8
VLSI Testing –Term Paper, Walking, marching and galloping patterns for memory tests

Walking, marching and galloping patterns for memory tests

Term paper – ELEC 7250
Submitted by - Arvind Raghuraman
Abstract

Testing semiconductor memories is increasingly important today because of the high density of current memory chips. In this paper we investigate on the various functional fault models present for today’s memory technology and discuss about the ways and means to detect these faults. Emphasis is laid on classical Walking, Galloping and March pattern tests, which are widely used today for testing chip level, array level and board level functional memory defects. Test strategies and pseudo code for implementation of these techniques are also discussed.
Introduction
This paper talks about walking, marching and galloping pattern tests for RAM. Random access memory circuits are among some of the highly dense VLSI circuits that are being fabricated today. Since the transistor lines are very close to each other, RAM circuits suffer from a very high average number of physical defects per unit chip area compared with other circuits. This fact has motivated researchers to develop efficient RAM test sequences that provide good fault coverage.
For testing today’s high density memories traditional algorithms take too much test time. For instance GALPAT and WALKING I/O [5][6] require test times of order n2 and n3/2(where n is the number of bits in the chip). At that rate, assuming a cycle time of 100 ns, testing a 16Mbit chip would require 500 hours for an n2 test and 860 seconds for an order n3/2 test. Other older tests, such as Zero-One and Checkerboard, are of order n, but they have poor fault coverage. Table 1 shows the memory testing time as a function of memory size.
[image: image1.png]Size Complexity
n n nlogn | n% n’
K 0.0001s | 0.001s | 0.0033s | 0.105s
4K 0.0004s | 0.0048s | 0.0262s | 1.7s
6K | 0.0016s | 0.0224s | 0.21s 27s
64K | 0.0064s 0.1s 1.678s | 7.17m
256K | 0.0256s | 0.46s 13.4s 1.9h
M 0.102s 2.04s 1.83m | 1.27d
4M 0.41s 9.02s 14.3m | 20.39d
6M 1.64s 39.36s 1.9h 326d
64M 6.56s | 2.843m | 15.25h | 143y
256M | 26.24s | 12.25m 5.1d 229y
G 1.75m | 52.48m | 40.8d | 3659y

Table 1:Test time as a function of memory size [1]
This paper introduces the different fault models used for today’s RAM technologies. It then talks about the different memory testing approaches like walking, marching & galloping pattern tests and analyses the effectiveness and implementation of each of these tests.
Historical Note & Today’s Technology
Through the years different approaches have been investigated and proposed for testing memories. The most traditional approach is to simply apply a sequence of test patterns to the I/O pins and test the functionality of the memory, this approach is investigated in this paper in detail. Checker board, Zero-one (MSCAN) [Breuer & Friedman, 1976], Walking [2], galloping [3], MARCH tests –Marching 1/0 test [Breuer & Friedman, 1976][5], MATS Test [Nair, Thatte & Abraham, 1979][8], MATS+ Test [Abadir & Reghbati, 1983], MATS++ [Goor, 1991],
MARCH X [unpublished], MARCH C [Marinescu, 1982][10], MARCH C- [Goor, 1991], MARCH A [Suk & Reddy, 1981], MARCH Y [unpublished], MARCH B [Suk & Reddy, 1981][9], butterfly, Moving inversion (MOVI) [De Jonge & Smeulders, 1976], surround disturb are some traditional pattern tests [2][3]. A more recent approach is to redesign and augment the peripheral circuit surrounding the RAM circuit to improve the testability, popularly referred as design for testability. The other approaches propose adding even more extra hardware to the memory circuitry to realize built-in self test (BIST). But the advantage of these memory design modifications are often offset by the overhead’s that they introduce. This overhead is a function of memory size in terms of extra hardware, so we can substantiate its presence for large memories. The main goal behind these approaches is to reduce the memory testing time which rises exponentially with memory size.
Memory Failure Modes:

Classical fault models are not sufficient to represent all important failure modes in a RAM; Functional Fault models should be employed. Memory Fault models can be classified under the categories shown below, brief descriptions of the models are given as follows.

[image: image2]
Figure 1.0

Memory cell faults

1. Stuck-at fault (SAF): cell or line s-a-0 or s-a-1 [1].
2. Stuck-open fault (SOF): open cell or broken line .
3. Transition fault (TF): cell fails to transit [1].
4. Data retention fault (DRF): cell fails to retain its logic value after some specified time due to, e.g., leakage, resistor opens, or feedback path opens [2].
5. Coupling fault (CF): Coupling faults are of three types [1].
· Inversion coupling fault (CFin): a transition in one cell (aggressor) inverts the content of another cell (victim). [1,3]
· Idempotent coupling fault (CFid): a transition in one cell forces a fixed logic value into another cell. [1,3]
· State coupling fault (CFst): a cell/line is forced to a fixed state only if the coupling cell/line is in a given state (a.k.a. pattern sensitivity fault (PSF)). [1,3]
6. Bridging fault (BF): short between cells (can be AND type or OR type) [1]
7. Neighborhood Pattern Sensitive Fault (NPSF) [1]
8. Active (Dynamic) NPSF [1]
9. Passive NPSF [1]
10. Static NPSF [1]
Address decoder faults (AFs)

 1. No cell accessed by certain address [1,3].
 2. Multiple cells accessed by certain address [1,3].
 3. Certain cell not accessed by any address [1,3].
 4. Certain cell accessed by multiple addresses [1].
Dynamic Faults

1. Recovery faults: when some part of the memory cannot recover fast enough from a previous state [2].

· Sense amplifier recovery: sense amplifier saturation after reading/writing a long string of 0s or 1s.

· Write recovery: a write followed by a read or write at a different location resulting in reading or writing at the same location due

to slow address decoder.

2. Disturb faults: victim cell forced to 0 or 1 if we read or write aggressor cell (may be the same cell) [2].

3. Data Retention faults: memory loses its content spontaneously, not caused by read or write [2].

· DRAM refresh fault: Refresh-line stuck-at fault

· DRAM leakage fault:
Sleeping sickness—loose data in less than specified hold time (typically hundreds of micro sec to tens of ms); caused by charge leakage or environment sensitivity; usually affects a row or a column.
Static data losses—defective pull-up device

Inducing excessive leakage currents which can change the state of a cell Checkerboard pattern triggers max leakage.
Algorithm’s and analysis:

MARCH tests [2,3]:

A MARCH test consists of a finite sequence of March elements, while a March element is a finite sequence of operations applied to every cell in the memory array before proceeding to the next cell. An operation can consist of writing a 0 into a cell (w0), writing a 1 into a cell (w1), reading an expected 0 from a cell (r0), and reading an expected 1 from a cell (r1).

MARCH Test Notations:

Some of the most popular notations for MARCH tests which will be used through out his paper are shown below [1].

[image: image3.wmf])

1

(

:

1

)

0

(

:

0

)

1

(

:

1

)

0

(

:

0

:

:

:

cell

a

to

a

writing

operation

write

w

cell

a

to

a

writing

operation

write

w

cell

a

from

a

reading

operation

read

r

cell

a

from

a

reading

operation

read

r

way

either

change

can

sequence

address

order

descending

in

changes

sequence

address

order

ascending

in

changes

sequence

addresss

c

ß

Ý

MARCHING 1/0 Test [Breuer & Friedman, 1976][5]:
The MARCHING 1/0 is a test of 14n complexity. It is a complete test for AF’s, SAF’s and TF’s but has the ability to detect only a part of CF’s [2]. The test sequence is given as follows.

[image: image4.wmf]tion

implementa

for

pseudocode

r

w

r

r

w

r

w

r

w

r

r

w

r

w

MARCHING

}

)

1

,

1

,

0

(

);

0

,

0

,

1

(

);

1

(

);

0

,

0

,

1

(

);

1

,

1

,

0

(

);

0

(

{

:

0

/

1

ß

Ý

Ý

ß

Ý

Ý

[image: image5.wmf];

}

{

1

}}

;

{

){}

0

)

(

(

}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}}

;

{

){}

1

)

(

(

}

;

{

}

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

0

pass

return

reversed

data

with

sequence

same

the

repeat

to

background

write

return

else

i

m

if

return

else

i

m

i

m

if

i

i

n

i

for

return

else

i

m

if

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

=

=

=

-

-

>=

-

=

=

=

=

+

+

-

<=

=

MATS Test [Nair, Thatte & Abraham, 1979][8]:

MATS stands for Modified Algorithmic Test Sequence. MATS is the shortest MARCH test for unlinked SAF’s in memory cell array and read/write logic circuitry [3]. The algorithm can detect all faults for OR type technology since the result of reading multiple cells is considered as an OR function of the contents of those cells. This Algorithm can also be used for AF’s of AND type technology using the MATS-AND test sequence given below [2]. The MATS Algorithm has a complexity of 4n with a better fault coverage compared to equivalent zero-one and checkerboard tests [2].

[image: image6.wmf]}

)

0

(

);

0

,

1

(

);

1

(

{

:

}

)

1

(

);

1

,

0

(

);

0

(

{

:

r

w

r

w

type

AND

MATS

r

w

r

w

type

OR

MATS

c

c

c

c

c

c

-

-

[image: image7.wmf]}}

;

{

){}

1

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

}

);

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

}

;

0

)

(

{

)

);

1

(

;

0

(

fail

return

else

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

i

m

i

n

i

i

for

tion

implementa

for

pseudocode

=

+

+

-

<=

=

=

=

+

+

-

<=

=

=

+

+

-

<=

=

MATS+ Test [Abadir & Reghbati, 1983]:
The MATS+ test sequence detects all SAF’s and AF’s, its often used instead of MATS when the technology used under test is unknown. The MATS+ algorithm has a test complexity of 5n.

[image: image8.wmf];

}}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

{

}}

;

{

}

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

;

0

:

}

)

0

,

1

(

);

1

,

0

(

);

0

(

{

:

pass

return

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

tion

implementa

for

pseudocode

w

r

w

r

w

MATS

=

=

-

-

>=

-

=

=

=

+

+

-

<=

=

ß

Ý

+

c

 MATS++ [Goor, 1991]:

The MATS++ test sequence is a complete, irredundant, & optimized test sequence. It is similar to the MATS+ test but allows fault coverage for TF’s. Recommended test of 6n test complexity for unlinked SAF’s and TF’s.

[image: image9.wmf]0

}

)

0

,

0

,

1

(

);

1

,

0

(

);

0

(

{

:

to

background

write

tion

implementa

for

pseudocode

r

w

r

w

r

w

MATS

ß

Ý

+

+

c

[image: image10.wmf];

}}

;

{

){}

0

)

(

(

}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}}

;

{

}

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

pass

return

fail

return

else

i

m

if

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

=

=

=

-

-

>=

-

=

=

=

+

+

-

<=

=

MARCH X [unpublished]
The MARCH X test is called so since it has been used without being published [3]. This test detects unlinked SAF’s, AF’s, TF’s and CFin’s. The MARCH X test is a test of 6n complexity.

[image: image11.wmf];

}}

;

{

){}

0

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

{

}}

;

{

}

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

;

0

:

}

)

0

(

);

0

,

1

(

);

1

,

0

(

);

0

(

{

:

pass

return

fail

return

else

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

tion

implementa

for

pseudocode

r

w

r

w

r

w

X

MARCH

=

+

+

-

<=

=

=

=

-

-

>=

-

=

=

=

+

+

-

<=

=

ß

Ý

c

c

MARCH C [Marinescu, 1982][10]:
The MARCH C test is suited for AF’s, SAF’s, TF’s and all CF’s [3]. It is a test of 11n complexity.

[image: image12.wmf]}

)

0

(

);

0

,

1

(

);

1

,

0

(

);

0

(

);

0

,

1

(

);

1

,

0

(

);

0

(

{

:

r

w

r

w

r

r

w

r

w

r

w

C

MARCH

c

c

c

ß

ß

Ý

Ý

[image: image13.wmf];

}}

;

{

){}

0

)

(

(

{

)

;

;

0

(

}}

;

{

}

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}}

;

{

}

;

1

)

(

){

0

)

(

(

)

;

0

);

1

(

(

}}

;

{

){}

0

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

}

;

1

)

(

{

0

)

(

(

{

)

);

1

(

;

0

(

0

pass

return

fail

return

else

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

tion

implementa

for

pseudocode

+

+

<=

=

=

=

-

-

>=

-

=

=

=

-

-

>=

-

=

=

+

+

-

<=

=

=

=

+

+

-

<=

=

=

=

+

+

-

<

=

MARCH C- [Goor, 1991]
This test sequence is a modification to MARCH C test implemented in order to remove redundancy present in it. Detects unlinked AF’s, SAF’s, TF’s and all CF’s. This test is of complexity 10n.

[image: image14.wmf]}}

;

{

}

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}}

;

{

}

;

1

)

(

){

0

)

(

(

)

;

0

);

1

(

(

}}

;

{

}

;

0

)

(

){

1

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

}

;

1

)

(

{

0

)

(

(

{

)

);

1

(

;

0

(

0

}

)

0

(

);

0

,

1

(

);

1

,

0

(

);

0

,

1

(

);

1

,

0

(

);

0

(

{

:

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

tion

implementa

for

pseudocode

r

w

r

w

r

w

r

w

r

w

C

MARCH

=

=

-

-

>=

-

=

=

=

-

-

>=

-

=

=

=

+

+

-

<=

=

=

=

+

+

-

<

=

ß

ß

Ý

Ý

-

c

c

[image: image15.wmf];

}}

;

{

){}

0

)

(

(

{

)

;

;

0

(

pass

return

fail

return

else

i

m

if

i

n

i

i

for

+

+

<=

=

MARCH A [Suk & Reddy, 1981]

The MARCH A test is the shortest test for AF’s, SAF’s, linked CFid’s, TF’s not linked with CFid’s, and certain CFin’s linked with CFid’s [2]. It is a complete and irredundant test of complexity 15n.

[image: image16.wmf]background

to

write

tion

implementa

for

pseudocode

w

w

r

w

w

w

r

w

w

r

w

w

w

r

w

A

MARCH

0

}

)

0

,

1

,

0

(

);

0

,

1

,

0

,

1

(

);

1

,

0

,

1

(

);

1

,

0

,

1

,

0

(

);

0

(

{

:

ß

ß

Ý

Ý

c

[image: image17.wmf];

}

{

}

;

0

)

(

;

1

)

(

){

0

)

(

(

{

)

;

0

);

1

(

(

}

{

}

;

0

)

(

;

1

)

(

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}

{

}

;

1

)

(

;

0

)

(

){

1

)

(

(

{

)

);

1

(

;

0

(

}

{

}

;

1

)

(

;

0

)

(

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

pass

return

fail

return

else

i

m

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

i

m

i

m

if

i

n

i

i

for

=

=

=

-

-

>=

-

=

=

=

=

=

-

-

>=

-

=

=

=

=

+

+

-

<=

=

=

=

=

=

+

+

-

<=

=

MARCH Y [unpublished]

MARCH Y test is an extension of MARCH X. This test is of complexity 8n and can detect all faults detectable by MARCH X.

[image: image18.wmf]}

)

0

(

);

0

,

0

,

1

(

);

1

,

1

,

0

(

);

0

(

{

:

r

r

w

r

r

w

r

w

Y

MARCH

c

c

ß

Ý

[image: image19.wmf];

}}

;

{

){}

0

)

(

(

{

)

);

1

(

;

0

(

}}

;

{

){}

0

)

(

(

}

;

{

)

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}}

;

{

){}

1

)

(

(

}

;

{

}

;

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

0

pass

return

fail

return

else

i

m

if

i

n

i

i

for

fail

return

else

i

m

if

fail

return

else

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

if

fail

return

else

i

m

i

m

if

i

n

i

i

for

to

background

write

tion

implementa

for

pseudocode

=

+

+

-

<=

=

=

=

=

-

-

>=

-

=

=

=

=

+

+

-

<=

=

MARCH B [Suk & Reddy, 1981][9];

The MARCH B test is an extension of MARCH A test. It is a complete and irredundant test capable of detecting AF’s, SAF’s, linked CFid’s or CFin’s. This test is of complexity 17n.

[image: image20.wmf];

}}

{

}

;

0

)

(

;

1

)

(

){

0

)

(

(

{

)

;

0

);

1

(

(

}

;

{

}

;

0

)

(

;

1

)

(

;

0

)

(

){

1

)

(

(

{

)

;

0

);

1

(

(

}

;

{

}

;

1

)

(

;

0

)

(

){

1

)

(

(

{

)

;

;

0

(

}}

;

{

}

1

)

(

){

0

)

(

(

}

;

{

}

0

)

(

){

1

)

(

(

}

;

{

}

1

)

(

){

0

)

(

(

{

)

);

1

(

;

0

(

0

}

)

0

,

1

,

0

(

);

0

,

1

,

0

,

1

(

);

1

,

0

,

1

(

);

1

,

0

,

0

,

1

,

1

,

0

(

);

0

(

{

:

pass

return

fail

return

else

i

m

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

i

m

i

m

if

i

i

n

i

for

fail

return

else

i

m

i

m

i

m

if

i

n

i

i

for

fail

return

else

i

m

i

m

if

fail

return

else

i

m

i

m

if

fail

return

else

i

m

i

m

if

i

n

i

i

for

background

to

write

tion

implementa

for

pseudocode

w

w

r

w

w

w

r

w

w

r

w

r

w

r

w

r

w

B

MARCH

=

=

=

-

-

>=

-

=

=

=

=

=

-

-

>=

-

=

=

=

=

+

+

<=

=

=

=

=

=

=

=

+

+

-

<=

=

ß

ß

Ý

Ý

c

GALPAT:

GALPAT known as Galloping patterns test is a test of 4n2 complexity. The galloping patterns test is a strong test for most faults; it is a complete test to detect and locate all SAF’s, TF’s, AF’s and CF’s. The algorithm involves writing a basic cell with its complement and then verifying every other cell for its data integrity and repeating the algorithm with data inversed.

[image: image21.wmf]end

procedure

same

repeat

background

to

write

i

m

i

m

OC

verify

and

read

BC

verify

and

read

OC

OC

OC

OC

for

i

m

i

m

BC

BC

BC

BC

for

background

to

write

tion

implementa

for

pseudocode

GALPAT

;

;

1

}

;

)

(

)

(

}

;

;

{

)

);

1

(

;

0

(

;

)

(

)

(

{

)

);

1

(

;

0

(

0

:

=

+

+

-

<=

=

=

+

+

-

<=

=

Sliding Galloping Row/Column/Diagonal:

This is a test sequence based on galloping patterns test but instead of shifting a 1 through the memory a diagonal of one’s is shifted and the whole memory is read after each shift. Has the same fault coverage as GALPAT expect some CF’s that may be missed. This test is of complexity 4n3/2.

	
	
	
	1

	
	
	1
	

	
	1
	
	

	1
	
	
	

[image: image22.wmf];

;

;

1

}

;

'

}

;

'

;

'

{

)

);

1

(

;

0

(

;

'

{

)

);

1

(

;

0

(

;

0

{

:

/

/

end

procedure

same

repeat

background

to

write

s

BC

diagonal

complement

s

BC

other

verify

and

read

s

BC

diagonal

verify

and

read

OC

OC

OC

OC

for

s

BC

diagonal

complement

BC

BC

BC

BC

for

to

background

write

tion

implementa

for

pseudocode

Diagonal

Column

Row

Galloping

Sliding

+

+

-

<=

=

+

+

-

<=

=

WALPAT:

WALPAT (walking patterns test) is a classical memory testing technique. The walking patterns test is similar to the galloping patterns test except that the basic cell is read only once after all the other cells are read. The WALPAT test is a test of complexity 2n2.

[image: image23.wmf]}

;

)

(

)

(

;

}

;

{

)

);

1

(

;

0

(

;

)

(

)

(

{

)

);

1

(

;

0

(

0

:

:

i

m

i

m

BC

verify

and

read

OC

verify

and

read

OC

OC

OC

OC

for

i

m

i

m

BC

BC

BC

BC

for

background

to

write

tion

implementa

for

pseudocode

WALPAT

=

+

+

-

<=

=

=

+

+

-

<=

=

[image: image24.wmf]end

procedure

same

repeat

background

to

write

;

;

1

Analysis & Results:
A complete summary of different MARCH tests their fault detection capabilities and test complexity is given is Table 1.

MARCH TEST DETECTION & COMPLEXITY

	Faults
	AF
	SAF
	TF
	CF
	other
	TC

	MARCHING 1/0
	DS
	D
	N
	N
	
	14n

	MATS
	D
	D
	N
	N
	
	4n

	MATS+
	D
	D
	D
	N
	
	5n

	MATS++
	D
	D
	D
	N
	
	6n

	MARCH X
	D
	D
	D
	D
	Ul-CFin
	6n

	MARCH C
	D
	D
	D
	D
	Ul-CFin
	11n

	MARCH C-
	D
	D
	D
	D
	Ul-CF
	10n

	MARCH A
	D
	D
	D
	D
	l-TF
	15n

	MARCH Y
	D
	D
	D
	D
	l-CF
	8n

	MARCH B
	D
	D
	D
	D
	Read access time
	7n

	N=’No’, L=’locate’, D=’detect’, LS= ‘locate some’,

DS= ‘detect some’.

Table 2.0 [2]

A complete summary of other pattern based memory tests their fault detection capabilities and test complexity is given is Table 1.

WALPAT & GALPAT SUMMARY
	Faults
	AF
	SAF
	TF
	CF
	other
	TC

	WALPAT
	L
	L
	L
	L
	refresh
	2n2

	GALPAT
	L
	L
	L
	L
	Sense amp rec
	4n2

	Galloping Diagonal
	LS
	L
	L
	N
	Write rec
	4n3/2

	N=’No’, L=’locate’, D=’detect’, LS= ‘locate some’,

DS= ‘detect some’.

Table 3.0 [2]
Fault coverage for different pattern based tests [4]:
[image: image25.png]Test

Zero-one
Sliding diagonal
GALCOL

MATS-OR
MATS-AND
MATS+
Marching 1/0

March C
March A
March B

TLSNPSF1G

0 40 50 60 70 80 90 100
Fault coverage (%)

Fault Coverage for MARCH tests [3]:

	Fault
	MATS++
	MARCHX
	MARCHY
	MARCH

C-

	SAF’s
	100%
	100%
	100%
	100%

	TF’s
	100%
	100%
	100%
	100%

	SOF’s
	100%
	0.2%
	100%
	0.2%

	AF’s
	100%
	100%
	100%
	100%

	CFin’s
	75.0%
	100%
	100%
	100%

	CFid’s
	37.5%
	50.0%
	50.0%
	100%

	CFst’s
	50.0%
	62.5%
	62.5%
	100%

Conclusion:

MARCH tests are extensively being used today for functional testing of SRAM and DRAM technologies. They are more efficient then older classical pattern based tests with better fault coverage. With increase in density of semiconductor memories research is on for better pattern sequences and alternative strategies like DFT and BIST.
References:

1. Essentials of Electronic Testing, Michael L.Bushnell, Vishwani D.Agarwal.
2. Memory testing, Cheng-Wen Wu, Lab for reliable computing (LaRC), EE, NTHU.

3. RAM Fault models and Memory Testing, Cheng-Wen Wu, Lab for realiable computing(LaRC), NTHU.

4. Using MARCH tests to test SRAM’S, Van De Goor, A.J.; Design & Test of Computers, IEEE Volume 10, Issue 1, March 1993 Page(s):8 – 14.
5. M.A. Breuer and A.D. Friedman, Diagnosis

and Reliable Design of Digital Systems,

Computer Science Press, Woodland

Hills, Calif., 1976.

6. A.J. van de Goor, Testing Semiconductor

Memories, Theory and Practice, John

Wiley&Sons, Chichester, UK, 1991.

7. S.M. Thatte and J.A. Abraham, ‘Testing of

Semiconductor Random Access Memories, ” hoc. Fault-Tolerant computer Symp. ~IEEE Computer Society Press, Los alamitos, Calif., June 1977, pp. 81-87.

8. R. Nair et al., “Efficient Algorithms for

Testing Semiconductor Random Access

Memories,” lEEE Trans. Computers, Vol. C-28, NO. 3, 1978, pp. 572-576.

9. D.S. Suk and S.M. Reddy, “A March Test

for Functional Faults in Semiconductor

Random-Access Memories,” lEEE Trans.

Computers, Vol. C-30, No. 12, 1981, pp. 982-985.

10. M. Marinescu, “Simple and Efficient Ago

rithms for Functional RAM Testing,” &oc.

lEEE lnt’l Test Conf, IEEE Computer society Press, 1982, pp. 23&239.

11. Automatic Generation and compaction of MARCH tests for memory arrays, Kamran Zarrineh, Member, IEEE, Shambhu J. Upadhyaya, Senior Member, IEEE, and Sreejit Chakravarty, Senior Member, IEEE
Summary: A unified notation is presented for static random access memory (SRAM) fault models and fault tests for these models. The likelihood that the different types of faults will occur is demonstrated using inductive fault analysis and physical defect anal.....

Address decoder Faults

Dynamic faults

Memory Cell Faults

Memory – Functional Fault Models

_1175976522.unknown

_1175976631.unknown

_1175976685.unknown

_1175976908.unknown

_1175976956.unknown

_1175976942.unknown

_1175976884.unknown

_1175976669.unknown

_1175976578.unknown

_1175976605.unknown

_1175976546.unknown

_1175842079.unknown

_1175936938.unknown

_1175936946.unknown

_1175936988.unknown

_1175897691.unknown

_1175897809.unknown

_1175897838.unknown

_1175896645.unknown

_1175840332.unknown

_1175842068.unknown

_1175834982.unknown

