diagnosis, and many more.
If studies apply ANNs to these problems, one can foresee
streamlined circuit development with significantly reduced

development costs. However, the end point of such returns
should also be found: at what point will ANNs no longer
reduce CPU time or increase algorithm outcomes, and at
that point, what other computing techniques should the
EDA community explore? The authors are most interested
in exploring this last question and hope their next work will
give the answer.

Data Availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Conflicts of Interests The authors have no relevant financial or non-
financial interests to disclose.

References

 1. Acero C, Feltham D, Liu Y, Moghaddam E, Mukherjee N, Patyra
M, Rajski J, Reddy SM, Tyszer J, Zawada J (2017) Embedded
Deterministic Test Points. IEEE Trans Very Large Scale Integr
VLSI Syst 25(10):2949–2961

 2. Brglez F (1984) On Testability Analysis of Combinational Net-
works. In: Proc IEEE Intl Symp Circuits and Systems (ISCAS),
Montreal, Quebec, Canada, May 1984, vol 1, pp 221–225

 3. Brglez F, Fujiwara H (1985) A Neutral Netlist of 10 Combina-
tional Benchmark Circuits and a Targeted Translator in FOR-
TRAN. In: Proc. IEEE Intl. Symp. Circuits and Systems (ISCAS),
Kyoto, Japan, pp 663–698

 4. Chern M et al (2019) Improving Scan Chain Diagnostic Accuracy
Using Multi-stage Artificial Neural Networks. In: Proc. 24th Asia
and South Pacific Design Automation Conf., Tokyo, Japan, Jan
2019, pp 341–346

 5. Davidson S (1999) ITC’99 Benchmark Circuits - Preliminary
Results. In: Proc Intl Test Conf (ITC), Atlantic City, NJ, USA,
Sep. 1999, p 1125

 6. Ghosh S, Bhunia S, Raychowdhury A, Roy K (2006) A Novel
Delay Fault Testing Methodology Using Low-Overhead Built-In
Delay Sensor. IEEE Trans Comput Aided Des Integr Circuits Syst
25(12):2934–2943

 7. Gómez LR, Wunderlich H (2016) A Neural-Network-Based Fault
Classifier. In: Proc. 25th IEEE Asian Test Symposium (ATS),
Hiroshima, Japan, Nov. 2016, pp 144–149

 8. Haykin SO (2008) Neural Networks and Learning Machines, 3rd
edn. Pearson, New York

 9. Karystinos GN, Pados DA (2000) On Overfitting, Generalization,
and Randomly Expanded Training Sets. IEEE Trans Neural Netw
11(5):1050–1057

 10. Kingma DP, Ba J (2019) Adam: A Method for Stochastic Opti-
mization. Dec. 2014. http:// arxiv. org/ abs/ 1412. 6980. Accessed 8
Apr 2019

 11. Ma Y, Ren H, Khailany B, Sikka H, Luo L, Natarajan K, Yu B (2019)
High Performance Graph Convolutional Networks with Applications
in Testability Analysis. In: Proc. 56th Annual Design Automation
Conference (DAC), New York, NY, USA, Article no. 18, pp 1–6

 12. Menon A, Mehrotra K, Mohan CK, Ranka S (1996) Characteriza-
tion of a Class of Sigmoid Functions with Applications to Neural
Networks. Neural Netw 9(5):819–835

351Journal of Electronic Testing (2022) 38:339–352

http://arxiv.org/abs/1412.6980

1 3

 13. Millican SK, Sun Y, Roy S, Agrawal VD (2019) Applying Neural
Networks to Delay Fault Testing: Test Point Insertion and Random
Circuit Training. In: Proc. 28th Asian Test Symp. (ATS), Kolkata,
India, pp 13–18

 14. Moghaddam E, Mukherjee N, Rajski J, Solecki J, Tyszer J,
Zawada J (2019) Logic BIST with Capture-per-Clock Hybrid
Test Points. IEEE Trans Comput Aided Des Integr Circuits Syst
38(6):1028–1041

 15. Nag PK, Gattiker A, Wei S, Blanton RD, Maly W (2002) Mod-
eling the Economics of Testing: a DFT Perspective. IEEE Des
Test Comput 19(1):29–41

 16. Nigh P, Gattiker A (2000) Test Method Evaluation Experiments
and Data. In: Proc. International Test Conference (ITC), Atlantic
City, NJ, USA, pp 454–463

 17. Pomeranz I (2017) Computation of Seeds for LFSR-Based
n-Detection Test Generation. ACM Trans Des Autom Electron
Syst 22(2):1–13

 18. Rajski J, Tyszer J (1998) Arithmetic Built-in Self-test for Embed-
ded Systems. Prentice-Hall Inc, Upper Saddle River, NJ, USA

 19. Roy S, Stiene B, Millican SK, Agrawal VD (2019) Improved Ran-
dom Pattern Delay Fault Coverage Using Inversion Test Points. In:
Proc. IEEE 28th North Atlantic Test Workshop (NATW), Burl-
ington, VT, USA, pp 1–6

 20. Savir J (1992) Skewed-Load Transition Test: Part I, Calculus. In:
Proc. Intl. Test Conf. (ITC), Baltimore, MD, USA, Sep. 1992, pp
705–713

 21. Seshan K (2018) Reliability Issues: Reliability Imposed Limits to
Scaling. In: Seshan K, Schepis D (eds) Handbook of Thin Film
Deposition, 4th edn. William Andrew Publishing, pp 43–62

 22. Sun Y, Millican SK (2019) Test Point Insertion Using Artificial
Neural Networks. In: Proc. IEEE Computer Society Annu. Symp.
VLSI (ISVLSI), Miami, FL, USA, pp 253–258

 23. Sun Y, Millican SK, Agrawal VD (2020) Special Session: Survey
of Test Point Insertion for Logic Built-in Self-test. In: Proc. IEEE
VLSI Test Symposium (VTS), San Diego, CA, USA, pp 1–6

 24. Sziray J (2011) Test Generation and Computational Complexity.
In: Proc. IEEE 17th Pacific Rim Intl. Symp. Dependable Comput-
ing, Pasadena, CA, USA, pp 286–287

 25. Tamarapalli N, Rajski J (1996) Constructive Multi-phase Test
Point Insertion for Scan-based BIST. In: Proc Intl Test Conf
(ITC), Washington, DC, USA, pp 649–658

 26. Tsai H-C, Cheng K-T, Lin C-J, Bhawmik S (1997) A Hybrid
Algorithm for Test Point Selection for Scan-based BIST. In: Proc.
34th ACM/IEEE Design Automation Conf. (DAC), Anaheim, CA,
USA, pp 478–483

 27. Xiang D, Wen X, Wang L-T (2017) Low-Power Scan-Based Built-
In Self-Test Based on Weighted Pseudorandom Test Pattern Gen-
eration and Reseeding. IEEE Trans Very Large Scale Integr VLSI
Syst 25(3):942–953

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yang Sun received her B.S. degree in electrical engineering from the
China University of Petroleum in 2016 and her M.S. and Ph.D. degrees
from Auburn University in 2018 and 2021, respectively. She is cur-
rently a staff engineer at Marvell Technology in Santa Clara, CA. Her
research interests include applying neural networks to design-for-test
challenges.

Spencer K. Millican received his Ph.D., M.S., and B.S. degrees from
the University of Wisconsin – Madison in 2015, 2013, and 2011,
respectively. He was with IBM in Rochester, MN as a design-for-
test engineer for two years and is currently an assistant professor at
Auburn University. He has published several articles, including receiv-
ing the best paper award at the 2014 IEEE International Conference
on VLSI Design, and he has received patents in the field of encrypted
circuit simulation. His research interests include logic built-in self-
test for modern technologies and encrypted circuit implementation and
simulation.

352 Journal of Electronic Testing (2022) 38:339–352

	Applying Artificial Neural Networks to Logic Built-in Self-test: Improving Test Point Insertion
	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Test Points
	2.1.1 Problem – Computational Difficulties
	2.1.2 Problem – Delay Defect Masking

	2.2 Artificial Neural Networks

	3 ANN for Stuck-at Fault TPI
	3.1 Function, Use, and Input Features
	3.2 Training and Output Labels
	3.3 ANN Use in TPI Flows

	4 ANN for Delay Fault TPI
	5 ANN Training Experiments
	5.1 Training Data Set Size
	5.2 ANN Complexity

	6 ANN vs. Heuristic TPI Experiments
	6.1 Experimental Setup
	6.2 Fault Coverage
	6.2.1 Stuck-at Fault Coverage
	6.2.2 Delay Fault Coverage

	6.3 Time to Perform TPI

	7 Conclusions & Future Directions
	References

