ELEC 7250 project -To Generate a Single Test Vector to detect all/most number of faults in a given combinational circuit

ELEC-7250 Course Project

To Generate a Single Test Vector to detect all/most number of faults in a given combinational circuit

Submitted by Arvind Raghuraman

Abstract:
 The aim of this project is to develop a test generation strategy to obtain a single test vector to test all/most number of faults in a given combinational circuit. The problem was addressed from various perspectives and a solution was achieved.
 The principle idea behind the solution is to generate all possible test vectors for each fault from an equivalence collapsed fault set for a given combinational circuit. Now by ascertaining the number of repetitions of each unique test vector among the fault depended test vector sets we can obtain the test vector that detects the most number of faults. A generic windows application designed and developed to implement the above idea and was used to detect a test vector for the C17 benchmark circuit and the test results obtained are given below.

A test vector set compaction strategy has also been proposed and implemented.
Circuit under test : c17 benchmark circuit

Result : Test Vector " 0110x " detects 5 faults

Compacted test vector set : 6 vectors (fault coverage 95%)
Snap shot of the application:
[image: image1.png]®

EEC
7250,

Enter the Test Vector Set file Path

ELEC 7250 Class Project

Submitted by Arvind Raghuraman

f Documents and Setfings\Arvind Raghuraman Deskiop

‘Q

¥ Test patterns and faut free responses:

i

1: X0040 00
>0

101110
16523 /1

1100 11

2:x1100 11
p3/o

1 x10xc 11

2 x110x 11

3 x00x101

2 x0101x1
s /1

1 X00x101

2x0101x1
B3/t

1 X000 X0

2011130

3ixiixx0
b

1: 0110¢ 1
/L

1 0111x0x.

21111010 -

Test Vector * 00 x *detects 1 faults
Test Vector * 00xx ”detects 2 faults
Test Vector * 010x ”detects 3 faults
Test Vector * 0110x ”detects 5 faults
Test Vector * 0111x " detects 3 falts
Test Vector * 1001 " detects 4 faults
Test Vector * 10111 detects 1 fats
Test Vector * 10140 " detects 1 faults
Test Vector * 10 x " detects 2 faults
Test Vector * 110¢x ”detects 3 faults
Test Vector * 11100 ”detects 2 fats
Test Vector * 11101 " detects 1 fats
Test Vector * 11110 ”detects 1 fats
Test Vector * 11111 detects 1 fauts
Test Vector * 1111x " detects 2 fauts =
Test Vector * 1x " detects 1 faults

Test Vector * 0011 " detects 1 fats

Test Vector * x00x0 ”detects 1 faults

Test Vector *x00x1 " detects 3 faults

Test Vector * 0101 " detects 3 faults

Test Vector * 0111 " detects 2 fauts

Final Test vector to detect all/most faults in a

Test vector 1001x detects 4 falts, Fault Coverage.
Test vector 0101x detects 3 falts, Fault Coverage.
Test vector 0111x detects 3 faults, Fault Coverage.
Test vector 1101x detects 3 falts, Fault Coverage
Test vector x00x1 detects 3 falts, Fault Coverage
Test vector x0101 detects 3 falts, Fault Coverage
Test vector 00 detects 2 falts, Fault Coverage
Test vector 10 x detects 2 falts, Fault Coverage
Test vector 11100 detects 2 falts, Fault Coverage.
Test vector 1111x detects 2 falts, Fault Coverage
Test vector x0111 detects 2 falts, Fault Coverage
Test vector x101x detects 2 falts, Fault Coverage
Test vector x111x detects 2 falts, Fault Coverage
Test vector 000xx detects 1 falts, Fault Coverage
Test vector 00 x detects 1 falts, Fault Coverage.
Test vector 10111 detects 1 falts, Fault Coverage.
Test vector 10140 detects 1 falts, Fault Coverage
Test vector 11101 detects 1 fats, Fault Coverage
Test vector 11110 detects 1 fats, Fault Coverage
Test vector 11111 detects 1 fauts, Fault Coverage
Test vector 1 x detects 1 fats, Fault Coverage.

To Generate a Test vector to detect most/all number of faults in a given combinational circuit

Compacted Test set

Test vector 1001x detects 4 falts, Fault Coverage.
Test vector 0101x detects 3 falts, Fault Coverage.
Test vector 0111x detects 3 faults, Fault Coverage.
Test vector 1101x detects 3 falts, Fault Coverage
Test vector 001 detects 3 fauts, Fault Coverage

Introduction:

The objective of this project is to obtain a test vector that could detect all/most number of faults in a given combinational circuit. In order to accomplish this task a bench file of the given combinational circuit is generated and equivalence fault collapsing is done to the parent fault list. ATALANTA (An ATPG software for combinational Circuit’s) was used for this purpose.

Now in order to obtain the test vector that would detect most/all number of faults different approaches were investigated. In the initial thought process ideas were taken from the paper on “Independence Fault collapsing” (prepared for VDAT05) by Dr.Vishwani Agarwal and Alok Doshi. The initial approach was to exploit the concurrency property of test vectors and perform elimination based on that to obtain the test vector of interest. But this approach proved to be too complicated and a round about way to solve the given problem.

The approach implemented in this project in order to solve the given problem is to generate test vector sets comprising of test vectors, which could identify each of the unique fault’s present in the equivalence collapsed fault set; this can be done using options provided by ATALANTA. A windows based application was developed which could take the output file generated by ATALANTA as input, parse the data and implement the algorithm to obtain the test vector of interest. Design and Implementation of the algorithm has been discussed in detail in this report.

This report talks about the design and implementation of the algorithm proposed in the “Analysis and Algorithms” section. The results obtained for the c17 benchmark circuit are presented under the “Results” section. Ideas are presented for suggested improvements, using which the strategy proposed could be used for test vector compaction under the “Suggested Improvements” section. The “Conclusion” comprises of Accomplishments, suggested improvements, and lessons learned.
Analysis and Algorithms:

The steps involved in implementation of this project are given as follows.
· The given combinational circuit is taken and a bench file is generated in ICAS85 format.

· Equivalence collapsing is done to the parent fault set using ATALANTA.

· Fault based test vector generation is done using ATALANTA using the command option given below.

Command: atalanta -A -t <output file> <inputfile.bench>

Using this command ATALANTA generates all possible test vectors that can detect each fault present in the equivalence collapsed fault list and streams the data to the output file. The format of ATALANTA output is as shown below.
Output file from ATALANTA ATPG for C17.bench circuit:

· The output file generated by ATALANTA is given as input to the windows application to obtain the test vector of interest.
· The Algorithm implemented in the software is conceptually explained in the diagram given below and in the flow chart & description that follows.
Concept explained:

[image: image2]

[image: image3]
Operational software flow chart:

[image: image4]

Algorithm Description:

The output file from ATALANTA is parsed and SET - Fn = {TFn1, TFn2,TFnm} is generated, each subset TFnm consists of test vectors {TV1,TV4,….TVn} which could identify individual faults Fn.

From the set Fn a SET - TFnU = {TV1, TV2,TV3……. TVn} is generated which is the intersection subsets present in Fn, this is a set of unique vectors without repetitions. Now for each vector present in set TFnU the set of faults detected by it is obtained. Ie. A SET - TVFn = {TVFn1, TVFn2,TVFnm} is generated where each subset TVFnm = {fn ………..} contains the set of faults detected by the vector TVn that corresponds to TVFnm.

Find the maximum of the set TVFn, R = MAXIMUM (TVFn). The test vector TVx that corresponds to R = TVFn is determined.

 Now the test vector TVx is the vector of interest that detects most/all number of faults in the given combinational circuit.
· Thus the vector of interest TVx is obtained.
Results:

A Bench Mark Combinational Circuit C17.bench was used for testing the algorithm.

Bench File:
c17

5 inputs

2 outputs

0 inverters

6 gates (6 NANDs)

INPUT(1)

INPUT(2)

INPUT(3)

INPUT(6)

INPUT(7)

OUTPUT(22)

OUTPUT(23)

10 = NAND(1, 3)

11 = NAND(3, 6)

16 = NAND(2, 11)

19 = NAND(11, 7)

22 = NAND(10, 16)

23 = NAND(16, 19)
Equivalence collapsing and ATPG:

SUMMARY OF TEST PATTERN GENERATION RESULTS
1. Circuit structure

 Name of the circuit : c17

 Number of primary inputs : 5

 Number of primary outputs : 2

 Number of gates : 6

 Level of the circuit : 3

2. ATPG parameters

 Test pattern generation mode : DTPG + TC

 Backtrack limit : 10

 Initial random number generator seed : 1113552041

 Test pattern compaction mode : NONE

3. Test pattern generation results

 Number of test patterns : 54

 Fault coverage : 100.000 %

 Number of collapsed faults : 22

 Number of identified redundant faults : 0

 Number of aborted faults : 0

 Total number of backtrackings : 26

4. Memory used : 3801 Kbytes

5. CPU time

 Initialization : 0.000 secs

 Fault simulation : 0.000 secs

 FAN : 0.017 secs

 Total : 0.017 secs
Output File:
The output file generated by ATALANTA is given under the “Analysis and Algorithms section”.
Application Output (Project Results):

The output obtained after execution of the algorithm is given below.
Test Vector " 000xx " detects 1 faults

Test Vector " 001xx " detects 1 faults

Test Vector " 00xxx " detects 2 faults

Test Vector " 010xx " detects 3 faults

Test Vector " 0110x " detects 5 faults

Test Vector " 0111x " detects 3 faults

Test Vector " 100xx " detects 4 faults

Test Vector " 10111 " detects 1 faults

Test Vector " 101x0 " detects 1 faults

Test Vector " 101xx " detects 2 faults

Test Vector " 110xx " detects 3 faults

Test Vector " 11100 " detects 2 faults

Test Vector " 11101 " detects 1 faults

Test Vector " 11110 " detects 1 faults

Test Vector " 11111 " detects 1 faults

Test Vector " 1111x " detects 2 faults

Test Vector " 1x1xx " detects 1 faults

Test Vector " x0011 " detects 1 faults

Test Vector " x00x0 " detects 1 faults

Test Vector " x00x1 " detects 3 faults

Test Vector " x0101 " detects 3 faults

Test Vector " x0111 " detects 2 faults

Test Vector " x0xx0 " detects 1 faults

Test Vector " x101x " detects 1 faults

Test Vector " x10x0 " detects 1 faults

Test Vector " x10xx " detects 2 faults

Test Vector " x1100 " detects 1 faults

Test Vector " x110x " detects 1 faults

Test Vector " x111x " detects 2 faults

Test Vector " xx111 " detects 1 faults
Final Result:

The test vector that detects most/all number of faults in the given c17.bench circuit is
Test Vector " 0110x " detects 5 faults
Suggested Improvements (Implemented in Software):

The same algorithm can be used for test compaction by running the algorithm iteratively. On completion of every iteration the vector that detects the most number of faults is identified, eliminated from the vector list and recorded, by repeating this process we can obtain a compacted vector set that detects the most number of faults in a given combinational circuit. By determining the cumulative fault coverage of the eliminated vector list after every iteration we can stop the loop once the required fault coverage is obtained.

The above mention test compaction strategy has also been implemented in software and results obtained for c17.bench circuit are furnished as shown below.

Results Obtained after Test Compaction:
Circuit : c17.bench circuit
Fault Coverage Threshold : 95 %
Test Vector Compaction comprehensive Results:

Test vector 0110x detects 5 faults, Fault Coverage = 23 %

Test vector 100xx detects 4 faults, Fault Coverage = 41 %

Test vector 010xx detects 3 faults, Fault Coverage = 55 %

Test vector 0111x detects 3 faults, Fault Coverage = 68 %

Test vector 110xx detects 3 faults, Fault Coverage = 82 %

Test vector x00x1 detects 3 faults, Fault Coverage = 95 %

Test vector x0101 detects 3 faults, Fault Coverage = 109 %

Test vector 00xxx detects 2 faults, Fault Coverage = 118 %

Test vector 101xx detects 2 faults, Fault Coverage = 127 %

Test vector 11100 detects 2 faults, Fault Coverage = 136 %

Test vector 1111x detects 2 faults, Fault Coverage = 145 %

Test vector x0111 detects 2 faults, Fault Coverage = 155 %

Test vector x10xx detects 2 faults, Fault Coverage = 164 %

Test vector x111x detects 2 faults, Fault Coverage = 173 %

Test vector 000xx detects 1 faults, Fault Coverage = 177 %

Test vector 001xx detects 1 faults, Fault Coverage = 182 %

Test vector 10111 detects 1 faults, Fault Coverage = 186 %

Test vector 101x0 detects 1 faults, Fault Coverage = 191 %

Test vector 11101 detects 1 faults, Fault Coverage = 195 %

Test vector 11110 detects 1 faults, Fault Coverage = 200 %

Test vector 11111 detects 1 faults, Fault Coverage = 205 %

Test vector 1x1xx detects 1 faults, Fault Coverage = 209 %

Test vector x0011 detects 1 faults, Fault Coverage = 214 %

Test vector x00x0 detects 1 faults, Fault Coverage = 218 %

Test vector x0xx0 detects 1 faults, Fault Coverage = 223 %

Test vector x101x detects 1 faults, Fault Coverage = 227 %

Test vector x10x0 detects 1 faults, Fault Coverage = 232 %

Test vector x1100 detects 1 faults, Fault Coverage = 236 %

Test vector x110x detects 1 faults, Fault Coverage = 241 %

Test vector xx111 detects 1 faults, Fault Coverage = 245 %
We find fault coverage values higher then hundred since test vector in lower order detect the same faults that have been detected by previous vectors.

Compacted Test Vector Set with 95% Fault Coverage:
A user input, Fault Coverage Threshold = 95% was given and the following results were obtained

Test vector 0110x detects 5 faults, Fault Coverage = 23 %

Test vector 100xx detects 4 faults, Fault Coverage = 41 %

Test vector 010xx detects 3 faults, Fault Coverage = 55 %

Test vector 0111x detects 3 faults, Fault Coverage = 68 %

Test vector 110xx detects 3 faults, Fault Coverage = 82 %

Test vector x00x1 detects 3 faults, Fault Coverage = 95 %
Conclusion:

The proposed strategy has been successfully implemented in the form of a generic application software which can be used to detect a test vector that can detect most/all faults in any given combinational circuit. The application also features the test compaction module which has been explained under “Suggested Improvements” section. This module has the capability to compact a given test set based on user specified fault coverage requirement.

Better results can be obtained by performing Dominance collapsing to the parent fault list so that the number of targeted faults are lesser leading to a smaller compacted test set.

A

With the above command ATALANTA generates a set of all possible test vectors TFnm for each fault in set Fn

Find sets (TVFnm) of faults detected by each unique test vector present in set TFnu ((TV1, TV2, TV3 …. TVn)

Obtain the set of unique test vectors TFnu from the test vector sets TFnm‘s

Perform test vector generation for each unique fault present in the equivalence collapsed fault set Fn using ATALANTA.

Command : atalanta -A -t <output file> <inputfile.bench>

Perform Equivalence fault collapsing for the given combinational circuit to obtain a equivalence collapsed fault set Fn.

Obtain the net-list for the given combinational circuit.

Start

TVx is the Test Vector that detects the most number of faults

END

The test vector that detects the most number of faults in the given combinational circuit is TVx.

Find MAXIMUM of TVFnm set size’s and pick the test Vector corresponding test vector TVx.

A

Find the size of sets TVFnm

R = MAXIMUM (SET - TVFn) (TVx

TVn->TVFnm

TV3- > (TVFn3)

 {f27,f5,f6,f13}

TV2 - > (TVFn2)

{f7,f8,f6,f1}

SET - TVFn {TVFn1, TVFn2,TVFnm}

TV1 - > (TVFn1)

{f1,f4,f6}

A

A

SET - (TFnU)

{TV1, TV2,TV3……. TVn}

Fn->TFnm

Fn

F3- > (TFn3)

 {TV27,

 TV5,

 TV6,TV13}

F2 - > (TFn2)

 {TV7,

 TV8,

 TV6,TV1}

SET - Fn {TFn1, TFn2,TFnm}

F1 - > (TFn1)

{TV1,

TV4,

TV6}

ATALANTA

Combinational Circuit

* Name of circuit: c17.bench

* Primary inputs :

 1 2 3 6 7

* Primary outputs:

 22 23

* Test patterns and fault free responses:

7 /1

 1: x00x0 00

11->19 /1

 1: xx111 x0

16->23 /1

 1: x10x0 11

 2: x1100 11

23 /0

 1: x10xx 11

 2: x110x 11

 3: x00x1 01

 4: x0101 x1

19 /1

 1: x00x1 01

 2: x0101 x1

23 /1

 1: x0xx0 x0

 2: x0111 x0

 3: x111x x0

6 /1

 1: 0110x 1x

11 /1

 1: 0111x 0x

 2: 11110 10

 3: 11111 10

 4: x0111 x0

3->11 /1

 1: x101x 1x

 2: x0011 01

11 /0

 1: x10xx 1x

 2: 0110x 1x

 3: 11100 11

 4: 11101 11

 5: x00x1 01

 6: x0101 x1

2 /1

 1: 000xx 0x

11->16 /1

 1: x111x x0

16 /0

 1: 00xxx 0x

 2: 0111x 00

 3: 100xx 0x

 4: 101x0 10

 5: 10111 10

 6: 1111x 10

16 /1

 1: 010xx 1x

 2: 0110x 1x

 3: 110xx 1x

 4: 11100 11

3 /1

 1: 100xx 0x

3 /0

 1: 101xx 1x

1 /1

 1: 001xx 0x

3->10 /1

 1: 100xx 0x

16->22 /1

 1: 010xx 11

 2: 0110x 11

 3: 110xx 11

22 /0

 1: 1x1xx 1x

 2: 110xx 11

 3: 010xx 11

 4: 0110x 11

10 /1

 1: 101xx 1x

 2: 1111x 10

22 /1

 1: 00xxx 0x

 2: 0111x 00

 3: 100xx 0x

