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Testing the Characteristics of Geomagnetic Reversals
http://en.wikipedia.org/wiki/Geomagnetic_reversal
Several studies have analyzed the statistical properties of reversals in the hope of learning something about their underlying mechanism. The discriminating power of statistical tests is limited by the small number of polarity intervals. Nevertheless, some general features are well established. In particular, the pattern of reversals is random. There is no correlation between the lengths of polarity intervals.[12] There is no preference for either normal or reversed polarity, and no statistical difference between the distributions of these polarities. This lack of bias is also a robust prediction of dynamo theory.[8] Finally, as mentioned above, the rate of reversals changes over time.
The randomness of the reversals is inconsistent with periodicity, but several authors have claimed to find periodicity.[13] However, these results are probably artifacts of an analysis using sliding windows to determine reversal rates.[14]
[bookmark: _GoBack]Most statistical models of reversals have analyzed them in terms of a Poisson process or other kinds of renewal process. A Poisson process would have, on average, a constant reversal rate, so it is common to use a non-stationary Poisson process. However, compared to a Poisson process, there is a reduced probability of reversal for tens of thousands of years after a reversal. This could be due to an inhibition in the underlying mechanism, or it could just mean that some shorter polarity intervals have been missed.[8] A random reversal pattern with inhibition can be represented by a gamma process. In 2006, a team of physicists at the University of Calabria found that the reversals also conform to a Lévy distribution, which describes stochastic processes with long-ranging correlations between events in time.[15][16] The data are also consistent with a deterministic, but chaotic, process.[17]




10. Hypothesis Testing
(Human) Error (in Judgement)
We usually consider that we are “either right or wrong” when we make a decision based on limited data.  For example, “Will it rain today?”  However, a careful consideration will show that there are, in fact, two different ways we are wrong and two different ways we are right for a total of 4 outcomes:
Let’s consider a typical “judgment” situation.  There is a knock on your door and the police arrest you for a vehicular “hit-and-run” where another car was damaged.  The person driving the other car got part of the license tag number of the car that hit his and the police found your car has some damage to the left fender.  You know your car was in a previous accident two weeks ago that produced that damage but it wasn’t reported to the police or your insurance agent.  At the time the accident occurred, you were sleeping (although no one can provide you with an alibi).  You know you are innocent and if you are tried and found guilty the court and jury will have made a mistake and if they find you innocent (they BETTER) they will not have made a mistake.
BUT, the “truth” of the matter cannot be established by “taking your word for it”, instead, evidence and testimony will be presented and ultimately a jury will render a verdict.
Truth Table
	Truth→
	You are innocent
	You are guilty

	Judgment
↓
Jury finds you innocent
	No Error
	Error!  This is bad for society… guilty people are let go without punishment (to commit more crimes).  Other criminals see they can “get away with things” by hiring “trickster lawyers”.

	Jury finds you guilty
	Error!  This is bad for you.  You will be put in prison and your personal freedom taken away.  You will have “a record”
	No Error


 
In our society, we are very aware of these two types of error.  We try to make one of the types of error happen very infrequently, but we realize in doing so we make the other kind of error very frequently.  Many “guilty people” are found to be “not guilty” because of the makeup of our legal system (evidence thrown out on technicalities, etc) but we rarely put innocent people in prison.  Our legal system is based on “innocent until proven guilty” rather than “guilty until proven innocent”.
What to take from the above example!
1. The act of considering evidence (data) and making a decision about a situation in the absence of knowledge of the truth is called “making a judgment.”
2. Engineers frequently consider data without realizing they are making a judgment.  This is mainly due to know being aware of the process of hypothesis testing where a systematic approach to having a statistical basis for making judgments controls the rate at which errors are made.
3. When making a judgment, there are two different ways an error can be made and two different consequences.
4. Since the truth of the situation is unknown, it is unknown whether one has made a correct judgment or an erroneous judgment.  
5. There is an ability to control the rate at which errors of one type are made by controlling a single criteria (in hypothesis testing, this is called the critical value).
6. Attempting to decrease the controlled error rate will always increase the error rate for the other type of error.  In the case of  our “justice system,” we use many different legal considerations to avoid making the error of finding an innocent person guilty.  For this reason, we frequently make errors in judging people who are “in truth” guilty, not guilty.
Robots: A Demonstration about Making Errors
Consider that you have two barrels each containing 500 metal spheres that are indistinguishable (same appearance and size) from one another except that the density of the metal in the “A” barrel is somewhat lighter than that in the “B” barrel.  The weights are normally distributed with 
meanA = 10	meanB = 11
stdevA = 1	stdevB = 1
There is one other important difference:  The items in the A barrel are worth $20  each and the ones in the B barrel are only worth $1.  
Suppose you have been assigned to move the contents of the two barrels to a new location some distance away (up on the third floor).  We could load a few spheres at a time (5 = 50lbs) to a bucket and walk to the new location but another employee who has been watching from a distance comes over and tells you that there is a “plant robot” that can do jobs like this.  He (the robot) works for free so all you need to do is program him and sit under a tree until he’s done.  
On the positive side, he is equipped with a very sensitive “balance” that can quickly and accurately weigh what he is carrying.  Also, he is very fast (better to stay out of his way!).
On the negative side, he has a faulty memory unit and isn’t able to remember which barrel he gets something from.  
Since you have had statistics you know something about things with normal distributions so you devise a plan to allow him to move the spheres and place them in the destination barrels on a weight basis.
Programming is simple in that you only need to input a single weight criterion for his operation.  You decide to program him in the following fashion:  You know that if the A barrel contains items costing $20, you don’t want to put them in the wrong destination barrel too often (where they will be mistaken for the $1 spheres).  With an average weight of 10.0 pounds you know half the spheres in the barrel weigh more than 10.0 so you decide if the sphere being carried weighs 11 lb or less the robot is to put it in a barrel marked AA and if it weighs 11 lb or more the robot is to put it in a barrel marked BB.
(see simulation!)
Type I and Type II Error (in Hypothesis Testing)
There are two kinds of errors that can be made in significance testing: 
(1) a true null hypothesis can be incorrectly rejected and 
(2) a false null hypothesis can fail to be rejected. 
[image: ht9]


The former error is called a Type I error and the latter error is called a Type II error. These two types of errors are defined in the table. 
The probability of a Type I error is designated by the Greek letter alpha (α) and is called the Type I error rate; the probability of a Type II error (the Type II error rate) is designated by the Greek letter beta (β) . 
A Type II error is only an error in the sense that an opportunity to reject the null hypothesis correctly was lost.  It is not an error in the sense that an incorrect conclusion was drawn since no conclusion is drawn when the null hypothesis is not rejected. 
A Type I error, on the other hand, is an error in every sense of the word. A conclusion is drawn that the null hypothesis is false when, in fact, it is true. Therefore, Type I errors are generally considered more serious than Type II errors. 
The probability of a Type I error (a) is called the significance level and is set by the experimenter. 
There is a tradeoff between Type I and Type II errors. The more an experimenter protects him or herself against Type I errors by choosing a low level, the greater the chance of a Type II error. Requiring very strong evidence to reject the null hypothesis makes it very unlikely that a true null hypothesis will be rejected. However, it increases the chance that a false null hypothesis will not be rejected, thus lowering power. 
The Type I error rate is almost always set at 0.05 or at 0.01, the latter being more conservative since it requires stronger evidence to reject the null hypothesis at the 0.01 level then at the 0.05 level.
What Is The Null Hypothesis?
The null hypothesis is an hypothesis about a population parameter. The purpose of hypothesis testing is to test the viability of the null hypothesis in the light of experimental data. Depending on the data, the null hypothesis either will or will not be rejected as a viable possibility.
Consider a researcher interested in whether the time to respond to a tone is affected by the consumption of alcohol. The null hypothesis is that µ1 - µ2 = 0 where µ1 is the mean time to respond after consuming alcohol and µ2 is the mean time to respond otherwise. Thus, the null hypothesis concerns the parameter µ1 - µ2 and the null hypothesis is that the parameter equals zero.
The null hypothesis is often the reverse of what the experimenter actually believes; it is put forward to allow the data to contradict it. In the experiment on the effect of alcohol, the experimenter probably expects alcohol to have a harmful effect.  If the experimental data show a sufficiently large effect of alcohol, then the null hypothesis that alcohol has no effect can be rejected.
It should be stressed that researchers very frequently put forward a null hypothesis in the hope that they can discredit it. For a second example, consider an educational researcher who designed a new way to teach a particular concept in science, and wanted to test experimentally whether this new method worked better than the existing method. The researcher would design an experiment comparing the two methods. Since the null hypothesis would be that there is no difference between the two methods, the researcher would be hoping to reject the null hypothesis and conclude that the method he or she developed is the better of the two. 
The symbol H0 is used to indicate the null hypothesis. For the example just given, the null hypothesis would be designated by the following symbols:

H0: µ1 - µ2 = 0
or by
H0: µ1 = µ2.

The null hypothesis is typically a hypothesis of no difference as in this example where it is the hypothesis of no difference between population means. That is why the word "null" in "null hypothesis" is used -- it is the hypothesis of no difference. 
Despite the "null" in "null hypothesis," there are many times when the parameter is not hypothesized to be 0. For instance, it is possible for the null hypothesis to be that the difference between population means is a particular value. Or, the null hypothesis could be that the mean SAT score in some population is 600. The null hypothesis would then be stated as: H0: μ = 600. 
Although the null hypotheses discussed so far have all involved the testing of hypotheses about one or more population means, null hypotheses can involve any parameter. An experiment investigating the variations in data collected from two different populations could test the null hypothesis that the population standard deviations were the same or differed by a particular value.
z and t Tests
A test (judgment) made about the mean of the population a sample may have been taken from requires the knowledge of the standard deviation of the population.  If the population’s standard deviation is known, the test uses the normal distribution and is called a z-test.  If the population’s standard deviation is not known, it can be estimated from the sample.  This introduces additional uncertainty into the procedure and requires a different distribution function (not the normal distribution).  The distribution is the t-distribution and the test involved is the t-test.  The t-test and t-distribution has an additional parameter (n, the size of the sample).  It should be understood that in both cases, the population being sampled is the normal distribution.  
Normal Distribution
In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that has a bell-shaped probability density function, known as the Gaussian function or informally the bell curve:[nb 1]
[image: 
    f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} }
  ]
where parameter μ is the mean or expectation (location of the peak) and [image: \sigma^2] is the variance. σ is known as the standard deviation. The distribution with μ = 0 and σ 2 = 1 is called the standard normal distribution or the unit normal distribution. A normal distribution is often used as a first approximation to describe real-valued random variables that cluster around a single mean value.
The normal distribution is considered the most prominent probability distribution in statistics. There are several reasons for this:[1] First, the normal distribution is very tractable analytically, that is, a large number of results involving this distribution can be derived in explicit form. Second, the normal distribution arises as the outcome of the central limit theorem, which states that under mild conditions the sum of a large number of random variables is distributed approximately normally. Finally, the "bell" shape of the normal distribution makes it a convenient choice for modelling a large variety of random variables encountered in practice.

Student’s t-Distribution
In probability and statistics, Student’s t-distribution (or simply the t-distribution) is a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown. It plays a role in a number of widely-used statistical analyses, including the Student’s t-test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis. 

Student's t-distribution has the probability density function given by
[image: f(t) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{t^2}{\nu} \right)^{-\frac{\nu+1}{2}},\!]
where [image: \nu] is the number of degrees of freedom and [image: \Gamma] is the Gamma function.

The t-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier tails, meaning that it is more prone to producing values that fall far from its mean. This makes it useful for understanding the statistical behavior of certain types of ratios of random quantities, in which variation in the denominator is amplified and may produce outlying values when the denominator of the ratio falls close to zero. The Student’s t-distribution is a special case of the generalised hyperbolic distribution.
Quite often, textbook problems will treat the population standard deviation as if it were known and thereby avoid the need to use the Student's t-distribution. These problems are generally of two kinds: (1) those in which the sample size is so large that one may treat a data-based estimate of the variance as if it were certain, and (2) those that illustrate mathematical reasoning, in which the problem of estimating the standard deviation is temporarily ignored because that is not the point that the author or instructor is then explaining.
One and Two-Tailed Tests
A one- or two-tailed t-test is determined by whether the total area of α is placed in one tail or divided equally between the two tails. The one-tailed t-test is performed if the results are interesting only if they turn out in a particular direction. The two-tailed t-test is performed if the results would be interesting in either direction. The choice of a one- or two-tailed t-test affects the hypothesis testing procedure in a number of different ways. 
[bookmark: TWO_TAILED_t_TESTS]Two-Tailed z-Test 

[image: ]

%% Tails of the z-distribution
z = linspace(-4, 4);
y = normpdf(z, 0, 1);
plot(z,y)
alpha = 0.05;
a = norminv(alpha/2, 0, 1);
z_patch = linspace(-a, a);
y_patch = normpdf(z_patch, 0, 1);
patch([-a, z_patch, a], [0, y_patch, 0], 'r', 'FaceAlpha', 0.15 )
xlabel('z'); ylabel('P(z)');
 
% The shaded area represents the confidence interval of the z-statistic
% associated with the 95% confidence level.

a =   -1.959963984540055  %  zcrit.

One-Tailed (Left)  z-Test 

[image: ]
%% Tails of the z-distribution
z = linspace(-4, 4);
y = normpdf(z, 0, 1);
plot(z,y)
alpha = 0.05;
a = norminv(alpha, 0, 1);
z_patch = linspace(-4, a);
y_patch = normpdf(z_patch, 0, 1);
patch([-4, z_patch, a], [0, y_patch, 0], 'r', 'FaceAlpha', 0.15 )
xlabel('z'); ylabel('P(z)');
a

a =   -1.644853626951473	%  zcrit.


One-Tailed (Right)  z-Test 
[image: ]
%% Right tail of the z-distribution
z = linspace(-4, 4);
y = normpdf(z, 0, 1);
plot(z,y)
alpha = 0.05;
a = norminv(1-alpha, 0, 1);
z_patch = linspace(a, 4);
y_patch = normpdf(z_patch, 0, 1);
patch([a, z_patch, 4], [0, y_patch, 0], 'r', 'FaceAlpha', 0.15 )
xlabel('z'); ylabel('P(z)');
a

a =   1.644853626951473	%  zcrit.
Two-Tailed and One-Tailed (Left and Right)  t-Test 
A two-tailed t-test divides α in half, placing half in the each tail. The null hypothesis in this case is a particular value, and there are two alternative hypotheses, one positive and one negative. The critical value of t, tcrit, is written with both a plus and minus sign (± ). For example, the critical value of t when there are ten degrees of freedom (df=10) and α is set to 0.05, is tcrit= ± 2.228. The sampling distribution model used in a two-tailed t-test is illustrated below: 
[image: http://source.csm.uc.edu/statistics/introbook/sbgraph/tails01.gif]
[bookmark: ONE_TAILED_t_TESTS]One-Tailed Tests
There are really two different one-tailed t-tests, one for each tail. In a one-tailed t-test, all the area associated with α is placed in either one tail or the other.  Selection of the tail depends upon which direction tobs would be (+ or -) if the results of the experiment came out as expected. The selection of the tail must be made before the experiment is conducted and analyzed. 
A one-tailed t-test in the positive direction is illustrated below: 
[image: http://source.csm.uc.edu/statistics/introbook/sbgraph/tails02.gif]
The value tcrit would be positive. For example when α is set to 0.05 with ten degrees of freedom (df=10), tcrit would be equal to +1.812.
A one-tailed t-test in the negative direction is illustrated below:
[image: http://source.csm.uc.edu/statistics/introbook/sbgraph/tails03.gif]
The value tcrit would be negative. For example, when α is set to 0.05 with ten degrees of freedom (df=10), tcrit would be equal to -1.812.
So How Do We Use This??
Consider a random sampling of data from some process whose mean and standard deviation are known (meaning, we know from experience that when the process is operating properly there is a known mean and standard deviation).
We collect some data when the process may or may not be operating properly.  There will be some “noise” in the data associated with process variations and measurement errors.
%% Sample some data; Repeat 10 times
clc
% Make up 10 data points 'randomly' and plot them on the z-distribution.
alpha = 0.05;
a = norminv(alpha/2, 0, 1);
z_patch = linspace(-a, a);
y_patch = normpdf(z_patch, 0, 1);
 
for k = 1 : 10
    clf
    hold on
    mu_d = 8*(0.5-rand)     % some mean between -4 and 4
    sig_d = 0.3+rand;       % some standard deviation between 0.3 and 1.3
    NN_d = 10;
    patch([-a, z_patch, a], [0, y_patch, 0], 'r', 'FaceAlpha', 0.15 )
    xlabel('z'); ylabel('P(z)');
    axis([-4 4 0 0.4]);
    rnd_data=normrnd(mu_d, sig_d, 1, NN_d)
    plot(rnd_data, zeros(1,NN_d), 'o',mean(rnd_data), 0, 'x')  % x marks mean
    pause (2)
end
hold off





Perhaps the process is operating as expected… perhaps not.

	[image: ]
	[image: ]




Things we might wish to determine:

CI(mean) given Xi with known σ
CI(mean) given Xi with unknown σ


An Example:

A laboratory analyzes a sample for an active pharmaceutical ingredient. The process used to measure the active ingredient concentration has a known standard deviation of 0.0068 units.  The lab measured the same sample of material three times and found concentration of 0.8403, 0.8363, 0.8447 units.  Find the 99% confidence interval for the mean active ingredient concentration.  Also solve the problem if the standard deviation of the population is not known.  NOTE:  The standard deviation of the population (σ) is NOT the same as the standard deviation of the sample data (sx)

function [ Tlo Thi ] = CIMeanUnknownSigma(x, alpha )
%CIMean Determine the confidence interval for the mean with unknown sigma
%  
n=length(x);
xbar=mean(x);
sx=std(x);
dof = n-1;
t=abs(tinv(alpha/2,dof));	% we employ the t-dist
Tlo = xbar-t*sx/sqrt(n);
Thi = xbar+t*sx/sqrt(n);
end

function [ Tlo Thi ] = CIMeanKnownSigma(x, sig, alpha )
%CIMean Determine the confidence interval for the mean with known sigma
%  
n=length(x);
xbar=mean(x);
z=abs(norminv(alpha/2,0,1));	% we employ the normal-dist
Tlo = xbar-z*sig/sqrt(n);
Thi = xbar+z*sig/sqrt(n);
end

Equations for interval estimators for mean

    	For known σ

     	For unknown σ

We can also find the answer for the unknown σ case using the “normfit” function.

NORMFIT Parameter estimates and confidence intervals for normal data.

    [MUHAT,SIGMAHAT] = NORMFIT(X) returns estimates of the parameters of
    the normal distribution given the data in X.  MUHAT is an estimate of
    the mean, and SIGMAHAT is an estimate of the standard deviation.
 
    [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X) returns 95% confidence
    intervals for the parameter estimates.
 
    [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X,ALPHA) returns 100(1-ALPHA)
    percent confidence intervals for the parameter estimates.

>> x=[0.8403, 0.8363, 0.8447];
>> sig=0.0068;
>> [est1 est2]=CIMeanKnownSigma(x,sig,0.01);
>> [est3 est4]=CIMeanUnknownSigma(x,0.01);
>> [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X,0.01)
est1 =    0.8303
est2 =    0.8505
est3 =    0.8164
est4 =    0.8645
MUHAT =    0.8404
SIGMAHAT =    0.0042
MUCI =    0.8164    0.8645
SIGMACI =    0.0018    0.0593
Note:  An alpha value of 0.01 implies a 99% confidence interval.





Simple statistics
Hypothesis testing for the difference in means of two samples.
Syntax
[h,significance,ci] = ttest2(x,y)
[h,significance,ci] = ttest2(x,y,alpha)
[h,significance,ci] = ttest2(x,y,alpha,tail)
Description
h = ttest2(x,y) performs a t-test to determine whether two samples from a normal distribution (in x and y) could have the same mean when the standard deviations are unknown but assumed equal.
h, the result, is 1 if you can reject the null hypothesis at the 0.05 significance level alpha and 0 otherwise.
significance is the p-value associated with the T-statistic.
[image: http://www.weizmann.ac.il/home/bndmitri/MatlabTutorialOnline/Matlab_tut_v4_files/image003.gif]
significance is the probability that the observed value of T could be as large or larger under the null hypothesis that the mean of x is equal to the mean of y.
ci is a 95% confidence interval for the true difference in means.
[h,significance,ci] = ttest2(x,y,alpha) gives control of the significance level, alpha. For example if alpha = 0.01, and the result, h, is 1, you can reject the null hypothesis at the significance level 0.01. ci in this case is a 
100(1-alpha)% confidence interval for the true difference in means.
ttest2(x,y,alpha,tail) allows specification of one or two-tailed tests. tail is a flag that specifies one of three alternative hypotheses:
       tail = 0 (default) specifies the alternative, [image: http://www.weizmann.ac.il/home/bndmitri/MatlabTutorialOnline/Matlab_tut_v4_files/image004.gif].
       tail = 1 specifies the alternative, [image: http://www.weizmann.ac.il/home/bndmitri/MatlabTutorialOnline/Matlab_tut_v4_files/image005.gif].
       tail = -1 specifies the alternative, [image: http://www.weizmann.ac.il/home/bndmitri/MatlabTutorialOnline/Matlab_tut_v4_files/image006.gif].
Examples
This example generates 100 normal random numbers with theoretical mean zero and standard deviation one. We then generate 100 more normal random numbers with theoretical mean one half and standard deviation one. The observed means and standard deviations are different from their theoretical values, of course. We test the hypothesis that there is no true difference between the two means. Notice that the true difference is only one half of the standard deviation of the individual observations, so we are trying to detect a signal that is only one half the size of the inherent noise in the process.
x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);
[h,significance,ci] = ttest2(x,y)
 
h =
1
 
significance =
0.0017
 
ci =
-0.7352 -0.1720
 
The result, h =1, means that we can reject the null hypothesis. The 
significance is 0.0017, which means that by chance we would have 
observed values of t more extreme than the one in this example in only 17 
of 10,000 similar experiments! A 95% confidence interval on the mean is 
[-0.7352 -0.1720], which includes the theoretical (and hypothesized) difference of -0.5.



Consider we have two instruments that sit side by side and measure a DO (dissolved oxygen) level in a stream where our company discharges wastewater upstream.  Due to random fluctuations, they never read exactly the same value (6.22283 ppm and 6.14223 ppm) but the expected long term behavior is that both machines will have the higher value 50% of the time.
Suppose we record the data from the machines once each 15 minutes and look back at the last 5 hours of data (20 values).  We find that the “A” machine is high 15 times and the “B” machine is high 5 times.  Will we judge that the machines are “broken” (not in agreement) or will we judge the machines are operating “as expected” and not needing repair?
Major Issues
Two types of error are possible:  If we judge the machines are “ok” and they are, in fact “broken” will we needlessly try to “fix” machines that aren’t really broken.  If we judge the machines are “broken” and they are, in fact “ok” we will allow data to be recorded and acted on that is in fact “erroreous”.
This problem is similar to flipping a coin, that is, there should be a 50% probability of seeing the “A” or “B” higher.  Thus we can express this situation in terms of flipping coins (since we can more easily visualize that).  Just how surprising is it to see 15 “heads” when we expect p*n=10
What is the probability of seeing 15 heads?
What is the probability of seeing at least 15 heads?
Notice that what would surprise us is not seeing 15 H’s but seeing as 15 or more heads.
If you were applying for a job and you were expecting a starting salary of around $55,000 and you were offered $42,000 or $88,888 are you surprised because of the “specific” (exact) number or the “size” of the number (range of values)?
Therefore, we aren’t interested in
P(x=15) = BINOMDIST(15,20,0.5,FALSE) = 0.014785767
but rather
P(x>=15) = 1 – P(x<14) = 1-BINOMDIST(14,20,0.5,TRUE) = 0.020694733
Thus, we are rather surprised to see 15 or more H’s (or A’s>B’s) because by chance we should only see this happening 2% of the time.  Thus, because we DID see it happen, we will believe we are seeing something “real” because it happens less often than the 5% of the time it will happen by chance.  
In other words, suppose someone has just flipped a “claimed” fair coin 20 times and they got 19 heads.  Do you think you just witnessed a once-in-a-lifetime occurrence that happened by random chance or do you think this is evidence that the coin is not fair and you aren’t seeing anything particularly rare at all?
	heads
	p(x>=H)

	0
	1.00000

	1
	1.00000

	2
	0.99998

	3
	0.99980

	4
	0.99871

	5
	0.99409

	6
	0.97931

	7
	0.94234

	8
	0.86841

	9
	0.74828

	10
	0.58810

	11
	0.41190

	12
	0.25172

	13
	0.13159

	14
	0.05766

	15
	0.02069

	16
	0.00591

	17
	0.00129

	18
	0.00020

	19
	0.00002

	20
	0.00000



To be correct 95% of the time we will be wrong 5% of the time.  Hence, when the item we are concerned with is occurring “in the tails” of the expected behavior, we will be “Rejecting Null” and when we are in the “main” (between the tails) we will be “FTR Null” (failing to reject the Null).
In this case, our evidence strongly suggests that one or both of the two machines need to be repaired.  If one was ALWAYS higher, of course, the case would be “obvious”.  Also, if we found A>B 9 or 10 or 11 we probably wouldn’t have thought we should repair them (because the behavior was as near expected for n=20 with p=0.5).

One Sample t-Tests for Mean
When we deal with “small samples” (say, n<30) the distribution against which we compare “expected behavior” is not “normal” (gaussian) but rather a related function (called the student-t distribution).  The t-distribution function contains a correction for small “n” (number of degrees of freedom).  
A worksheet (t-one_mean.xls) has been provided to simplify making t-tests on one sample.
Two Tailed Examples
1. We have a machine that (when working properly) puts 90g of candy in each bag.  We have sampled 10 bags and find xbar=89.5g with sd=5g.  Is the machine properly filling the bags?  Use 95% CL.
This is a two-tail case since we are interested in “putting in 90” vs “not putting in 90”.
	Two-Tailed Test (u=uo)

	Hypotheses
	 
	 

	Ho:  μ
	=
	90

	H1:  μ
	<>
	90

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 

	Sample Mean is
	=
	89.5

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	-0.316227766

	p-value
	 
	0.759040654

	Decision
	 
	FTR Null

	CI Lower Bound
	 
	85.25462509

	CI Upper Bound
	 
	93.74537491



The test statistic for this case was -0.316 (no where near -2).  The “decision” we should make is “FTR Null” that is, I fail to be able to reject the Null.  In other words, I will “accept the Null” (although no statistician ever says this!).
Wording 1:  At a 95% CL (confidence level) I cannot reject that the machine is working properly.
Wording 2:  At a 95% CL I accept that the machine is working properly. (That is, no one needs to “fix it”).
2. We have a machine that (when working properly) puts 90g of candy in each bag.  We have sampled 10 bags and find xbar=87.0g with sd=5g.  Is the machine properly filling the bags?  Use 95% CL.

	Sample Evidence
	 

	Sample Mean is
	=
	87

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	-1.897366596

	p-value
	 
	0.090267331

	Decision
	 
	FTR Null



Wording 2:  At a 95% CL I accept that the machine is working properly. (That is, no one needs to “fix it”).
3. We have a machine that (when working properly) puts 90g of candy in each bag.  We have sampled 10 bags and find xbar=85.0g with sd=5g.  Is the machine properly filling the bags?  Use 95% CL.

	Sample Evidence
	 

	Sample Mean is
	=
	85

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	-3.16227766

	p-value
	 
	0.011507985

	Decision
	 
	Reject Null



Wording 2:  At a 95% CL I reject that the machine is working properly. (That is, I believe H1, this behavior is not expected of samples coming from a population with a mean of 90, and I believe someone needs to “fix the machine”).
4. We have a machine that (when working properly) puts 90g of candy in each bag.  We have sampled 10 bags and find xbar=85.0g with sd=10g.  Is the machine properly filling the bags?  Use 95% CL.

	Sample Evidence
	 

	Sample Mean is
	=
	85

	Sample SD is
	=
	10

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	-1.58113883

	p-value
	 
	0.148304704

	Decision
	 
	FTR Null





Wording 2:  At a 95% CL I accept that the machine is working properly. (That is, no one needs to “fix it”).
One Tailed Examples
5. We have readjusted our machine to produce bags labeled “contains 95g”.  We have sampled 10 bags and find xbar=92.0g with sd=5g.  Is the machine putting in at least 95g?  Use 95% CL.
This is a one-tail case since we are interested in “putting in at least 95” vs “not putting in at least 95” (that is, putting in less than 95).

	One-Tailed (Right Tail)

	Hypotheses
	 
	 

	Ho:  μ
	<=
	95

	H1:  μ
	>
	95

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 

	Sample Mean is
	=
	92

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	-1.897366596

	p-value
	 
	0.954866335

	Decision
	 
	FTR Null

	CI Lower Bound
	 
	87.75462509

	CI Upper Bound
	 
	96.24537491



The decision “FTR Null” means we accept the null, that is, accept that filling less than 95.  We are accepting Ho and not H1 and so (at a 95% CL) we do NOT think the machine is putting in at least 95.  We should adjust the machine.
6. We have again adjusted our machine and now find a sample of 10 bags contain 99g with sd=5g.  Is the machine putting in at least 95g?  Use 95% CL.

	One-Tailed (Right Tail)

	Hypotheses
	 
	 

	Ho:  μ
	<=
	95

	H1:  μ
	>
	95

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 

	Sample Mean is
	=
	99

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	2.529822128

	p-value
	 
	0.01612239

	Decision
	 
	Reject Null

	CI Lower Bound
	 
	94.75462509



The decision is “Reject Null” that is, reject Ho (and accept H1).  Therefore, we can accept that the machine is putting in at least 95 and no further adjustment is necessary.
7. We need to cut back on expenses and therefore we have labels printed saying “contains 85g”.  We want to make sure we are putting in “no more than 87g” and now find a random sample of 10 bags contain 88 with sd=5g.  Is the machine putting in no more than 87g?  Use 95% CL.

	One-Tailed (Left Tail)

	Hypotheses
	 
	 

	Ho:  μ
	>=
	87

	H1:  μ
	<
	87

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 

	Sample Mean is
	=
	88

	Sample SD is
	=
	5

	Sample Size is
	=
	10

	
	
	

	Calculations
	
	

	t-statistic
	 
	0.632455532

	p-value
	 
	0.728589521

	Decision
	 
	FTR Null

	CI Lower Bound
	 
	83.75462509

	CI Upper Bound
	 
	92.24537491



Our decision is “FTR Null” means accepting Ho means accepting “more than 87”.  Hence, we are not able to say we are putting in “less than” 87 grams.  The machine will need to be adjusted to achieve that.

Two Sample t-Tests for Mean
Often times we have available “before” and “after” data that represents a “treatment” or a hoped-for change in state (increased yield or decreased rate of product rejects).  In this case, we are not comparing our sample to a “known” population but rather against another sample.
A worksheet (t-two_means.xls) has been provided to simplify making t-tests on one sample.

	LowFlow Shower Head

	User
	Before
	After

	1
	5.21
	4.66

	2
	4.33
	2.02

	3
	2.09
	2.17

	4
	5.72
	4.98

	5
	7.31
	4.23

	6
	3.96
	1.55

	7
	4.88
	5

	8
	5.6
	2.75

	9
	7.35
	3.68

	10
	10.95
	7.71

	mean
	5.74
	3.875

	stdev
	2.397235
	1.855725



Suppose we wanted to see if there was an actual difference when using the new shower heads (flowrate during shower).  Obviously there is a “difference” but we wish to investigate the issue “statistically” using the t-two_means spreadsheet.
If there is no difference then μ1-μ2 = 0

	Two-Tailed Test (u=uo)
	
	

	Hypotheses
	 
	 
	 

	Ho:
	μ1-μ2
	=
	0

	H1:
	μ1-μ2
	<>
	0

	 
	α
	=
	0.05

	 
	 
	 
	 

	Sample Evidence
	 
	 

	 
	Sample 1
	 
	Sample 2

	Sample Mean
	5.7400
	 
	3.8750

	Sample SD
	2.3972
	 
	1.8557

	Sample Size
	10
	 
	10

	
	
	
	

	Calculations
	
	
	

	t-statistic
	1.9454069
	 
	 

	p-value
	0.0695135
	 
	 

	Decision
	FTR Null
	 
	 

	CI Lower Bound
	-0.5056702
	 
	 

	CI Upper Bound
	4.2356702
	 
	 



The decision “FTR Null” indicates there IS NOT a significant difference between the two types of shower heads.  Even though there appears to be a large difference, we need to appreciate that there is a large standard deviation (hence, the data is of low quality).
Let’s check if there the data allows us to claim a difference with a confidence level of 90%.

	Two-Tailed Test (u=uo)
	
	

	Hypotheses
	 
	 
	 

	Ho:
	μ1-μ2
	=
	0

	H1:
	μ1-μ2
	<>
	0

	 
	α
	=
	0.1

	 
	 
	 
	 

	Sample Evidence
	 
	 

	 
	Sample 1
	 
	Sample 2

	Sample Mean
	5.7400
	 
	3.8750

	Sample SD
	2.3972
	 
	1.8557

	Sample Size
	10
	 
	10

	
	
	
	

	Calculations
	
	
	

	t-statistic
	1.9454069
	 
	 

	p-value
	0.0695135
	 
	 

	Decision
	Reject Null
	 
	 

	CI Lower Bound
	-0.1672861
	 
	 

	CI Upper Bound
	3.8972861
	 
	 




The decision “Reject Null” indicates that at a 90% CL we cannot reject the null hypothesis, therefore, the data supports a difference in the flow rate.  Notice that we are less “confident” in the statement and hence risk being wrong more often (10 percent of the time).
The two other tables in the spreadsheet allow one to assess cases where the difference is “great than” or “less than” some specified value.  We could use this to investigate if the difference was at least 1 gpm, etc.
Be sure to carefully assign (1) and (2) when determining the difference, μ1-μ2.

One Sample z-Tests for Proportion
When we deal with “success vs failure” issues we are attempting to establish the “probability” that is associated with a success.  For example, a fair coin has a probability p=0.5 (success=heads) and a die has a probability p=0.1666667 (success=three dots).  
We would now like to test samples where we have counted the number of successes and trials against particular probability statements.  
For example, we might have a “trick coin” which the manufacturer claims comes up heads 70% of the time; p=0.7 (heads).  In this case we might have flipped the coin in question 20 times and only observed 10 heads.  Is this reason to reject the claim of the manufacturer?  
A worksheet (z-one_prop.xls) has been provided to simplify making z-tests on one sample.
Two Tailed Examples
1. We have a trick coin which is claimed to come up heads 70% of the time.  We have made 20 “random” flips and saw only 10 heads.  Should we reject the claim of the toy manufacturer? Use 95% CL.
This is a two-tail case since we are interested in “p=0.70” vs “p <>0.70”.

	Two-Tailed Test (u=uo)

	Hypotheses
	 
	 

	Ho:  p
	=
	0.7

	H1:  p
	<>
	0.7

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 
	 

	Sample Prop.
	=
	0.5

	Sample Size
	=
	20

	
	
	

	Calculations
	
	

	z-statistic
	 
	-1.9518

	p-value
	 
	0.050962

	Decision
	 
	FTR Null



Our decision is “FTR Null”, that is, we “accept Ho”, that is, we accept p=0.7.  
Wording:  At a 95% confidence level, the sample supports the manufacturer claim that the coin comes up heads 70% of the time.
2. We have a trick coin which is claimed to come up heads 70% of the time.  We have made 50 “random” flips and saw only 25 heads.  Should we reject the claim of the toy manufacturer? Use 95% CL.

	Two-Tailed Test (u=uo)

	Hypotheses
	 
	 

	Ho:  p
	=
	0.7

	H1:  p
	<>
	0.7

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 
	 

	Sample Prop.
	=
	0.5

	Sample Size
	=
	50

	
	
	

	Calculations
	
	

	z-statistic
	 
	-3.08607

	p-value
	 
	0.002028

	Decision
	 
	Reject Null



Our decision is “Reject Null”, that is, we “Reject Ho”, that is, we reject p=0.7 and accept p<>0.7.  
Wording:  At a 95% confidence level, the sample does not support the manufacturer claim that the coin comes up heads 70% of the time.
3. We have devised an ESP experiment in which a subject is asked to state the color (red or blue) of a card chosen from a deck of 50 well-shuffled cards by an individual in another room.  The subject does not know how many red or blue cards are in the deck.  Suppose a test subject correctly identifies the color of 32 cards.  Does this test support the claim that the subject has ESP?
Ho:  p=0.5 (the subject is simply guessing and the successes are due to chance.
H1:  p>0.5 (the subject has being able to get more right than mere guessing can explain)
p*=32/50=0.64

	One-Tailed (Right Tail)

	Hypotheses
	 
	 

	Ho:  p
	<=
	0.5

	H1:  p
	>
	0.5

	α
	=
	0.05

	 
	 
	 

	Sample Evidence
	 
	 

	Sample Prop.
	=
	0.64

	Sample Size
	=
	50

	
	
	

	Calculations
	
	

	z-statistic
	 
	1.979899

	p-value
	 
	0.0238574

	Decision
	 
	Reject Null



Our decision is “Reject Null”, that is, reject p=0.5 and accept p>0.5.  
Wording:  At a 95% confidence level, the experiment supports the claim that the subject has a degree of ESP.  This outcome (32 out of 50) happens less than 5% of the time DUE TO CHANCE when someone is merely guessing.  
4. A drug manufacturer claims that their cold remedy was 90% effective in relieving allergy symptoms for 8 hours.  In a sample of 200 people who had the allergy, the medicine provided 8 hour relief for 160 people.  Is the manufacturer’s claim legitimate at a confidence level of 0.01?
Ho: p=0.9
H1: p<0.9
This is a “left-tail” test.  Problem solution left for student.

Two Sample z-Tests for Proportion
When we deal two samples we are usually testing “before” and “after” situations or “with and without” treatment.
A worksheet (z-two_prop.xls) has been provided to simplify making z-tests on two samples.
5. Two groups of people, A and B, each consist of 100 people who have a particular disease.  A serum (medicine) is given to the Group A people and a placebo (fake) is given to group B (the control group).  It was found that in Group A and B, 75 and 65 people recovered from the disease.  Test the hypothesis that the drug administered “helps” to cure the disease using a significance level of 0.01.
Ho: p1=p2
H1: p1>p2
This is a “right-tail” test for two samples. 

	One-Tailed (Right Tail)
	
	

	Hypotheses
	 
	 
	 

	Ho:
	p1-p2
	<=
	0

	H1:
	p1-p2
	>
	0

	 
	α
	=
	0.01

	 
	 
	 
	 

	Sample Evidence
	 
	 

	 
	Sample 1
	 
	Sample 2

	Sample Prop.
	0.75
	 
	0.65

	Sample Size
	100
	 
	100

	 
	p combo
	=
	0.7

	Calculations
	
	
	

	z-score
	1.552301
	 
	1.543033

	p-value
	0.060295
	 
	0.061411

	Decision
	FTR Null
	 
	 



Our decision is to FTR Null, that is, fail to reject Null, that is, fail to reject Ho.  We therefore reject H1.
Wording:  At a 99% confidence level, the samples provided (experimental data) do not support the claim of effectiveness of the medicine.  Random chance could make the data appear as it does more than 1% of the time.
6. A sample poll of 300 voters from district A and 200 voters from district B showed that 56% and 48% respectively favor the candidate Joe Schmo.  (a) At a level of 95%, test the hypothesis that there is a difference in preference between the two districts.  (b) At a level of 95%, test the hypothesis that the candidate is preferred in district A.
Case (6a)	Ho: p1=p2		H1: p1<>p2

	Two-Tailed Test
	
	

	Hypotheses
	 
	 
	 

	Ho:
	p1-p2
	=
	0

	H1:
	p1-p2
	<>
	0

	 
	α
	=
	0.05

	 
	 
	 
	 

	Sample Evidence
	 
	 

	 
	Sample 1
	 
	Sample 2

	Sample Prop.
	0.56
	 
	0.48

	Sample Size
	300
	 
	200

	 
	p combo
	=
	0.528

	Calculations
	
	
	

	z-score
	1.758631
	 
	1.755467

	p-value
	0.07864
	 
	0.079179

	Decision
	FTR Null
	 
	 



The decision is FTR Null, that is, we accept Ho and reject H1.  At a 95% confidence level, the sampled data supports that there is no difference between candidate preference in the two districts.
Case (6b)	Ho: p1<=p2	H1: p1>p2

	One-Tailed (Right Tail)
	
	

	Hypotheses
	 
	 
	 

	Ho:
	p1-p2
	<=
	0

	H1:
	p1-p2
	>
	0

	 
	α
	=
	0.05

	 
	 
	 
	 

	Sample Evidence
	 
	 

	 
	Sample 1
	 
	Sample 2

	Sample Prop.
	0.56
	 
	0.48

	Sample Size
	300
	 
	200

	 
	p combo
	=
	0.528

	Calculations
	
	
	

	z-score
	1.758631
	 
	1.755467

	p-value
	0.03932
	 
	0.03959

	Decision
	Reject Null
	 
	 



The decision is “Reject Null”, that is, reject Ho, that is, accept H1.
Wording:  At a 95% confidence level, the data available does not support the statement that Joe Schmo is less popular in District A.  (The data does support the statement that Joe Schmo is the preferred candidate in district A.)  
Note that this is not a contradiction of 6a.  Each case is considered on its own.  
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