PROJECT REPORT

VLSI TESTING

ELEC 7250, Spring 2005

Veeraraghavan Ramamurthy

ramamve@auburn.edu

“Write a logic simulator and use it to compact a set of random vectors to maximize the activity (entropy) at the circuit output. Using a fault simulator determine whether the compacted vectors are better or worse than random vectors.”

Abstract:

A digital circuit is constructed using the Boolean gates and flip-flops, which can be either a combinational circuit or a sequential circuit. A logic simulator is a true value simulator that computes the responses that a circuit would have produced if the given input stimuli were applied. In a typical design verification scenario the computed responses are analyzed to verify that the designed netlist performs according to the specification. If errors are found, suitable changes are made, until responses to all stimuli match the specification. In this project I have designed a logic simulator where in it takes random set of input vectors, and performs true value simulation for the given set of inputs. The obtained output vectors are then compacted based on certain criteria. Once we have the compacted set of vectors, we find the fault coverage of the randomly generated vectors and the compacted set by applying them to any fault simulator such as PROOFS.I have used a 3-bit primary input and primary output circuit. The maximum input it can have is about 8 vectors that is randomly generated and given to the primary input, which then performs true value simulation to produce the output. The coding is done in MATLAB.

Introduction:

The circuit that I have used to perform logic simulation is a 3-bit primary input/output circuit. Matlab is used as the medium for coding. The netlist of the circuit is given as an input, which is parsed to extract the details about the INPUT, OUTPUT, and GATES. Once the details about the input and gates are extracted from the netlist then truth table is executed for each gate and the intermediate output is propagated to produce the final output.

The report explains the algorithm used to perform the logic simulation and compaction of vectors.

CIRCUIT:

[image: image1.png]—

"

The above circuit diagram is described in the form of netlist, which is given as input.

Algorithm:

 The netlist is parsed through and the INPUT, GATE types, Primary OUTPUT and the intermediate OUTPUT’s are stored in a separate structure. Based on the number of primary input of the circuit the input vectors are generated randomly and stored in an array. Based on a logic each bit of the primary input is assigned either a “1” or a “0”. Once we start reading the intermediate output’s, the input arguments for the gate’s are compared for its availability and assigned a value if present .The function of the gate is performed with the input values which is stored in the output variable which is then passed on to the next gate if available as an input. As we read through each line of the netlist, we calculate the intermediate output’s, which is used to find the final output of the circuit.

 The random numbers are generated using an inbuilt function called “rand” which produces random numbers between 0&1. For each random number generated the input is assigned either a “0” or “1” based on a logic.

Code for random number generation:

x=rand(2^count1*count1);

p=1;

len1=length(x);

for l=1:len1

if x(l)<0.5

a(p)=0;

else

a(p)=1;

end

For each set of input, the output is calculated and stored in a structure. Since the input is randomly generated there may be repetitions, which produce identical output vectors that need to be sorted out to form a unique output array. Once we form a unique output array the compact set of input vectors can be obtained based on certain criteria required by the user.

Compaction algorithm:

The output of each input vector is compared bitwise with the next output and the number of bits changed is calculated. We set a percentage level of acceptance for the changes in the number of bits of the Output, which decides whether the Input vector could be considered or discarded. I have chosen the permissible percentage of acceptance as 50%, which means if the percentage change in the number of bits of the 2 outputs under consideration is more than 50% the corresponding input vectors are included. If the change is below the selected percentage the first vector is included and the second vector is discarded and we move on to consider the next set of 2 vector outputs.

This process leads to the compaction of a set of randomly generated vectors. Then we find the fault coverage for the randomly generated set of vectors and the compact set to see whether the compact set has a better fault coverage. The fault coverage could be obtained by applying these vectors to any fault simulator available such as PROOFS.

Total fault in the circuit was found to be 23 and the circuit has no redundant fault. The generated Random set of vectors was found to detect 20 faults and the coverage was 86.95 percentage. The fault coverage of the Random set may vary with the set of input vectors, as it is randomly generated. The coverage for the compact set also varies according to the logic and the percentage level considered for compaction.

Results:

For the chosen 3 bit input circuit the results are tabulated as below.

	 Input
	 Output
	Unique O/P
	Unique I/P
	Compact set

 50%
	Compact set

 10%

	1 0 0

0 0 0

1 0 1

1 0 1

0 1 0

1 1 0

1 0 0

0 1 0
	0 0 0

0 0 1

0 0 0

0 0 0

1 1 1

0 0 0

0 0 0

1 1 1
	0 0 0

0 0 1

1 1 1

	1 0 0

0 0 0

0 1 0

	1 0 0

0 1 0

	1 0 0

0 0 0

0 1 0

For a 3 bit input circuit maximum input possible is 8 vectors, which is compacted to 2 vectors if we use 50% as desired percentage and 3 vectors if 10% is used. We arrive at the compact set based on the criteria explained above.

The following are the results from PROOFS-:

The following gives the fault coverage by each vector from the random set of input vectors and the number of faults covered by each vector.

read vector: 1

det faults 8 coverage 0.347826

read vector: 2

 det faults 14 coverage 0.608696

read vector: 3

 det faults 14 coverage 0.608696

read vector: 4

 det faults 14 coverage 0.608696

read vector: 5

 det faults 19 coverage 0.826087

read vector: 6

 det faults 20 coverage 0.869565

read vector: 7

 det faults 20 coverage 0.869565

read vector: 8

 det faults 20 coverage 0.869565

We don’t have all the faults detected in the circuit, as the vectors available are only randomly generated which may have repeated vector set. For 50% compaction logic the fault coverage was found to be 69.56%.

read vector: 1

 det faults 8 coverage 0.347826

read vector: 2

 det faults 16 coverage 0.695652

For 10% compaction logic the fault coverage was found to be better, it was 82.6%.

read vector: 1

 det faults 8 coverage 0.347826

read vector: 2

 det faults 14 coverage 0.608696

read vector: 3

 det faults 19 coverage 0.826087

Though for 10% compaction the fault coverage was better than 50% compaction list, it was found to be less than the coverage of Random set.

Execution of the Matlab Program:

The file name is project. To execute the program in the command prompt type the name of the file. Once the file is executed give the following command to get the results.

To execute-:

>>(File name) project

To see the input array-:

>>set.input

To see the output array-:

>>set.output

To see the unique array of output without repetition-:

>>final.op

Corresponding input array-:

>>final.ip

Finally to view the compact list of vectors type-:

>>comp.input

Conclusion:

I have tried to simulate a random set of input vectors, which is then compacted, based on certain assumptions. The compact set seem to produce all possible outputs, which would be available if we had considered all the available inputs. The fault coverage was found to be less for the compacted set, which could be modified by changing the compaction algorithm. If the percentage level and the compaction logic were chosen suitably then the fault coverage of the compacted set would be similar to the random set.

I have designed a logic simulator for a combinational circuit, which could be extended to sequential circuits. Giving the user the choice of selecting the percentage of bits changed could alter the compaction algorithm.

PAGE
3

