PROJECT REPORT

Write a program to compute SCOAP testability measures. Develop an ATPG strategy by targeting a sample of faults consisting of most difficult to test faults.

Submitted in partial fulfillment for the course ELEC 7250

Pratap S.Prasad

ELEC 7250

VLSI TESTING

SPRING 2005

Instructor: Prof. Vishwani D. Agrawal

--

Department of Electrical and Computer Engineering

Auburn University
Abstract

In this project, we compute the SCOAP testability measures for a given combinational logic circuit. Also, some ATPG strategies are suggested which might affect the performance of the fault simulator in a positive way. Some inferences are obtained which throw light that ‘intelligent’ ordering of the faults might achieve the required fault coverage more quickly than randomized ordering of the same.
Introduction

As the sizes of the circuits increase, the need for designing them with testability in mind becomes more pronounced [1]. To accomplish this objective, it is necessary to quantify the testability of a circuit in some manner. This quantitative measure of testability can then be used to aid in partitioning circuits to make systems more testable. Such testability measures as gate count, number of test vectors needed to achieve a given fault coverage and controllability/observability for the lines in the circuit. Unfortunately, all of these measures have one or the other problems: gate count is too crude; test sequence length is too difficult to determine in general; and most practical circuits are not linear-sequential machines.
In 1979, Goldstein [2] developed the SCOAP testability measures to quantify the difficulty of controlling and observing a circuit. In spite of certain inaccuracies, these are the standard methods used to determine the effort required in setting a line to a logical 1 or 0. An important plus point of this is its linear complexity.

A brief overview of SCOAP is outlined here (we shall limit our discussion only to combinational testability measures). Each line in the circuit can have testability measures such as ‘controlling’ it to a 1 or a 0 and observing the value (whether it is a 1 or a 0) on that line. These measures can be combinational or sequential depending on the circuit. The primary input (PI), because of its exposure, is assumed to have a controllability of 1. After passing through each gate in the circuit, the effort of holding the line at a particular value increases because of the presence of that gate and a nominal value 1. The combinational controllabilities for holding a line at 1 and 0 will also vary depending on the gate.
Some of the combinational 1 and 0 controllabilities for some logic gates are listed below:

[image: image5.png]cCi (a)
CO (a) =CO (z) + CC1 (b) + 1 a.6c0) cofz)
CO (b) =CO () + CCT (a) + 1 b5 5 }
CC1 (b)

CO (a) = CO (z) + CCO (b) + 1 250 2
CO (b) = CO (z) + CCO (a) + 1 b

CO (a) = CO (2) + min (CCO (b}, CC1 (b)) + 1 a z
CO (b) = CO (2) + min (CCO (a), CCT (a)) + 1 b:)D
CO (a) = CO (2) + CC1 (b) + 1 a
CO (b) = CO (z) + CC1 (a) + 1 b

CO (a) = CO (z) + CCO (b) + 1 a -

CO (b) = CO (2) + CCO (a) + 1 b

€O (a) = CO (z) + min (CCO (b), CCT (b)) + 1 a 2

CO (b) = CO (z) + min (CCO (a), CCT (a)) + 1 b:)

CO(a)=CO (z) + 1 34[>072
z1

€O (a) = min (CO (z1), CO (22), ..., CO (zn)) a_FZZ

I:—zn

Fig. 1 Combinational Controllabilities of some logic gates.
As we can see from the figure, we can observe that the controllability increases as we progress further from the primary input. As the controllability value increases, it means that the line is more difficult to hold at a 1 or a 0 than one with lower controllability values.

Another testability measure is the Combinational Observability (CO) of a line. It is a measure of the effort required to observe a line. It is intuitive that a primary output (PO) is most easily observable as it is at the output. Hence, a PO has a CO of 0. We compute the observabilities by traversing back from the PO towards the inputs. A few observability values of some digital logic gates are shown in the figure below.

[image: image2]
Fig. 2 Combinational Observabilities of some logic gates.
It is quite obvious that a higher observability value will mean that there is more difficulty involved in finding out the value of that line.
Circuits containing sequential logic elements are slightly more complex to analyze because the values on the have to be allowed to settle down and the CC/CO calculation of a line may take more than one iteration.
ATPG Strategy to test hard-to-detect faults
There might be some faults in the circuit which, by virtue of having a combination of higher controllability and/or observability, will become more difficult to test than other faults. There are several methods to target the hard-to-detect faults.
The most common method is the Test Point Insertion (TPI) method [3]. In this paper, Vranken,et al propose a logic BIST scheme that combines the strengths of both test point insertion and deterministic logic BIST. The general idea is that inserting a limited amount of test points can result in a major increase in fault coverage. TPI is however not suited for obtaining complete fault coverage, and therefore a deterministic pattern generator is also applied. This combined approach allows achieving complete fault coverage, while avoiding the limitations and drawbacks of TPI, and reducing the silicon area when compared to a pure deterministic logic BIST implementation. Though insertion of only a couple of TPIs per thousand gates increases the performance significantly, it has drawbacks and limitations. TPI implies modification of the circuit under test (CUT), which may have a negative impact on the performance if test points are inserted in critical paths. Timing analysis after test point insertion is therefore required and TPI complicates the design flow, while prohibiting the insertion of test points in critical paths might reduce the fault coverage. Moreover, TPI inserts additional wires and logic gates into the CUT, which consequently increases the number of faults in the CUT that have to be tested.
Analysis
The SCOAP testability measures discussed in the previous section in detail are implemented using C. The circuit chosen for the exercise is c17.bench.
The algorithm used to compute the testability measured is pretty straightforward.

Steps for computation of SCOAP:

First, the *.bench file is read.

Next, this is parsed to obtain the details regarding the various interconnects between the gates and the types of gates present in the circuit.
Thirdly, the interconnect information is stored in a matrix which details the connectivity and another matrix stores information regarding the type of connectivity.

This data is used to compute the SCOAP testability measures. The circuit chosen contains only NAND gates whose CC(0) and CC(1) are given by:
CC0(z) = CC1(a) + CC1(b) + 1

CC0(z) = min(CC0(a) , CC0(b)) + 1

where a and b are the inputs to the gate and z is the output.

Using this, first the SCOAP controllability measures are computed by traversing through the succeeding levels of the circuit.

Using the computed SCOAP controllabilities, we can traverse back from a primary output to compute the SCOAP observabilities of every node. This requires the data computed in the forward run, i.e., the combinational controllabilities.

CO(a) = CO(z) + CC(b) + 1
A snapshot of the results of the program is shown below:

[image: image3.png]Eile Edit View Teminal Go Help
bash: a: command not found

[rootelocalhost rootl# ./a
9:30.12

€17.bench

@11s

@117

@116

G117

G116

@323

@325

2423

5423

616540

| [rootelocalhost root]# 1

The nodes are displayed in the first column. The second column shows the zero controllability, the third column indicates the one controllability and the last column denotes the observability.

ATPG Strategy:
Using the above program, we have determined the observability and controllability of the nodes in the circuit. We can define the set of hardest-to-test faults as those that have the highest controllability, the highest observability or the highest controllability + observability values.
In this particular case, analysis has been done on each of the above cases individually and then as a whole.

To simulate the faults for the hardest-to-detect faults, one strategy is described below.

· ATALANTA software is used to generate the test patterns for each of the faults present in the circuit. Similarly, HITEC also is used to generate the test patterns.

· HITEC generates the list of all test patterns to detect all the faults. This is clearly not the objective of this exercise. So, a program has been written to sift through the test vectors generated by HITEC to search for the patterns generated by ATALANTA.

· However, this will also give more than one test vector to detect the fault. We try to look for those faults which also detect the other hardest-to-detect faults.

The other strategy adopted is to use the computed controllability and observability to target the faults by rearranging the test patterns. This algorithm is explained below:
· HITEC is used to generate the test patterns from the bench file. During this process, the circuit is levelized and the circuit.lev contains the information about the controllability and observabilities.
· This information is used to reorder the test patterns according to

1. increasing

2. decreasing

3. random controllabilities and observabilities.

The results are presented in greater detail in the next section.
Results
The results obtained from the fault simulation using the rearranged fault lists are analyzed here.
The data given below is for the test pattern which is generated by HITEC. There are a total of 22 faults and all of them are detected. However, it requires 10 vectors to reach coverage of 100%.

user time 0.010000 sec

sys time 0.026000 sec

det faults 22

tot faults 22

coverage 1.000000

good cir events 82

faulty cir events 61
read vector: 1

 det faults 8 coverage 0.363636

read vector: 2

 det faults 10 coverage 0.454545

read vector: 3

 det faults 11 coverage 0.500000

read vector: 4

 det faults 12 coverage 0.545455

read vector: 5

 det faults 17 coverage 0.772727

read vector: 6

 det faults 18 coverage 0.818182

read vector: 7

 det faults 18 coverage 0.818182

read vector: 8

 det faults 20 coverage 0.909091

read vector: 9

 det faults 20 coverage 0.909091

read vector: 10

 det faults 22 coverage 1.000000

read vector: 11
The next set of data is obtained for random ordering of the faults without any consideration towards the controllability and observability. This random experiment was performed 10 times (to obtain a sizeable sample space) and on an average, the coverage usually reaches 100% at the 7th or 8th vector.
user time 0.000000 sec

sys time 0.040000 sec

det faults 22

tot faults 22

coverage 1.000000

good cir events 90

faulty cir events 53
STATE_LIST_SIZE 256

read vector: 1

 det faults 7 coverage 0.318182

read vector: 2

 det faults 14 coverage 0.636364

read vector: 3

 det faults 19 coverage 0.761691

read vector: 4

 det faults 19 coverage 0.863636

read vector: 5

 det faults 19 coverage 0.863636

read vector: 6

 det faults 19 coverage 0.863636

read vector: 7

 det faults 21 coverage 0.954545

read vector: 8

 det faults 22 coverage 1.000000

read vector: 9

 det faults 22 coverage 1.000000

read vector: 10

 det faults 22 coverage 1.000000

read vector: 11
The controllability and observability values are now taken into consideration and the faults are arranged in the order of decreasing complexity. The coverage reaches 100% in the 6th vector itself.
user time 0.000000 sec

sys time 0.020000 sec

det faults 22

tot faults 22

coverage 1.000000

good cir events 84

faulty cir events 57
STATE_LIST_SIZE 256

read vector: 1

 det faults 8 coverage 0.363636

read vector: 2

 det faults 12 coverage 0.545455

read vector: 3

 det faults 18 coverage 0.818182

read vector: 4

 det faults 20 coverage 0.909091

read vector: 5

 det faults 21 coverage 0.954545

read vector: 6

 det faults 22 coverage 1.000000

read vector: 7

 det faults 22 coverage 1.000000

read vector: 8

 det faults 22 coverage 1.000000

read vector: 9

 det faults 22 coverage 1.000000

read vector: 10

 det faults 22 coverage 1.000000

read vector: 11
Finally, we order the faults in the order of increasing complexity. Here we see that the fault coverage reaches 100% slowly. In this particular case, there was hardly any change even after the 6th and 7th vector.
user time 0.010000 sec

sys time 0.020000 sec

det faults 22

tot faults 22

coverage 1.000000

good cir events 91

faulty cir events 61

STATE_LIST_SIZE 256

read vector: 1

 det faults 7 coverage 0.318182

read vector: 2

 det faults 11 coverage 0.500000

read vector: 3

 det faults 17 coverage 0.772727

read vector: 4

 det faults 19 coverage 0.863636

read vector: 5

 det faults 20 coverage 0.909091

read vector: 6

 det faults 21 coverage 0.954545

read vector: 7

 det faults 21 coverage 0.954545

read vector: 8

 det faults 22 coverage 1.000000

read vector: 9

 det faults 22 coverage 1.000000

read vector: 10

 det faults 22 coverage 1.000000

read vector: 11

Inferences

In spite of some of the experiments that have been conducted, we cannot see any significant change in the time required for the test generation or fault simulation. This might probably be attributed to the small size of the circuit. However, this circuit was chosen because of its simplicity and the ease with which hand analysis also could be done to investigate the effect of controllability/observability on fault coverage.

Moreover, I think some of the results could be graphically plotted if the sample space of the experiments was increased to a few hundreds. This would provide a more ‘averaged’ curve of the behaviour of fault coverage v/s hardest-to-detect faults.

Conclusions and lessons learnt

This project (though it was difficult to start off and get an idea on ATPG strategies) was very interesting in the sense that some of the concepts that were not covered in class were read by the student on his own during the execution of the project. Also, ATPG strategies seem to be very interesting and there could have been a lecture on that topic also. Though the results have not been highly conclusive, there is no doubt that study of the occurrence of test patterns and ordering faults would go a long way in obtaining higher test coverage with minimal set of vectors.
References:

[1] M.L. Bushnell and V.D. Agrawal., “Essentials of Electronic Testing for Digital,

 Memory and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, 2000

[2] L.H. Goldstein., “Controllability/Observability of Digital Circuits”, IEEE

 Transactions on Circuits and Systems, vol. CAS-26, no. 9, pp. 685-693, Sept 1979
[3] Harald Vranken, Florian Meister, Hans-Joachim Wunderlich, “Combining

 Deterministic Logic BIST with Test Point Insertion”, Seventh IEEE European Test
 Workshop (ETW’02)

[image: image1][image: image4.png]CCO (a)
CC1 (a)
a

b —

cco (b)
cC1 (b)
a

b

z CCO (z) = min (CCO (a), CCO (b)) + 1
CC1(2) =CC1 (@) + CC1 (b) + 1

kH

z CCO (z) = CCO (a) + CCO (b) + 1
CC1 (2) = min (CC1 (a), CC1 (b)) + 1

a 2 CCO (2) = min (CCO (a)+ CCO (b), CC1 (a) + CC1 (b)) + 1
b CC1 (z) = min (CC1 (a)+ CCO (b), CCO (a) + CC1 (b)) + 1

2 CCO(z) =CC1 (a) + CC1 (b) + 1
CC1 (2) = min (CCO (a), CCO (b)) + 1

.

¥

z CCO (z) = min (CC1 (a), CC1 (b)) + 1
CC1(2) = CCO (a) + CCO (b) + 1

a 2 CCO (2) = min (CC1 (a)+ CCO (b), CCO (a) + CCT (b)) + 1
b CC1 (2) = min (CCO (a)+ CCO (b), CC1 (a) + CC1 (b)) + 1

2 z CCO(z)=CC1(a)+ 1
CC1(2)=CCO (a) + 1

