
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:247–260
https://doi.org/10.1007/s10836-022-06004-z

The Detection of Malicious Modifications in the FPGA

Kamran Zahid1

Received: 1 February 2022 / Accepted: 17 May 2022 / Published online: 30 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Field Programmable Gate Arrays (FPGAs) are being widely used in a variety of embedded applications. Due to their program-
mable feature, FPGAs are the perfect choice for various hardware-based systems. In many of the competing types of FPGAs,
the dominant types are Static Random-Access Memory (SRAM) based which can be reprogrammed at any stage of execution
of a job. SRAM-based FPGAs are volatile and need an external memory to store configuration bitstream that is vulnerable
to attacks. In the development as well as deployment stages, the threat of malicious modifications or inserting Hardware
Trojans (HTs) into the bitstream is always present. FPGA’s bitstream can be infiltrated or corrupted in a non-invasive manner
that may cause fatal consequences. Therefore, a framework is proposed that uses Xilinx Design Language (XDL) or Native
Circuit Description (NCD) files that can be extracted from the infected bitstream of FPGA. Xilinx Command Line tools are
used to get complete information on hardware primitives, resource utilization, timing constraints, and power summaries from
XDL/NCD files in textual form. Further, Natural Language Processing (NLP) has been employed to extract the syntactic
features from the descriptive artifact to find the malicious modifications/HTs. The proposed framework also identifies the
types of the detected HTs and provides a good understanding to study the behavior of trojans. For logic implementation and
testing, Xilinx ISE 14.7 along with PlanAheadTM and FPGA Editor design tools are used. The experimental results show that
the proposed framework can be successfully used for the detection of malicious modifications/HTs with optimal accuracy.

Keywords FPGA · Trojan · XDL · NCD · NLP

1 Introduction

Field Programmable Gate Array (FPGA) is an integrated
circuit (IC) that consists of a matrix of Configurable Logic
Blocks (CLBs) that are connected through programmable
interconnects. FPGAs can be reprogrammed to the desired
functional requirements and applications. This feature dif-
ferentiates FPGAs from Application-Specific Integrated
Circuits (ASICs) which are designed for specific tasks and
can not be reprogrammed. In various types of FPGAs, the
SRAM-based FPGAs are widely used due to their advan-
tages in area, speed, and re-programmability. Some common
applications are aerospace & defense, medical electronics,
ASIC prototyping, automotive, video & image processing,

consumer electronics, data center, high performance com-
puting, industrial & scientific instruments, security systems,
and wired and wireless communications.

There are two modes of FPGA programming, slave mode,
and master mode. In the slave mode, FPGA is programmed
by an external master device via a boundary scan (JTAG)
or by using a dedicated configuration interface. While in
the master mode, configuration data (bitstream) is stored in
external nonvolatile memories such as Programmable Read-
Only Memory (PROM) and serial & Parallel FLASH, etc...
During the configuration process, the bitstream is loaded
into the FPGA CLBs to run a specific application. Therefore,
unlike ASIC, FPGA bitstream is more vulnerable to various
attacks.

The threat of malicious modifications/HTs created by
malicious developers or intruders is a serious problem in
modern VLSI systems. HT can be defined as an intentional
malicious change in the circuit design that leads to undesir-
able behavior when it is deployed [39]. HT infected FPGAs
may experience changes in their functionality and operations
that lead to degraded or unreliable performance. HT can be

Responsible Editor: M. Tehranipoor

 * Kamran Zahid
 imkamranzahid@gmail.com

1 Department of Electrical Engineering, National University
of Computer and Emerging Sciences, Islamabad, Pakistan

http://orcid.org/0000-0001-8736-8577
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-022-06004-z&domain=pdf

248 Journal of Electronic Testing (2022) 38:247–260

1 3

inserted into the FPGA bitstream by modifying the configu-
ration (bit) file stored in onboard memory. An attacker may
need to know the logic and internal wires and preferably
where the configuration file is physically located. Therefore,
FPGA bitstream can be obtained or altered by wire-tap [10]
which may bring critical security issues for FPGA-based
applications. Meanwhile, Chakraborty et al. implanted HTs
in FPGA bitstream by finding the empty space in it [5]. By
using the HAL framework [13], the bitstream can be identi-
fied and relevant netlist components can be manipulated.
For the first time, Moradi et al. presented the technique to
find out the vulnerabilities of bitstream encryption in [25].
They successfully exemplified an attack at bitstream decryp-
tion of a Xilinx Virtex-II FPGA. In [11], the authors extended
their research against bitstream encryption in the latest
Xilinx FPGAs. They launched low-cost successful attacks
by exploiting a design flaw that leaks the decrypted bit-
stream. Swierczynski et al. proposed an attack that focuses
on unencrypted bitstreams named BiFI to obtain valuable
information by manipulating an encrypted bitstream [37] and
a successful attack was claimed for different Xilinx FPGAs
i.e. Spartan-6 and Virtex-5. Besides the attacks that require
physical connectivity, the side-channel attack is another, where
no physical access to the hardware is required [47]. The bit-
stream can be reverse-engineered not only to understand the
logical functions but can also be used to insert malicious
logic into it. Therefore, to make devices more secure from
the aforementioned vulnerabilities, system security attracts
more attention and new ways are imperative to find mali-
cious changes.

In this article, a new framework is proposed that can detect
not only the existence of malicious modifications or HTs but
also identifies the attacker’s intention using NCD or XDL
files that can be obtained by using reverse engineering (RE)
methods. The proposed framework has been demonstrated by
employing the Xilinx Command Line tools that help to find
out the type of HTs. Moreover, these tools are used to popu-
late the descriptive artifacts that have been used as input into
the NLP module to extract the syntactic features. The experi-
mental results show that the proposed scheme can detect HTs
with optimal accuracy. Furthermore, required countermeas-
ures are also proposed for the security of FPGA devices.

The rest of the paper is organized as follows: Section 2
gives insight into the background and related work that
summarizes current research in FPGA-based Trojan taxon-
omy and detection. Section 3 demonstrates the case study
that describes the types of HTs that are also considered for
implementation. The proposed framework is discussed in
Sect. 4. This paper ends up with the conclusion and future
directions after discussing the countermeasures.

2 Background and Related Work

2.1 FPGA Trojan Taxonomy, Attacks, and Detection
Approaches

HT taxonomy, activation or insertion mechanism, physical
and functional characteristics have already been proposed
in [22, 38]. These articles provide a good concept about HT
types and their functionalities. HTs attacks, threat analy-
sis, and relevant countermeasures were explained by [4].
Different types of FPGA-based HTs, their point of entry,
and their method of creation were thoroughly discussed in [20]
which is a helpful study to understand the behavior of FPGA-
based Trojans. Furthermore, the vulnerability analysis flow
and benchmarks proposed by [32] provide profound con-
cepts about the Trojans and their implementation. The HTs’
functionalities can be classified as follows:

• Denial of service: A Trojan either temporarily or perma-
nently stops target devices, resulting in a denial of service
which is crucial for digital systems.

• Performance Degradation: A Trojan can degrade the per-
formance of the target devices by changing the parameters.

• Change of functionality: A Trojan can malfunction the
target devices.

• Information leakage: A Trojan can leak confidential
information from target devices through hidden and open
interfaces.

For FPGAs, Iwase et al. [19] used a Support Vector Machine
(SVM) to detect HT. Their proposed method utilizes the
difference in power consumption between ‘with and with-
out Trojan’ which is time-consuming and needs additional
equipment. An interesting work related to the design file
analysis is an Unused Circuit Identification (UCI) tech-
nique that detects the never used RTL code and shrinks
the code space left for HTs was proposed by Hicks et al.
[16]. Guo et al. found additional functions in RTL code
that were not defined in the design specification [15]. How-
ever, the equivalence checking method takes much time to
detect malicious changes. In [46], Zhang et al. proposed
an HT detection mechanism by identifying the redundant
logic in the netlist. However, the technique has certain
limitations to detect trigger-based Trojans.

Although bitstream reverse engineering is difficult, how-
ever, following research articles claim certain information
extraction from the bitstream, indicating the fact that it is
not impossible. FPGA reverse engineering aims at convert-
ing the bitstream to a file that contains netlist information.
The same process can be extended to netlist reversing that

249Journal of Electronic Testing (2022) 38:247–260

1 3

further clarifies the high-level descriptions. Ziener et al.
[48] investigated the Virtex II FPGA bitstream and extracted
the Look-Up Table (LUT) contents. The extraction lies in
partial bitstream reversal techniques that focuse on config-
urable blocks like LUTs. In the study [7], a netlist was con-
verted to XDL file and designed a tool to generate Hardware
Description Language (HDL) code. The study was lim-
ited to netlist re-engineering rather than bitstream reverse
engineering. An algorithm was proposed to construct the
relationship between the configurable elements and the bit-
stream for multiple Xilinx FPGAs in [26]. Later on, Benz
et al. presented a tool called BIL using the same algorithm
and successfully recovered a fraction of the netlist from the
bitstream [3]. Both of these reverse engineering tools have
low accuracy and extract limited tile resources [18]. Further
improvements were proposed in [9] using two algorithms,
Position Known (PK) and Position Un-Known (PUK)
analysis. These analyses were used to obtain the bitstream
mapping information and to convert the bitstream to NCD/
XDL netlists. The accuracy rate on the XC5VLX50T device
was claimed more than 88% even in the worst-case sce-
nario. However, for exact Trojan detection, such accuracy
is insufficient. There is a possibility that some malicious
circuit information might not get converted completely.
The “project IceStorm”, a reversing tool was presented in
[40] which effectively decompiles the bitstreams of Lattice
iCE40 FPGAs that have a minimal architecture with limited
function units and types of tiles [18].

In [12], Ender et al. improved the bitstream reversing
techniques by simplifying routing extraction mechanisms.
There are various research articles [27, 28, 30, 35, 48] that
discuss the bitstream analysis, generation, manipulation, and
reverse engineering of SRAM-based FPGAs. These research
articles are helpful to retrieve and study the content of bit-
stream. Some tools, like RapidSmith [24] and Torc [36]
were presented to improve the flexibility for designers and
researchers. Rapidsmith alone cannot be used for reverse
engineering, however, it can provide a suitable function for
XDL manipulation to assist the other tools used in reverse
engineering. Similarly, Torc is helpful in reading, writing,
and manipulating FPGA bitstream, but is unsuitable for con-
figuration frame contents. Later, [8] extended Torc’s work
for reconfigurable computing. Furthermore, previously men-
tioned articles do not address the types of the detected HTs.

In [43], Yoo et. al used Xilinx ISE design tools and applied
reverse engineering techniques to detect malicious modifica-
tions with an accuracy of 88%. So there is a possibility that
some circuit information may not be fully recovered. This
creates uncertainty to find the exact malicious changes in the
recovered files. Further, Hassan Salmani [31] proposed the
HT detection technique using gate-level netlist and unsuper-
vised clustering analysis, which is a type of Machine Learn-
ing (ML) algorithm. His proposed method does not require

any golden model, however, timing complexity increases as
the number of signals increases. Yoon et al. improved the
BIL reversing by generating a tool to recover the netlist from
bitstream [44] and suggested an ML approach for HT detec-
tion. The authors claimed that their proposed BRET method
recovery rate was 95.9% for PIPs and 98.4% for LUTs on
average. BIL was executed for the same data samples with
a recovery rate of 54.4% for PIP. Furthermore, BRET also
achieved a recovery rate of 97.9% for the INT tiles only,
while BIL had 82.1%, thereby, achieving a good percentage
of recovery rates. While Zhang et al. [45] proposed a com-
prehensive tool-chain for Bit to RTL conversion and claimed
that their proposed model can convert bitstream to netlist
and the netlist to RTL code with 100% effectiveness. They
also suggested the HTs detection method from netlists and
converted RTL code. Although [45] is a close source, however,
we can take the benefit of the proposed methods. Therefore,
their presented results in the literature have been used for
reference.

2.2 Xilinx ISE Work Flow

Xilinx (AMD) offers industry-leading and commercially
available low-cost FPGAs and captures a larger share of the
approximately $135 billion markets [42] The user implements
the target design described in the modeling language (VHDL
or Verilog) to FPGA using the Xilinx ISE Design Suite.
Xilinx ISE provides the support for commercially available
low-cost Xilinx FPGAs while Vivado Suite starts with Vir-
tex-7, Kintex-7, Artix-7, and Zynq-7000 FPGAs that usually
have a high cost. There are several steps involved in convert-
ing the design to the FPGA programming file, as shown in
Fig. 1. Their details are given below:

1. Once a design idea and specifications are finalized,
design entry is the next step in the Integrated Software
Environment (ISE) design where the source files are cre-
ated. These files can be any of the formats of HDL, such
as VHDL or Verilog.

2. Synthesis involves the conversion of HDL sources into
architecture-specific netlist files, which are known as
NGC files.

3. The implementation consists of Translate and Map pro-
cesses, where the logical netlist gets converted into a
physical file format and downloaded to the target device.

4. Place and route (PAR) takes a mapped NCD file, places
& routes the design, and generates the P&Red NCD file
that is used for the bitstream generation.

5. Finally, the bit file is generated from the NCD file and is
used to program the target FPGA device. The bit file is
stored in an external memory as an MCS (configuration
memory) file. On power-up, the stored bitstream is fed
to the FPGA to perform required tasks.

250 Journal of Electronic Testing (2022) 38:247–260

1 3

3 Case Study

FPGA-based systems have a unique design flow and sup-
ply chain models which bring significant security chal-
lenges. Low-cost FPGAs do not have built-in support for
encrypted bitstreams [14] and are usually stored as plain
text on the same circuit board along with the FPGA. So,
the manipulation of the bitstream is possible during differ-
ent stages of the FPGA’s life cycle. It can be intercepted
during shipment, sale, and design processes as shown in
Fig. 1. The HTs can be added to the bitstream in two dif-
ferent ways [20]:

1. If the Trojan circuit is inserted into the existing bitstream
file at locations where resources were not originally
used, or unoccupied FPGA resources are configured
using an additional malicious circuit, then such type of
Trojan is called Type-I Trojan.

2. If the Trojan and original circuits are interconnected,
then such type of The Trojan is called Type-II Trojan.
These Trojans can either interfere with its operation or
extract information from the original scheme.

Given previous sections, it is evident that bitstream can be
altered or required information can be extracted by convert-
ing it into RTL or some other descriptive formats. After
obtaining the necessary data and having sound knowledge,
adversaries can get a clear idea of logic implementation in
that bitstream. Therefore, the bitstream can be modified
whether it is Type-I or Type-II. The same goes for the per-
son who is going to detect HT in the extracted bitstream.
Many types of HTs have already been discussed in differ-
ent research articles. In this paper, the following Trojans [4,
20, 22, 29, 32, 38] are considered for implementation and
detection, which:

• Use unallocated resources
• Cause frequency fluctuations
• Increase path delay
• Leak information
• Induce power fluctuations

4 KZ Framework: A Proposed Detection
Scheme for Malicious Modifications/HTs

Many HTs proposed so far in the literature are related to the
modification of the bitstream or design files. These modifica-
tions consist of adding a small circuit that is implemented
and added to the project. To find such modifications XDL or
NCD file is needed that can be extracted from the infected
bitstream using [45]. A framework is proposed, named “KZ
Framework” as shown in Figs. 2 and 3. The main advan-
tage of this model is that NLP has been employed to extract
the syntactic features from the descriptive artifact to find
the malicious modifications/HTs. It also identifies the types
of the detected HTs and provides a good understanding
to study the behavior of the trojans. Furthermore, Table 1
shows the comparison of research contributions and limita-
tions of different published techniques with the proposed one.
To test the proposed framework, trojans are created by using
Xilinx ISE 14.7 and FPGA Editor. All effectuated changes
are counter verified by the Xilinx PlanAheadTM tool.

4.1 Xilinx Command‑Line Tools

Xilinx provides a suite of “Command-Line Tools” that
allows for implementing and verifying FPGA designs. These
tools can be run in the standard design flow or can be used
by special command-line options. These command-line tools
generate files that are helpful to detect HTs or malicious

Fig. 1 Xilinx Design Flow

251Journal of Electronic Testing (2022) 38:247–260

1 3

changes. For the proposed design XDL, PAR, PIN2UCF,
TRACE, ReportGen, and XPWR command-line tools are
used [41].

4.2 NLP Based Detection Technique

Natural Language Processing (NLP) is the ability of a com-
puter program to understand the written or spoken language
referred to as natural language [17]. NLP uses Artificial
Intelligence (AI) to take real-world input, process it, and

make sense of it in a way that a computer can understand.
Syntax and semantic analysis are two main techniques used
with NLP. For that Term Frequency (TF)-Inverse Docu-
ment Frequency (IDF) [34] is a technique that is used to
find the meaning of sentences and cancels out the inca-
pability of the Bag of Words technique which is good for
text classification. It has many uses, however, in automated
text analysis, it is very useful for scoring words in Machine
Learning (ML) algorithms.

For the proposed design, information retrieval (IR), evalu-
ation, refinements, and IR scores using the Triplet loss (TL)
function are used. TL is a loss function for ML algorithms
where a matching input (called positive) and a non-matching
input (called negative) are compared to a reference input (called
the anchor). The distance from the anchor to the negative input
is maximized, and the distance from the anchor to the posi-
tive is minimized [6, 33]. For the proposed framework, Xilinx
command-line tools are used to generate “.par, .txt, .xdl, .ucf,
.pwr, .twr and .dly” files from XDL/NCD netlist files that can
be extracted from the infected bitstream using [45]. The gener-
ated files have complete information on hardware primitives,
resource utilization, timing constraints & delays, and power
summaries. Furthermore, using NLP features and energy flow
indicators, three types of datasets are produced i.e., “Legiti-
mate modified XDL/NCD”, “Trojan injected in XDL/NCD”,
and “recovered XDL/NCD from infected bitstream”. The first
two datasets are generated using Xilinx ISE and based on the
distance values, these datasets are compared with the third
one using the TL function. The experimental results indicate
the existence of certain types of trojans or malfunctions in the
extracted XDL and NCD files.

Legitimate
modification in
.xdl/.ncd files

Recovered
.xdl/.ncd file
from infected
bitstream

Trojan inserted
.xdl/.ncd files

Dataset
development

Dataset
development

Triplet Loss
Modeling

Dataset
development

Presence of
Trojans/Malicious
modifications

HDL
(XILINX ISE)

Absence of
Trojans/Malicious
modifications

Fig. 2 KZ Framework: A Proposed Model for Trojan detection

Fig. 3 KZ Framework: Dataset
Development

252 Journal of Electronic Testing (2022) 38:247–260

1 3

The reason for applying NLP is to automate the Trojan
detection process without the need for a golden file. The refer-
ence files will no longer be required once the model is trained. It
will automatically identify the malicious modifications related
to different types of Trojans in extracted files. Moreover, the
degree of semantic similarity and dissimilarity would be
accomplished through NLP. This would segregate the syntactic
similar but semantic dissimilar elements.

To test the proposed framework, the Advanced Encryp-
tion Standard (AES-256) [1] core is implemented in Xilinx
Virtex-5 (device: xc5vlx50t) and generated two datasets
(Legitimate modified (Trojan Free) or Trojans inserted).
For testing and evaluation, malicious logic/Trojan circuits
are implemented and placed in AES_256 core (considered

as recovered from infected bitstream) that are discussed in
detail in further sections.

4.3 Detection of the Trojans That Use Unallocated
Resources

HTs may be added to the design by utilizing unallocated hard-
ware resources. Adversaries can use the same technique to
modify the original design by inserting extra logic into these
vacant places. Such HT circuits can be triggered internally
or from outside the chip using unallocated I/O ports. Three
command-line tools “XDL, PAR, and PIN2UCF” are used to
detect aforesaid modifications.

Table 1 Research contributions and limitations of reverse engineering & HT detection

Technique Article Research Contribution Limitation HT detection Type
of HT
detection

Feature Analysis Iwase et al. [19] Used chip power signature to
detect HT by using SVM.

Time-consuming and needs
additional equipment.

Yes No

Hicks et al. [16] Proposed Unused UCI technique
that detects the never used RTL
code and shrinking the code
space left for HTs.

Time-consuming. Yes No

Guo et al. [15] Found additional functions in
RTL Code that are not defined
in design specification.

Equivalence checking method
takes much time to detect
malicious changes.

Yes No

Reverse Engineering Ziener et al. [48] Extracted the Look-Up Table
(LUT) contents from Virtex II
FPGA bitstream.

Partial bitstream reversal. No No

Cheremisinov [7] Netlist was converted to an XDL
file and generated the Hardware
Description Language (HDL)
code.

Limited to netlist re-engineering
rather than bitstream reverse
engineering.

No No

Note and Rannaud [26] Construct the relationship
between configurable elements
and the bitstream.

Low accuracy and extract limited
tile resources.

No No

Benz et al. [3] Presented BIL that recovered
a fraction of the netlist from
bitstream.

Low accuracy and extract limited
tile resources.

No No

Yoo et al. [43] Detected harmful modifications
using reverse engineering
methods.

Less accurate about 88% No No

Yoon et al. [44] Recovered netlist from the
bitstream and suggested an ML
approach for HT detection.

The method does not have full
recovery rates: 95.9% for PIPs,
98.4% for LUTs, 97.9% for the
INT tiles.

Yes No

Zhang et al. [45] Proposed a tool-chain for Bit to
RTL conversion with 100%
accuracy.

Methods for detection of HTs
types must be incorporated.

Yes No

Reverse Engineering
& Feature selection

Proposed XDL/NCD files (recovered from
RE) are converted to textual
files and applied NLP/TFIDF/
TL techniques to find HTs and
their types.

Reference files needed to automate
the process.

Yes Yes

253Journal of Electronic Testing (2022) 38:247–260

1 3

4.3.1 XDL

The NCD file can be converted to an XDL file and vice
versa. The XDL file is a textual representation of the netlist
that has the low-level description of the FPGA’s internal
state. It has complete information on Programmable Logic
Points (PLPs) and Programmable Interconnect Points (PIPs).
For XDL/NCD file creation, the XDL tool is used as follows:

 xdl.exe -ncd2xdl infile[.ncd] //ncd2xdl
generation
 xdl.exe -xdl2ncd infile[.xdl] //xdl2ncd
generation

4.3.2 PAR

PAR takes a mapped NCD file as input and generates an
NCD file along with a PAR report (having utilization sum-
mary of all placements and routing iterations) and a text file
(containing I/O pins assignments in an ASCII text version).
To get these files, the PAR tool is used as follows:

par infile[.ncd] outfile[.ncd] //par & text
file generation

4.3.3 PIN2UCF

PIN2UCF takes an NCD file as input and writes information
to a user constraint file (UCF). For this purpose, the follow-
ing PIN2UCF command is used:

pin2ucf infile[.ncd]

For an experiment, a kill switch and its required malicious
logic are implemented and placed in the AES_256 core,
as shown in Fig. 4. These changes are considered for the
dataset creation of “recovered XDL/NCD from the infected
bitstream”. The function of kill switch circuitry is to damage
the whole encryption process by zeroing all the keys. The
logic is triggered from an external input signal that is fed
into the design using an I/O pin.

By using the PAR command two files are generated PAR_
pad.txt and PAR.par. Similarly, the UCF.ucf file is also generated

Fig. 4 Trojan using unallocated spaces and I/O pin (FPGA Editor’s View)

Fig. 5 Detection of malicious
resource utilization using Par
file

254 Journal of Electronic Testing (2022) 38:247–260

1 3

by the PIN2UCF command that has the complete information of
the pins assignments. The descriptive and tabular information
are separated. Later, the descriptive information has been given
to the NLP module, wherein, syntactic features are read. The
TFIDF measure is used to assign a score to syntactic features.
The score of the features represents the relevance of the input
file to the Trojan and the clean descriptive file. After that,
energy flow indicators (e.g., input, power, frequency, output,
etc...) are sorted out. Finally, the data output from the NLP
module, and sorted out energy flow indicators are merged. After
applying the TL modeling technique, the existence of mali-
cious modifications or Trojan circuits is detected that are using
unallocated resources as shown in Figs. 5 and 6. Furthermore,
to find out the exact details of malicious logic, the XDL com-
mand is used. A Malicious.xdl file is generated using the XDL
command and further evaluated on the same framework. The
same malicious modifications were found, as shown in Fig. 7.
The test was performed on real datasets generated by Xilinx
ISE. IOB name “Kill Switch” appears only for that reason. In a
recovered netlist, it would not be preserved the same as used in
the synthetic file. However, the IOB location can be extracted
by the proposed method. IOB detail can also be compared with
extracted XDL’s PIPs for further clarification. Malicious modi-
fication can be identified once the IOB location is detected.

4.4 Detection of Trojans Causing Frequency
Fluctuations

A Trojan can alter the timing of the circuit by utilizing the
path delay effects. Due to the loading effects of Trojan circuits

on internal paths, the operating frequency can be changed. To
detect such Trojans, the TRACE command-line tool is used.

4.4.1 TRACE

The Timing Reporter and Circuit Evaluator (TRACE) tool
makes static timing analysis based on input timing con-
straints of an FPGA design and generates a report file with
a .twr extension. In addition, TRACE can also be run
on unplaced designs, partially placed & routed designs,
and completely placed & routed designs. The following
command-line tool is used to create a .twr file:

 trce -a infile[.ncd]

To test the proposed model, the position of BUFG is changed
from “BUFGCTRL_X0Y17” to “BUFGCTRL_X0Y0”,
while the input “clk” pad is located at “AH15”. It changes
CLK_BUFGP’s clock period from 7.247ns to 7.497ns. In
addition, the corresponding maximum operating frequency
is also changed from 137.988MHz down to 133.387MHz.
These changes are considered for the dataset creation of
“recovered XDL/NCD from the infected bitstream”. After
applying the KZ framework, Fig. 8 shows the detection of
malicious modifications in the .twr file.

4.5 Detection of Trojans that Increase Path Delay

The Trojan circuits can affect route delay in several ways. These
circuits add more gate delays to the original paths. Therefore,

Fig. 6 Detection of malicious
I/O details using .ucf or PAR_
pad.txt files

Fig. 7 Detection of malicious
modifications using .xdl file

255Journal of Electronic Testing (2022) 38:247–260

1 3

one important parameter that is used to detect the Trojans is the
path delay. Such Trojans can be created by modifying intercon-
nects connecting lookup tables (LUTs) across slices of CLBs.
To detect such Trojans, the ReportGen command-line tool is
used.

4.5.1 ReportGen

ReportGen accepts an NCD file and generates various pad
reports and a log file (contains standard usage information)
along with the .dly file. The .dly file contains path delay
information on each net of a design. These files are gener-
ated by the following tool:

 reportgen -delay infile[.ncd] //.dly file
generation

In AES_256 Core, 256-bit Cipher Key is fed to the design
through “cipher_key[7:0]” input ports in multiple cycles.
The cipher_key_delay is a flip-flop that stores all the key
values before feeding to the design. To test the proposed
scheme, the net cipher_key_0_IBUF is selected to insert
path delay. The selected ports and components of the sche-
matic are shown in Fig. 9. The net delay is produced by
changing the SLICE (name: cipher_key_delay<3>) position
from X0Y75 to X22Y105, while the “cipher_key[0]” IOB is
placed at location “AP32” as shown in Figs. 10 and 11. In
doing this, the corresponding switch boxes (SB) and PIPs
were also changed. These modifications were carried out by
using FPGA Editor and the modified file was considered a
malicious NCD file. The comparison between PIPs of both

Trojan-free or malicious XDL files is shown in Figs. 12 and
13. However, more delay can be inserted by increasing logic
levels. In this way, the logic delay (i.e. Tilo) can be added
to the overall path delay. To check complete logic and net
delays the following command is used:

trce -v infile[.ncd]

-v option is used to generate a verbose report.

Moreover, by using the ReportGen command, .dly file
is generated. The comparison between both files is carried
out and analyzed the path delays for each signal using the
KZ framework. The delay reported for the net cipher_key_0_
IBUF to cipher_key_delay<3>is from 2.060 ns to 3.354 ns.

4.6 Detection of Trojans That Leak Information

There are many ways in which a Trojan can leak sensitive
or secret information by providing backdoor channels in
FPGA. The main source of information leakage is data ports.
Therefore, it is a challenging task to check the connectiv-
ity of benign or legitimate I/O ports with the ports that are
maliciously inserted by some adversaries to leak sensitive
information. To detect such changes or internal connections,
ReportGen and PIN2UCF tools are used.

To test the proposed technique, the NCD file is changed by
using FPGA Editor’s “Probes” option to leak sensitive infor-
mation. The net cipher_key_0_IBUF is manually connected
to another IO port (name: my_pin) to exfiltrate cipher_key[0]

Fig. 8 Detection of malicious
changes in .twr file

Fig. 9 Selected ports in sche-
matic

C

CE Q

D

cipher_key_delay_0

cipher_key_0_IBUF

IBUF

cipher_key[7:0]

cipherkey_valid_in_IBUF

IBUF

 I O
clk_BUFGP

BUFGP

cipherkey_valid_in

clk

AES_256
CORE

256 Journal of Electronic Testing (2022) 38:247–260

1 3

information. While net cipher_key_0_IBUF is already con-
nected to the input port cipher_key[0]. These changes are
made for creating a recovered XDL/NCD dataset from the

infected bitstream. The following output is generated by the
“ReportGen” command:

cipher_key_0_IBUF
cipher_key<0>.I
3.354 cipher_key_delay<3>.AX
2.730 my_pin.O

"cipher_key_delay<3>"
Type: SLICEL

Location: SLICE_X22Y105

net "cipher_key_0_IBUF"

"cipher_key<0>"
Type: IOB

Location: AP32

Fig. 10 Trojan free NCD file

"cipher_key_delay<3>"
Type: SLICEL
Location: SLICE_X0Y75

net "cipher_key_0_IBUF"net "cipher_key_0_IBUF"

"cipher_key<0>"
Type: IOB
Location: AP32

Fig. 11 Malicious NCD file

257Journal of Electronic Testing (2022) 38:247–260

1 3

while PIN2UCF shows the following result:

NET ”my_pin.OUTBUF.OUT” LOC = AD25;

Further, the XDL command is used to get complete detail
of the logic associated with the malicious port. After
applying the proposed model these changes are detected
by TL modeling.

4.7 Detection of Trojans That Induce Power
Fluctuations

The Trojans can be implemented by simultaneously switch-
ing the signals that use the CLB’s interconnect resources.
Such switching signals are used to connect to unused PIPs
that can be detected using the XDL command. Moreover,
by increasing fan-outs or adding extra net delays, there will
be more power consumption drawn by the circuit. So, the
infected points where these Trojans’ interconnections were
present are detected by using the XPWR command.

4.7.1 XPWR

XPWR provides power as well as thermal estimates for FPGA
designs. The file generated by the XPWR command gives

information about the power of each net or logic element in
the design. It also provides the status of junction temperature
and a complete on-chip power summary. This information can
be acquired by the following tool:

 xpwr -v infile[.ncd] original_pcf_
file[.pcf] //.xpwr file generation

The original_pcf_file[.pcf] is the Physical constraint file(PCF)
of Trojan free design. To test the proposed scheme, the fanout
for the signal cipher_key_0_IBUF is increased from 1 to 129.
In doing this, the power for that signal is changed from 0.01
mW to 0.20 mW which is observed after applying the pro-
posed framework to generated files. XPWR can be used to
detect Type-II Trojans with 100% accuracy. For Type-I, accu-
racy varies depending upon resource utilization.

4.8 Bit file Generation

Based on the TL-generated reports, malicious changes are
removed in infected XDL/NCD files and then Trojan free Bit
file is generated using the Xilinx tool BitGen. BitGen takes
an NCD file as input and generates a configuration bitstream
file as output with a “.bit” extension. So modified XDL file
is converted into an NCD file and then the following com-
mand is used:

Fig. 12 PIP details in the Trojan
free XDL file

Fig. 13 PIP details in the Mali-
cious XDL file

258 Journal of Electronic Testing (2022) 38:247–260

1 3

 bitgen -w infile[.ncd]//.bit file generation

5 Countermeasures

First of all, it is strongly recommended to use bitstream encryp-
tion rather than using an unencrypted plain bitstream. Some
successful attacks have also been launched against bitstream
encryption in different XILINX FPGAs [11]. However,
encrypting the bitstream will create an obstacle, and a huge time
will require for an attacker to decrypt or alter the encrypted
bitstream. Some techniques like validating the design before
use, patchable encryption, model checker, Revision Select (RS)
pins (used to clear the battery-backed RAM (BBRAM) key
storage and reset the FPGA), and obfuscation are some effec-
tive countermeasures against bitstream encryption attacks [11].
Moreover, key-based bitstream obfuscation techniques can also
be used to generate logically varying bitstreams for the same
FPGA architecture that provides good protection against major
attacks [21].

Secondly, manually re-route the design and set a proper
slice position on the FPGA’s die instead of using default set-
tings. Unused I/O pins must be grounded and fill the vacant
resources with dummy logic [23] or replicate the same design
[2]. These copies will be shuffled and activated at the design-
er’s choice. In this way, the attacker will have a hard time
deciding which one is the correct design, when will it activate,
and where to place HTs. The built-in self-test (BIST) [20]
should be placed on specific logic test points and designers
must work on real-time monitoring techniques [4]. For meas-
uring physical operating parameters of FPGAs like on-chip
power supply voltages and die temperatures Xilinx “System
Monitor wizard” IP core is very effective and helpful in real-
time monitoring. It is suggested that design/netlist files to
bitstream conversion must be customized in a way that soft
logic-locking techniques along with encryption must be incor-
porated within the design tools. Finally, there must be some
additional features like “bitstream reversing to netlist files”
and “one-click efficient dummy logic insertion on vacant
places” in FPGA’s design suites. It will not only be helpful
for researchers to detect malicious modifications in the design
but beneficial for practitioners and system developers as well.

6 Conclusion and Future Directions

In this study, the major challenges in HTs detection are
addressed by introducing a novel “KZ Framework” that
utilizes Xilinx command-line tools and NLP techniques. In
this work, the detection of malicious modifications/HTs is
demonstrated by extracting complete information on hard-
ware primitives, resource utilization, timing constraints,
and power summaries from XDL/NCD files in textual form.

The XDL or NCD files can be extracted from the infected bit-
stream by applying reverse engineering techniques. Further,
NLP is employed to extract the syntactic features from the
descriptive artifact to find the malicious modifications/
HTs. The aforementioned NLP method is generic and can
be employed on files extracted from different FPGAs, while
netlist to textual file conversion will require some tools
like the Xilinx Command line.

The proposed work is not restricted to only one type
of data matching. The reason for converting bitstream to
textual/readable data is to find the types of detected HTs.
Furthermore, the reference files are only required to train
the model. Once the model is trained, these files are no
longer required. Further, the TL function has been employed
for being the least hungry for data and most prudent for
such problems. The proposed method could pave the way
to learning and studying the behavior of different types of HTs
and malicious intentions. The KZ framework shows differ-
ent detection methods and each method targets the particu-
lar type of HTs rather than finding out generic malicious
changes. Moreover, no additional equipment is required for
the simple, time-efficient, and non-invasive detection tech-
niques that make it cost-effective, manageable, and easily
operated. Further, experimental results show that the pro-
posed technique can detect HTs with excellent accuracy.

Finally, for future research, such type of detection model
should be incorporated in FPGA-based design suites that
will ease the developers and researcher to find out malicious
changes. This will lead to studying and implementing the best
methods of detection to ensure devices that are free of HTs.

Acknowledgements I acknowledge my mentor Dr. Mureed Hussain for
his motivation, guidance, and valuable revision of this work. I also
acknowledge Dr. M. Rizwan for his valuable suggestions.

Data Availability The data that support the findings of this study are
subject to third-party restrictions and so are not publicly available.

Declarations

Conflicts of Interest The author has no competing interests to declare
that are relevant to the content of this article.

References

 1. Advanced Encryption Standard (AES) (2001). https:// nvlpu bs.
nist. gov/ nistp ubs/ FIPS/ NIST. FIPS. 197. pdf

 2. Beaumont M, Hopkins B, Newby T (2011) Hardware Trojans-
prevention, detection, countermeasures (a literature review).
Technical report, Defence Science and Technology Organisa-
tion Edinburgh (Australia) Command

 3. Benz F, Seffrin A, Huss SA (2012) Bil: A tool-chain for bitstream
reverse-engineering. In: Proc. 22nd International Conference on Field
Programmable Logic and Applications (FPL). IEEE, pp 735–738

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

259Journal of Electronic Testing (2022) 38:247–260

1 3

 4. Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hard-
ware Trojan attacks: threat analysis and countermeasures. Proc
IEEE 102(8):1229–1247

 5. Chakraborty RS, Saha I, Palchaudhuri A, Naik GK (2013) Hard-
ware Trojan insertion by direct modification of FPGA configura-
tion bitstream. IEEE Design & Test 30(2):45–54

 6. Chechik G, Sharma V, Shalit U, Bengio S (2010) Large scale online
learning of image similarity through ranking. J Mach Learn Res 11(3)

 7. Cheremisinov DI (2013) Design automation tool to gener-
ate EDIF and VHDL descriptions of circuit by extraction of
FPGA configuration. In: Proc. East-West Design & Test Symposium
(EWDTS). IEEE, pp 1–4

 8. Couch JD (2011) Applications of TORC: an open toolkit for
reconfigurable computing. PhD thesis, Virginia Tech

 9. Ding Z, Qiang W, Zhang Y, Zhu L (2013) Deriving an NCD
file from an FPGA bitstream: Methodology, architecture and
evaluation. Microprocessors and Microsystems 37(3):299–312

 10. Drimer S (2008) Volatile FPGA design security–a survey. IEEE
Computer Society Annual Volume. pp 292–297

 11. Ender M, Moradi A, and Christof Paar (2020) The unpatch-
able silicon: a full break of the bitstream encryption of Xilinx
7-Series FPGAs. In: Proc. 29th {USENIX} Security Symposium
({USENIX} Security 20)

 12. Ender M, Swierczynski P, Wallat S, Wilhelm M, Knopp PM,
Paar C (2019) Insights into the mind of a Trojan designer: the
challenge to integrate a Trojan into the bitstream. In: Proceed-
ings of the 24th Asia and South Pacific Design Automation
Conference. pp 112–119

 13. Fyrbiak M, Wallat S, Swierczynski P, Hoffmann M, Hoppach S,
Wilhelm M, Weidlich T, Tessier R, Paar C (2018) Hal–the miss-
ing piece of the puzzle for hardware reverse engineering, Trojan
detection and insertion. IEEE Trans Dependable Secure Comput
16(3):498–510

 14. Gören S, Ozkurt O, Yildiz A, Ugurdag HF, Chakraborty RS,
Mukhopadhyay D (2013) Partial bitstream protection for low-
cost FPGAs with physical unclonable function, obfuscation,
and dynamic partial self reconfiguration. Comput Electr Eng
39(2):386–397

 15. Guo X, Dutta RG, Jin Y, Farahmandi F, Mishra P (2015) Pre-silicon
security verification and validation: A formal perspective. In: Pro-
ceedings of the 52nd Annual Design Automation Conference. pp 1–6

 16. Hicks M, Finnicum M, King ST, Martin MMK, Smith JM
(2010) Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. In: Proc. IEEE
Symposium on Security and Privacy. IEEE, pp 159–172

 17. Hirschberg J, Manning CD (2015) Advances in natural language
processing. Science 349(6245):261–266

 18. Hoyoung Y, Lee H, Lee S, Kim Y, Lee H-M (2018) Recent
advances in FPGA reverse engineering. Electronics 7(10):246

 19. Iwase T, Nozaki Y, Yoshikawa M, Kumaki T (2015) Detec-
tion technique for hardware Trojans using machine learning in
frequency domain. In: Proc. IEEE 4th Global Conference on
Consumer Electronics (GCCE). IEEE, pp 185–186

 20. Jyothi V, Rajendran JJV (2018) Hardware Trojan attacks in
FPGA and protection approaches. In: The Hardware Trojan War.
Springer, pp 345–368

 21. Karam R, Hoque T, Ray S, Tehranipoor M, Bhunia S (2016) Robust
bitstream protection in FPGA-based systems through low-overhead
obfuscation. In: Proc. International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, pp 1–8

 22. Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trust-
worthy hardware: Identifying and classifying hardware Trojans.
Computer 43(10):39–46

 23. Khaleghi B, Ahari A, Asadi H, Bayat-Sarmadi S (2015) FPGA-
based protection scheme against hardware Trojan horse inser-
tion using dummy logic. IEEE Embed Syst Lett 7(2):46–50

 24. Lavin C, Padilla M, Lundrigan P, Nelson B, Hutchings B
(2010) Rapid prototyping tools for FPGA designs: Rapidsmith.
In: Proc. International Conference on Field-Programmable
Technology. IEEE, pp 353–356

 25. Moradi A, Barenghi A, Kasper T, Paar C (2011) On the vulnerabil-
ity of FPGA bitstream encryption against power analysis attacks:
extracting keys from Xilinx Virtex-II FPGAs. In: Proceedings of
the 18th ACM Conference on Computer and communications secu-
rity. pp 111–124

 26. Note J-B, Rannaud É (2008) From the bitstream to the netlist. In:
FPGA, vol 8. pp 264

 27. Nguyen J-F (2016) Analysing the bitstream of Altera’s MAX-V
CPLDS

 28. Pham KD, Horta E, Koch D (2017) Bitman: a tool and API for
FPGA bitstream manipulations. In: Proc. Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. IEEE, pp
894–897

 29. Rai D, Lach J (2009) Performance of delay-based Trojan detec-
tion techniques under parameter variations. In: Proc. IEEE
International Workshop on Hardware-Oriented Security and
Trust. IEEE, pp 58–65

 30. Raghavan AK, Sutton P (2002) JPG-a partial bitstream genera-
tion tool to support partial reconfiguration in virtex FPGAs. In:
Proc. Parallel and Distributed Processing Symposium, Interna-
tional, vol 2. Citeseer, p 0155

 31. Salmani H (2016) Cotd: Reference-free hardware Trojan detec-
tion and recovery based on controllability and observability in
gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350

 32. Salmani H, Tehranipoor M, Karri R (2013) On design vulner-
ability analysis and trust benchmarks development. In: Proc. IEEE
31st International Conference on Computer Design (ICCD). IEEE,
pp 471–474

 33. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified
embedding for face recognition and clustering. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.
pp 815–823

 34. Schütze H, Manning CD, Raghavan P (2008) Introduction to infor-
mation retrieval, vol 39. Cambridge University Press Cambridge

 35. SymbiFlow (2017) Project x-ray. https:// github. com/ Symbi Flow/
prjxr ay

 36. Steiner N, Wood A, Shojaei H, Couch J, Athanas P, French M
(2011) Torc: towards an open-source tool flow. In: Proceedings
of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays. pp 41–44

 37. Swierczynski P, Becker GT, Moradi A, Paar C (2017) Bitstream
fault injections (BiFI)–automated fault attacks against SRAM-
based FPGAs. IEEE Trans Comput 67(3):348–360

 38. Tehranipoor M, Koushanfar F (2010) A survey of hardware Trojan
taxonomy and detection. IEEE Des Test Comput 27(1):10–25

 39. Tehranipoor M, Wang C (2011) Introduction to hardware security
and trust. Springer Science & Business Media

 40. Wolf C (2015) Project icestorm. http:// www. cliff ord. at/ icest orm/
 41. Xilinx command line tools user guide (UG628) (2013). https://

www. xilinx. com/ suppo rt/ docum entat ion/ sw_ manua ls/ xilin x14_7/
devref. pdf

 42. Xilinx Inc. (2022) https:// www. xilinx. com/
 43. Yoo HY, Choi SY, Park JW (2020) Reverse engineering for Xilinx

FPGA chips using ISE design tools. J Integr Circuits Syst 6(1)
 44. Yoon J, Seo Y, Jang J, Cho M, Kim J, Kim H, Kwon T (2018)

A bitstream reverse engineering tool for FPGA hardware Trojan
detection. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. pp 2318–2320

 45. Zhang T, Wang J, Guo S, Chen Z (2019) A comprehensive FPGA
reverse engineering tool-chain: From bitstream to RTL code.
IEEE Access 7:38379–38389

https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray
http://www.clifford.at/icestorm/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
https://www.xilinx.com/

260 Journal of Electronic Testing (2022) 38:247–260

1 3

 46. Zhang J, Yuan F, Wei L, Liu Y, Qiang X (2015) Veritrust: Verifi-
cation for hardware trust. IEEE Trans Comput Aided Des Integr
Circuits Syst 34(7):1148–1161

 47. Zhao M, Suh GE (2018) FPGA-based remote power side-channel
attacks. In: Proc. IEEE Symposium on Security and Privacy (SP).
IEEE, pp 229–244

 48. Ziener D, Aßmus S, Teich J (2006) Identifying FPGA IP-cores
based on lookup table content analysis. In: Proc. International
Conference on Field Programmable Logic and Applications.
IEEE, pp 1–6

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kamran Zahid received his Master’s degree in Electrical Engineering
from the National University of Computer and Emerging Sciences,
Pakistan. His area of interest is digital system design, Verilog/VHDL
programming, hardware security, and vulnerability analysis of embed-
ded systems. He has completed various industrial and commercial
projects related to the aforementioned fields. He also taught courses
and conducted training workshops on FPGA design for embedded sys-
tems and Verilog programming in various institutions.

	The Detection of Malicious Modifications in the FPGA
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 FPGA Trojan Taxonomy, Attacks, and Detection Approaches
	2.2 Xilinx ISE Work Flow

	3 Case Study
	4 KZ Framework: A Proposed Detection Scheme for Malicious ModificationsHTs
	4.1 Xilinx Command-Line Tools
	4.2 NLP Based Detection Technique
	4.3 Detection of the Trojans That Use Unallocated Resources
	4.3.1 XDL
	4.3.2 PAR
	4.3.3 PIN2UCF

	4.4 Detection of Trojans Causing Frequency Fluctuations
	4.4.1 TRACE

	4.5 Detection of Trojans that Increase Path Delay
	4.5.1 ReportGen

	4.6 Detection of Trojans That Leak Information
	4.7 Detection of Trojans That Induce Power Fluctuations
	4.7.1 XPWR

	4.8 Bit file Generation

	5 Countermeasures
	6 Conclusion and Future Directions
	Acknowledgements
	References

