
Vol.:(0123456789)1 3

Journal of Electronic Testing (2022) 38:247–260 
https://doi.org/10.1007/s10836-022-06004-z

The Detection of Malicious Modifications in the FPGA

Kamran Zahid1 

Received: 1 February 2022 / Accepted: 17 May 2022 / Published online: 30 May 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Field Programmable Gate Arrays (FPGAs) are being widely used in a variety of embedded applications. Due to their program-
mable feature, FPGAs are the perfect choice for various hardware-based systems. In many of the competing types of FPGAs, 
the dominant types are Static Random-Access Memory (SRAM) based which can be reprogrammed at any stage of execution 
of a job. SRAM-based FPGAs are volatile and need an external memory to store configuration bitstream that is vulnerable 
to attacks. In the development as well as deployment stages, the threat of malicious modifications or inserting Hardware 
Trojans (HTs) into the bitstream is always present. FPGA’s bitstream can be infiltrated or corrupted in a non-invasive manner 
that may cause fatal consequences. Therefore, a framework is proposed that uses Xilinx Design Language (XDL) or Native 
Circuit Description (NCD) files that can be extracted from the infected bitstream of FPGA. Xilinx Command Line tools are 
used to get complete information on hardware primitives, resource utilization, timing constraints, and power summaries from 
XDL/NCD files in textual form. Further, Natural Language Processing (NLP) has been employed to extract the syntactic 
features from the descriptive artifact to find the malicious modifications/HTs. The proposed framework also identifies the 
types of the detected HTs and provides a good understanding to study the behavior of trojans. For logic implementation and 
testing, Xilinx ISE 14.7 along with  PlanAheadTM and FPGA Editor design tools are used. The experimental results show that 
the proposed framework can be successfully used for the detection of malicious modifications/HTs with optimal accuracy.
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1 Introduction

Field Programmable Gate Array (FPGA) is an integrated 
circuit (IC) that consists of a matrix of Configurable Logic 
Blocks (CLBs) that are connected through programmable 
interconnects. FPGAs can be reprogrammed to the desired 
functional requirements and applications. This feature dif-
ferentiates FPGAs from Application-Specific Integrated 
Circuits (ASICs) which are designed for specific tasks and 
can not be reprogrammed. In various types of FPGAs, the 
SRAM-based FPGAs are widely used due to their advan-
tages in area, speed, and re-programmability. Some common 
applications are aerospace & defense, medical electronics, 
ASIC prototyping, automotive, video & image processing, 

consumer electronics, data center, high performance com-
puting, industrial & scientific instruments, security systems, 
and wired and wireless communications.

There are two modes of FPGA programming, slave mode, 
and master mode. In the slave mode, FPGA is programmed 
by an external master device via a boundary scan (JTAG) 
or by using a dedicated configuration interface. While in 
the master mode, configuration data (bitstream) is stored in 
external nonvolatile memories such as Programmable Read-
Only Memory (PROM) and serial & Parallel FLASH, etc... 
During the configuration process, the bitstream is loaded 
into the FPGA CLBs to run a specific application. Therefore, 
unlike ASIC, FPGA bitstream is more vulnerable to various 
attacks.

The threat of malicious modifications/HTs created by 
malicious developers or intruders is a serious problem in 
modern VLSI systems. HT can be defined as an intentional  
malicious change in the circuit design that leads to undesir-
able behavior when it is deployed [39]. HT infected FPGAs  
may experience changes in their functionality and operations  
that lead to degraded or unreliable performance. HT can be  
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inserted into the FPGA bitstream by modifying the configu-
ration (bit) file stored in onboard memory. An attacker may 
need to know the logic and internal wires and preferably 
where the configuration file is physically located. Therefore, 
FPGA bitstream can be obtained or altered by wire-tap [10] 
which may bring critical security issues for FPGA-based 
applications. Meanwhile, Chakraborty et al. implanted HTs 
in FPGA bitstream by finding the empty space in it [5]. By 
using the HAL framework [13], the bitstream can be identi-
fied and relevant netlist components can be manipulated.  
For the first time, Moradi et al. presented the technique to  
find out the vulnerabilities of bitstream encryption in [25].  
They successfully exemplified an attack at bitstream decryp-
tion of a Xilinx Virtex-II FPGA. In [11], the authors extended  
their research against bitstream encryption in the latest 
Xilinx FPGAs. They launched low-cost successful attacks 
by exploiting a design flaw that leaks the decrypted bit-
stream. Swierczynski et al. proposed an attack that focuses 
on unencrypted bitstreams named BiFI to obtain valuable 
information by manipulating an encrypted bitstream [37] and 
a successful attack was claimed for different Xilinx FPGAs 
i.e. Spartan-6 and Virtex-5. Besides the attacks that require  
physical connectivity, the side-channel attack is another, where  
no physical access to the hardware is required [47]. The bit-
stream can be reverse-engineered not only to understand the 
logical functions but can also be used to insert malicious 
logic into it. Therefore, to make devices more secure from 
the aforementioned vulnerabilities, system security attracts 
more attention and new ways are imperative to find mali-
cious changes.

In this article, a new framework is proposed that can detect 
not only the existence of malicious modifications or HTs but 
also identifies the attacker’s intention using NCD or XDL 
files that can be obtained by using reverse engineering (RE) 
methods. The proposed framework has been demonstrated by 
employing the Xilinx Command Line tools that help to find 
out the type of HTs. Moreover, these tools are used to popu-
late the descriptive artifacts that have been used as input into 
the NLP module to extract the syntactic features. The experi-
mental results show that the proposed scheme can detect HTs 
with optimal accuracy. Furthermore, required countermeas-
ures are also proposed for the security of FPGA devices.

The rest of the paper is organized as follows: Section 2 
gives insight into the background and related work that 
summarizes current research in FPGA-based Trojan taxon-
omy and detection. Section 3 demonstrates the case study 
that describes the types of HTs that are also considered for 
implementation. The proposed framework is discussed in 
Sect. 4. This paper ends up with the conclusion and future 
directions after discussing the countermeasures.

2  Background and Related Work

2.1  FPGA Trojan Taxonomy, Attacks, and Detection 
Approaches

HT taxonomy, activation or insertion mechanism, physical 
and functional characteristics have already been proposed 
in [22, 38]. These articles provide a good concept about HT 
types and their functionalities. HTs attacks, threat analy-
sis, and relevant countermeasures were explained by [4]. 
Different types of FPGA-based HTs, their point of entry,  
and their method of creation were thoroughly discussed in [20]  
which is a helpful study to understand the behavior of FPGA- 
based Trojans. Furthermore, the vulnerability analysis flow 
and benchmarks proposed by [32] provide profound con-
cepts about the Trojans and their implementation. The HTs’ 
functionalities can be classified as follows:

• Denial of service: A Trojan either temporarily or perma-
nently stops target devices, resulting in a denial of service 
which is crucial for digital systems.

• Performance Degradation: A Trojan can degrade the per-
formance of the target devices by changing the parameters.

• Change of functionality: A Trojan can malfunction the 
target devices.

• Information leakage: A Trojan can leak confidential 
information from target devices through hidden and open 
interfaces.

For FPGAs, Iwase et al. [19] used a Support Vector Machine  
(SVM) to detect HT. Their proposed method utilizes the 
difference in power consumption between ‘with and with-
out Trojan’ which is time-consuming and needs additional 
equipment. An interesting work related to the design file 
analysis is an Unused Circuit Identification (UCI) tech-
nique that detects the never used RTL code and shrinks  
the code space left for HTs was proposed by Hicks et al. 
[16]. Guo et al. found additional functions in RTL code 
that were not defined in the design specification [15]. How-
ever, the equivalence checking method takes much time to  
detect malicious changes. In [46], Zhang et al. proposed 
an HT detection mechanism by identifying the redundant 
logic in the netlist. However, the technique has certain 
limitations to detect trigger-based Trojans.

Although bitstream reverse engineering is difficult, how-
ever, following research articles claim certain information 
extraction from the bitstream, indicating the fact that it is 
not impossible. FPGA reverse engineering aims at convert-
ing the bitstream to a file that contains netlist information. 
The same process can be extended to netlist reversing that 
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further clarifies the high-level descriptions. Ziener et al. 
[48] investigated the Virtex II FPGA bitstream and extracted 
the Look-Up Table (LUT) contents. The extraction lies in 
partial bitstream reversal techniques that focuse on config-
urable blocks like LUTs. In the study [7], a netlist was con-
verted to XDL file and designed a tool to generate Hardware 
Description Language (HDL) code. The study was lim-
ited to netlist re-engineering rather than bitstream reverse 
engineering. An algorithm was proposed to construct the 
relationship between the configurable elements and the bit-
stream for multiple Xilinx FPGAs in [26]. Later on, Benz 
et al. presented a tool called BIL using the same algorithm 
and successfully recovered a fraction of the netlist from the 
bitstream [3]. Both of these reverse engineering tools have 
low accuracy and extract limited tile resources [18]. Further 
improvements were proposed in [9] using two algorithms, 
Position Known (PK) and Position Un-Known (PUK) 
analysis. These analyses were used to obtain the bitstream 
mapping information and to convert the bitstream to NCD/
XDL netlists. The accuracy rate on the XC5VLX50T device 
was claimed more than 88% even in the worst-case sce-
nario. However, for exact Trojan detection, such accuracy 
is insufficient. There is a possibility that some malicious 
circuit information might not get converted completely. 
The “project IceStorm”, a reversing tool was presented in 
[40] which effectively decompiles the bitstreams of Lattice 
iCE40 FPGAs that have a minimal architecture with limited 
function units and types of tiles [18].

In [12], Ender et al. improved the bitstream reversing 
techniques by simplifying routing extraction mechanisms. 
There are various research articles [27, 28, 30, 35, 48] that 
discuss the bitstream analysis, generation, manipulation, and 
reverse engineering of SRAM-based FPGAs. These research 
articles are helpful to retrieve and study the content of bit-
stream. Some tools, like RapidSmith [24] and Torc [36] 
were presented to improve the flexibility for designers and 
researchers. Rapidsmith alone cannot be used for reverse 
engineering, however, it can provide a suitable function for 
XDL manipulation to assist the other tools used in reverse 
engineering. Similarly, Torc is helpful in reading, writing, 
and manipulating FPGA bitstream, but is unsuitable for con-
figuration frame contents. Later, [8] extended Torc’s work 
for reconfigurable computing. Furthermore, previously men-
tioned articles do not address the types of the detected HTs.

In [43], Yoo et. al used Xilinx ISE design tools and applied 
reverse engineering techniques to detect malicious modifica-
tions with an accuracy of 88%. So there is a possibility that 
some circuit information may not be fully recovered. This 
creates uncertainty to find the exact malicious changes in the 
recovered files. Further, Hassan Salmani [31] proposed the 
HT detection technique using gate-level netlist and unsuper-
vised clustering analysis, which is a type of Machine Learn-
ing (ML) algorithm. His proposed method does not require 

any golden model, however, timing complexity increases as 
the number of signals increases. Yoon et al. improved the 
BIL reversing by generating a tool to recover the netlist from 
bitstream [44] and suggested an ML approach for HT detec-
tion. The authors claimed that their proposed BRET method 
recovery rate was 95.9% for PIPs and 98.4% for LUTs on 
average. BIL was executed for the same data samples with 
a recovery rate of 54.4% for PIP. Furthermore, BRET also 
achieved a recovery rate of 97.9% for the INT tiles only, 
while BIL had 82.1%, thereby, achieving a good percentage  
of recovery rates. While Zhang et al. [45] proposed a com-
prehensive tool-chain for Bit to RTL conversion and claimed 
that their proposed model can convert bitstream to netlist  
and the netlist to RTL code with 100% effectiveness. They  
also suggested the HTs detection method from netlists and 
converted RTL code. Although [45] is a close source, however,  
we can take the benefit of the proposed methods. Therefore, 
their presented results in the literature have been used for 
reference.

2.2  Xilinx ISE Work Flow

Xilinx (AMD) offers industry-leading and commercially 
available low-cost FPGAs and captures a larger share of the 
approximately $135 billion markets [42] The user implements  
the target design described in the modeling language (VHDL 
or Verilog) to FPGA using the Xilinx ISE Design Suite. 
Xilinx ISE provides the support for commercially available 
low-cost Xilinx FPGAs while Vivado Suite starts with Vir-
tex-7, Kintex-7, Artix-7, and Zynq-7000 FPGAs that usually 
have a high cost. There are several steps involved in convert-
ing the design to the FPGA programming file, as shown in 
Fig. 1. Their details are given below: 

1. Once a design idea and specifications are finalized, 
design entry is the next step in the Integrated Software 
Environment (ISE) design where the source files are cre-
ated. These files can be any of the formats of HDL, such 
as VHDL or Verilog.

2. Synthesis involves the conversion of HDL sources into 
architecture-specific netlist files, which are known as 
NGC files.

3. The implementation consists of Translate and Map pro-
cesses, where the logical netlist gets converted into a 
physical file format and downloaded to the target device.

4. Place and route (PAR) takes a mapped NCD file, places 
& routes the design, and generates the P&Red NCD file 
that is used for the bitstream generation.

5. Finally, the bit file is generated from the NCD file and is 
used to program the target FPGA device. The bit file is 
stored in an external memory as an MCS (configuration 
memory) file. On power-up, the stored bitstream is fed 
to the FPGA to perform required tasks.
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3  Case Study

FPGA-based systems have a unique design flow and sup-
ply chain models which bring significant security chal-
lenges. Low-cost FPGAs do not have built-in support for 
encrypted bitstreams [14] and are usually stored as plain 
text on the same circuit board along with the FPGA. So, 
the manipulation of the bitstream is possible during differ-
ent stages of the FPGA’s life cycle. It can be intercepted 
during shipment, sale, and design processes as shown in 
Fig. 1. The HTs can be added to the bitstream in two dif-
ferent ways [20]: 

1. If the Trojan circuit is inserted into the existing bitstream 
file at locations where resources were not originally 
used, or unoccupied FPGA resources are configured 
using an additional malicious circuit, then such type of 
Trojan is called Type-I Trojan.

2. If the Trojan and original circuits are interconnected, 
then such type of The Trojan is called Type-II Trojan. 
These Trojans can either interfere with its operation or 
extract information from the original scheme.

Given previous sections, it is evident that bitstream can be 
altered or required information can be extracted by convert-
ing it into RTL or some other descriptive formats. After 
obtaining the necessary data and having sound knowledge, 
adversaries can get a clear idea of logic implementation in 
that bitstream. Therefore, the bitstream can be modified 
whether it is Type-I or Type-II. The same goes for the per-
son who is going to detect HT in the extracted bitstream. 
Many types of HTs have already been discussed in differ-
ent research articles. In this paper, the following Trojans [4, 
20, 22, 29, 32, 38] are considered for implementation and 
detection, which:

• Use unallocated resources
• Cause frequency fluctuations
• Increase path delay
• Leak information
• Induce power fluctuations

4  KZ Framework: A Proposed Detection 
Scheme for Malicious Modifications/HTs

Many HTs proposed so far in the literature are related to the 
modification of the bitstream or design files. These modifica-
tions consist of adding a small circuit that is implemented 
and added to the project. To find such modifications XDL or 
NCD file is needed that can be extracted from the infected 
bitstream using [45]. A framework is proposed, named “KZ 
Framework” as shown in Figs. 2 and 3. The main advan-
tage of this model is that NLP has been employed to extract  
the syntactic features from the descriptive artifact to find  
the malicious modifications/HTs. It also identifies the types 
of the detected HTs and provides a good understanding  
to study the behavior of the trojans. Furthermore, Table 1 
shows the comparison of research contributions and limita-
tions of different published techniques with the proposed one.  
To test the proposed framework, trojans are created by using 
Xilinx ISE 14.7 and FPGA Editor. All effectuated changes 
are counter verified by the Xilinx  PlanAheadTM tool.

4.1  Xilinx Command‑Line Tools

Xilinx provides a suite of “Command-Line Tools” that 
allows for implementing and verifying FPGA designs. These 
tools can be run in the standard design flow or can be used 
by special command-line options. These command-line tools 
generate files that are helpful to detect HTs or malicious 

Fig. 1  Xilinx Design Flow
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changes. For the proposed design XDL, PAR, PIN2UCF, 
TRACE, ReportGen, and XPWR command-line tools are 
used [41].

4.2  NLP Based Detection Technique

Natural Language Processing (NLP) is the ability of a com-
puter program to understand the written or spoken language 
referred to as natural language [17]. NLP uses Artificial 
Intelligence (AI) to take real-world input, process it, and 

make sense of it in a way that a computer can understand. 
Syntax and semantic analysis are two main techniques used 
with NLP. For that Term Frequency (TF)-Inverse Docu-
ment Frequency (IDF) [34] is a technique that is used to 
find the meaning of sentences and cancels out the inca-
pability of the Bag of Words technique which is good for 
text classification. It has many uses, however, in automated 
text analysis, it is very useful for scoring words in Machine 
Learning (ML) algorithms.

For the proposed design, information retrieval (IR), evalu-
ation, refinements, and IR scores using the Triplet loss (TL) 
function are used. TL is a loss function for ML algorithms 
where a matching input (called positive) and a non-matching 
input (called negative) are compared to a reference input (called 
the anchor). The distance from the anchor to the negative input 
is maximized, and the distance from the anchor to the posi-
tive is minimized [6, 33]. For the proposed framework, Xilinx 
command-line tools are used to generate “.par, .txt, .xdl, .ucf, 
.pwr, .twr and .dly” files from XDL/NCD netlist files that can 
be extracted from the infected bitstream using [45]. The gener-
ated files have complete information on hardware primitives, 
resource utilization, timing constraints & delays, and power 
summaries. Furthermore, using NLP features and energy flow 
indicators, three types of datasets are produced i.e., “Legiti-
mate modified XDL/NCD”, “Trojan injected in XDL/NCD”, 
and “recovered XDL/NCD from infected bitstream”. The first 
two datasets are generated using Xilinx ISE and based on the 
distance values, these datasets are compared with the third 
one using the TL function. The experimental results indicate 
the existence of certain types of trojans or malfunctions in the 
extracted XDL and NCD files.

Legitimate
modification in
.xdl/.ncd files

Recovered
.xdl/.ncd file
from infected
bitstream

Trojan inserted
.xdl/.ncd files

Dataset
development

Dataset
development

Triplet Loss
Modeling

Dataset
development

Presence of
Trojans/Malicious
modifications

HDL
(XILINX ISE)

Absence of
Trojans/Malicious
modifications

Fig. 2  KZ Framework: A Proposed Model for Trojan detection

Fig. 3  KZ Framework: Dataset 
Development
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The reason for applying NLP is to automate the Trojan 
detection process without the need for a golden file. The refer-
ence files will no longer be required once the model is trained. It 
will automatically identify the malicious modifications related 
to different types of Trojans in extracted files. Moreover, the 
degree of semantic similarity and dissimilarity would be 
accomplished through NLP. This would segregate the syntactic 
similar but semantic dissimilar elements.

To test the proposed framework, the Advanced Encryp-
tion Standard (AES-256) [1] core is implemented in Xilinx 
Virtex-5 (device: xc5vlx50t) and generated two datasets 
(Legitimate modified (Trojan Free) or Trojans inserted). 
For testing and evaluation, malicious logic/Trojan circuits 
are implemented and placed in AES_256 core (considered 

as recovered from infected bitstream) that are discussed in 
detail in further sections.

4.3  Detection of the Trojans That Use Unallocated 
Resources

HTs may be added to the design by utilizing unallocated hard-
ware resources. Adversaries can use the same technique to 
modify the original design by inserting extra logic into these 
vacant places. Such HT circuits can be triggered internally 
or from outside the chip using unallocated I/O ports. Three 
command-line tools “XDL, PAR, and PIN2UCF” are used to 
detect aforesaid modifications.

Table 1  Research contributions and limitations of reverse engineering & HT detection

Technique Article Research Contribution Limitation HT detection Type 
of HT 
detection

Feature Analysis Iwase et al. [19] Used chip power signature to 
detect HT by using SVM.

Time-consuming and needs 
additional equipment.

Yes No

Hicks et al. [16] Proposed Unused UCI technique 
that detects the never used RTL 
code and shrinking the code 
space left for HTs.

Time-consuming. Yes No

Guo et al. [15] Found additional functions in 
RTL Code that are not defined 
in design specification.

Equivalence checking method 
takes much time to detect 
malicious changes.

Yes No

Reverse Engineering Ziener et al. [48] Extracted the Look-Up Table 
(LUT) contents from Virtex II 
FPGA bitstream.

Partial bitstream reversal. No No

Cheremisinov [7] Netlist was converted to an XDL 
file and generated the Hardware 
Description Language (HDL) 
code.

Limited to netlist re-engineering 
rather than bitstream reverse 
engineering.

No No

Note and Rannaud [26] Construct the relationship 
between configurable elements 
and the bitstream.

Low accuracy and extract limited 
tile resources.

No No

Benz et al. [3] Presented BIL that recovered 
a fraction of the netlist from 
bitstream.

Low accuracy and extract limited 
tile resources.

No No

Yoo et al. [43] Detected harmful modifications 
using reverse engineering 
methods.

Less accurate about 88% No No

Yoon et al. [44] Recovered netlist from the 
bitstream and suggested an ML 
approach for HT detection.

The method does not have full 
recovery rates: 95.9% for PIPs, 
98.4% for LUTs, 97.9% for the 
INT tiles.

Yes No

Zhang et al. [45] Proposed a tool-chain for Bit to 
RTL conversion with 100% 
accuracy.

Methods for detection of HTs 
types must be incorporated.

Yes No

Reverse Engineering 
& Feature selection

Proposed XDL/NCD files (recovered from 
RE) are converted to textual 
files and applied NLP/TFIDF/
TL techniques to find HTs and 
their types.

Reference files needed to automate 
the process.

Yes Yes
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4.3.1  XDL

The NCD file can be converted to an XDL file and vice 
versa. The XDL file is a textual representation of the netlist 
that has the low-level description of the FPGA’s internal 
state. It has complete information on Programmable Logic 
Points (PLPs) and Programmable Interconnect Points (PIPs). 
For XDL/NCD file creation, the XDL tool is used as follows:

 xdl.exe -ncd2xdl infile[.ncd] //ncd2xdl 
generation
 xdl.exe -xdl2ncd infile[.xdl] //xdl2ncd 
generation

4.3.2  PAR

PAR takes a mapped NCD file as input and generates an 
NCD file along with a PAR report ( having utilization sum-
mary of all placements and routing iterations) and a text file 
(containing I/O pins assignments in an ASCII text version). 
To get these files, the PAR tool is used as follows:

par infile[.ncd] outfile[.ncd] //par & text 
file generation

4.3.3  PIN2UCF

PIN2UCF takes an NCD file as input and writes information 
to a user constraint file (UCF). For this purpose, the follow-
ing PIN2UCF command is used:

pin2ucf infile[.ncd]

For an experiment, a kill switch and its required malicious 
logic are implemented and placed in the AES_256 core, 
as shown in Fig. 4. These changes are considered for the 
dataset creation of “recovered XDL/NCD from the infected 
bitstream”. The function of kill switch circuitry is to damage 
the whole encryption process by zeroing all the keys. The 
logic is triggered from an external input signal that is fed 
into the design using an I/O pin.

By using the PAR command two files are generated PAR_ 
pad.txt and PAR.par. Similarly, the UCF.ucf file is also generated  

Fig. 4  Trojan using unallocated spaces and I/O pin (FPGA Editor’s View)

Fig. 5  Detection of malicious 
resource utilization using Par 
file
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by the PIN2UCF command that has the complete information of  
the pins assignments. The descriptive and tabular information  
are separated. Later, the descriptive information has been given 
to the NLP module, wherein, syntactic features are read. The 
TFIDF measure is used to assign a score to syntactic features. 
The score of the features represents the relevance of the input 
file to the Trojan and the clean descriptive file. After that, 
energy flow indicators (e.g., input, power, frequency, output, 
etc...) are sorted out. Finally, the data output from the NLP 
module, and sorted out energy flow indicators are merged. After 
applying the TL modeling technique, the existence of mali-
cious modifications or Trojan circuits is detected that are using 
unallocated resources as shown in Figs. 5 and 6. Furthermore, 
to find out the exact details of malicious logic, the XDL com-
mand is used. A Malicious.xdl file is generated using the XDL 
command and further evaluated on the same framework. The 
same malicious modifications were found, as shown in Fig. 7. 
The test was performed on real datasets generated by Xilinx 
ISE. IOB name “Kill Switch” appears only for that reason. In a 
recovered netlist, it would not be preserved the same as used in 
the synthetic file. However, the IOB location can be extracted 
by the proposed method. IOB detail can also be compared with 
extracted XDL’s PIPs for further clarification. Malicious modi-
fication can be identified once the IOB location is detected.

4.4  Detection of Trojans Causing Frequency 
Fluctuations

A Trojan can alter the timing of the circuit by utilizing the 
path delay effects. Due to the loading effects of Trojan circuits 

on internal paths, the operating frequency can be changed. To 
detect such Trojans, the TRACE command-line tool is used.

4.4.1  TRACE

The Timing Reporter and Circuit Evaluator (TRACE) tool 
makes static timing analysis based on input timing con-
straints of an FPGA design and generates a report file with 
a .twr extension. In addition, TRACE can also be run 
on unplaced designs, partially placed & routed designs, 
and completely placed & routed designs. The following 
command-line tool is used to create a .twr file:

 trce -a infile[.ncd]

To test the proposed model, the position of BUFG is changed 
from “BUFGCTRL_X0Y17” to “BUFGCTRL_X0Y0”, 
while the input “clk” pad is located at “AH15”. It changes 
CLK_BUFGP’s clock period from 7.247ns to 7.497ns. In 
addition, the corresponding maximum operating frequency 
is also changed from 137.988MHz down to 133.387MHz. 
These changes are considered for the dataset creation of 
“recovered XDL/NCD from the infected bitstream”. After 
applying the KZ framework, Fig. 8 shows the detection of 
malicious modifications in the .twr file.

4.5  Detection of Trojans that Increase Path Delay

The Trojan circuits can affect route delay in several ways. These 
circuits add more gate delays to the original paths. Therefore, 

Fig. 6  Detection of malicious 
I/O details using .ucf or PAR_
pad.txt files

Fig. 7  Detection of malicious 
modifications using .xdl file
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one important parameter that is used to detect the Trojans is the 
path delay. Such Trojans can be created by modifying intercon-
nects connecting lookup tables (LUTs) across slices of CLBs. 
To detect such Trojans, the ReportGen command-line tool is 
used.

4.5.1  ReportGen

ReportGen accepts an NCD file and generates various pad 
reports and a log file (contains standard usage information) 
along with the .dly file. The .dly file contains path delay 
information on each net of a design. These files are gener-
ated by the following tool:

 reportgen -delay infile[.ncd] //.dly file 
generation

In AES_256 Core, 256-bit Cipher Key is fed to the design 
through “cipher_key[7:0]” input ports in multiple cycles. 
The cipher_key_delay is a flip-flop that stores all the key 
values before feeding to the design. To test the proposed 
scheme, the net cipher_key_0_IBUF is selected to insert 
path delay. The selected ports and components of the sche-
matic are shown in Fig. 9. The net delay is produced by 
changing the SLICE (name: cipher_key_delay<3>) position 
from X0Y75 to X22Y105, while the “cipher_key[0]” IOB is 
placed at location “AP32” as shown in Figs. 10 and 11. In 
doing this, the corresponding switch boxes (SB) and PIPs 
were also changed. These modifications were carried out by 
using FPGA Editor and the modified file was considered a 
malicious NCD file. The comparison between PIPs of both 

Trojan-free or malicious XDL files is shown in Figs. 12 and 
13. However, more delay can be inserted by increasing logic 
levels. In this way, the logic delay (i.e. Tilo) can be added 
to the overall path delay. To check complete logic and net 
delays the following command is used:

trce -v infile[.ncd]

-v option is used to generate a verbose report.

Moreover, by using the ReportGen command, .dly file 
is generated. The comparison between both files is carried 
out and analyzed the path delays for each signal using the 
KZ framework. The delay reported for the net cipher_key_0_
IBUF to cipher_key_delay<3>is from 2.060 ns to 3.354 ns.

4.6  Detection of Trojans That Leak Information

There are many ways in which a Trojan can leak sensitive 
or secret information by providing backdoor channels in 
FPGA. The main source of information leakage is data ports. 
Therefore, it is a challenging task to check the connectiv-
ity of benign or legitimate I/O ports with the ports that are 
maliciously inserted by some adversaries to leak sensitive 
information. To detect such changes or internal connections, 
ReportGen and PIN2UCF tools are used.

To test the proposed technique, the NCD file is changed by 
using FPGA Editor’s “Probes” option to leak sensitive infor-
mation. The net cipher_key_0_IBUF is manually connected 
to another IO port (name: my_pin) to exfiltrate cipher_key[0] 

Fig. 8  Detection of malicious 
changes in .twr file

Fig. 9  Selected ports in sche-
matic

C

CE  Q

D

cipher_key_delay_0

cipher_key_0_IBUF

IBUF

cipher_key[7:0]

cipherkey_valid_in_IBUF

IBUF

 I O
clk_BUFGP

BUFGP

cipherkey_valid_in

clk

AES_256
CORE



256 Journal of Electronic Testing (2022) 38:247–260

1 3

information. While net cipher_key_0_IBUF is already con-
nected to the input port cipher_key[0]. These changes are 
made for creating a recovered XDL/NCD dataset from the 

infected bitstream. The following output is generated by the 
“ReportGen” command:

cipher_key_0_IBUF
cipher_key<0>.I
3.354 cipher_key_delay<3>.AX
2.730 my_pin.O

"cipher_key_delay<3>"
Type: SLICEL

Location: SLICE_X22Y105

net "cipher_key_0_IBUF"

"cipher_key<0>"
Type: IOB

Location: AP32

Fig. 10  Trojan free NCD file

"cipher_key_delay<3>"
Type: SLICEL
Location: SLICE_X0Y75

net "cipher_key_0_IBUF"net "cipher_key_0_IBUF"

"cipher_key<0>"
Type: IOB
Location: AP32

Fig. 11  Malicious NCD file
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while PIN2UCF shows the following result:

NET ”my_pin.OUTBUF.OUT” LOC = AD25;

Further, the XDL command is used to get complete detail 
of the logic associated with the malicious port. After 
applying the proposed model these changes are detected 
by TL modeling.

4.7  Detection of Trojans That Induce Power 
Fluctuations

The Trojans can be implemented by simultaneously switch-
ing the signals that use the CLB’s interconnect resources. 
Such switching signals are used to connect to unused PIPs 
that can be detected using the XDL command. Moreover, 
by increasing fan-outs or adding extra net delays, there will 
be more power consumption drawn by the circuit. So, the 
infected points where these Trojans’ interconnections were 
present are detected by using the XPWR command.

4.7.1  XPWR

XPWR provides power as well as thermal estimates for FPGA 
designs. The file generated by the XPWR command gives 

information about the power of each net or logic element in 
the design. It also provides the status of junction temperature 
and a complete on-chip power summary. This information can 
be acquired by the following tool:

 xpwr -v infile[.ncd] original_pcf_
file[.pcf] //.xpwr file generation

The original_pcf_file[.pcf] is the Physical constraint file(PCF) 
of Trojan free design. To test the proposed scheme, the fanout 
for the signal cipher_key_0_IBUF is increased from 1 to 129. 
In doing this, the power for that signal is changed from 0.01 
mW to 0.20 mW which is observed after applying the pro-
posed framework to generated files. XPWR can be used to 
detect Type-II Trojans with 100% accuracy. For Type-I, accu-
racy varies depending upon resource utilization.

4.8  Bit file Generation

Based on the TL-generated reports, malicious changes are 
removed in infected XDL/NCD files and then Trojan free Bit 
file is generated using the Xilinx tool BitGen. BitGen takes 
an NCD file as input and generates a configuration bitstream 
file as output with a “.bit” extension. So modified XDL file 
is converted into an NCD file and then the following com-
mand is used:

Fig. 12  PIP details in the Trojan 
free XDL file

Fig. 13  PIP details in the Mali-
cious XDL file
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 bitgen -w infile[.ncd]//.bit file generation

5  Countermeasures

First of all, it is strongly recommended to use bitstream encryp-
tion rather than using an unencrypted plain bitstream. Some 
successful attacks have also been launched against bitstream 
encryption in different XILINX FPGAs [11]. However, 
encrypting the bitstream will create an obstacle, and a huge time  
will require for an attacker to decrypt or alter the encrypted 
bitstream. Some techniques like validating the design before 
use, patchable encryption, model checker, Revision Select (RS) 
pins (used to clear the battery-backed RAM (BBRAM) key 
storage and reset the FPGA), and obfuscation are some effec-
tive countermeasures against bitstream encryption attacks [11]. 
Moreover, key-based bitstream obfuscation techniques can also 
be used to generate logically varying bitstreams for the same 
FPGA architecture that provides good protection against major 
attacks [21].

Secondly, manually re-route the design and set a proper 
slice position on the FPGA’s die instead of using default set-
tings. Unused I/O pins must be grounded and fill the vacant 
resources with dummy logic [23] or replicate the same design 
[2]. These copies will be shuffled and activated at the design-
er’s choice. In this way, the attacker will have a hard time 
deciding which one is the correct design, when will it activate, 
and where to place HTs. The built-in self-test (BIST) [20] 
should be placed on specific logic test points and designers 
must work on real-time monitoring techniques [4]. For meas-
uring physical operating parameters of FPGAs like on-chip 
power supply voltages and die temperatures Xilinx “System 
Monitor wizard” IP core is very effective and helpful in real-
time monitoring. It is suggested that design/netlist files to 
bitstream conversion must be customized in a way that soft 
logic-locking techniques along with encryption must be incor-
porated within the design tools. Finally, there must be some 
additional features like “bitstream reversing to netlist files” 
and “one-click efficient dummy logic insertion on vacant 
places” in FPGA’s design suites. It will not only be helpful 
for researchers to detect malicious modifications in the design 
but beneficial for practitioners and system developers as well.

6  Conclusion and Future Directions

In this study, the major challenges in HTs detection are 
addressed by introducing a novel “KZ Framework” that 
utilizes Xilinx command-line tools and NLP techniques. In 
this work, the detection of malicious modifications/HTs is 
demonstrated by extracting complete information on hard-
ware primitives, resource utilization, timing constraints, 
and power summaries from XDL/NCD files in textual form.  

The XDL or NCD files can be extracted from the infected bit- 
stream by applying reverse engineering techniques. Further, 
NLP is employed to extract the syntactic features from the 
descriptive artifact to find the malicious modifications/
HTs. The aforementioned NLP method is generic and can 
be employed on files extracted from different FPGAs, while 
netlist to textual file conversion will require some tools 
like the Xilinx Command line.

The proposed work is not restricted to only one type 
of data matching. The reason for converting bitstream to  
textual/readable data is to find the types of detected HTs.  
Furthermore, the reference files are only required to train  
the model. Once the model is trained, these files are no  
longer required. Further, the TL function has been employed  
for being the least hungry for data and most prudent for 
such problems. The proposed method could pave the way  
to learning and studying the behavior of different types of HTs  
and malicious intentions. The KZ framework shows differ-
ent detection methods and each method targets the particu-
lar type of HTs rather than finding out generic malicious 
changes. Moreover, no additional equipment is required for 
the simple, time-efficient, and non-invasive detection tech-
niques that make it cost-effective, manageable, and easily 
operated. Further, experimental results show that the pro-
posed technique can detect HTs with excellent accuracy.

Finally, for future research, such type of detection model 
should be incorporated in FPGA-based design suites that 
will ease the developers and researcher to find out malicious 
changes. This will lead to studying and implementing the best 
methods of detection to ensure devices that are free of HTs.
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