

Background

- Resulting force on the building can be simplified to be a lateral force - a shearing force on the base of the structure
- Force depends on:
 - earthquake intensity
 - soil conditions
 - stiffness of building

Background

- Forces on buildings depend on underlying soil conditions
- Rock = lower seismic forces
- Mud and silt = much higher forces on structure

Background

• Earthquakes also cause soil to liquefy

Water mixes with soil particles and soil loses strength

 Structures can collapse and or sink into soil

History

- San Francisco earthquake 1906
- Initial earthquake killed many
- Fires
 following
 quake
 destroyed
 the city

Resisting Seismic Forces

- Don't build on landfills or soft, silty soil
- Use adequate shear walls and diaphragms
- Maintain continuous load path to foundation
 - this applies to wind loads and seismic loads

Continuous Load Path

Determining Seismic Forces

- ASCE 7 serves as the basis for calculating seismic forces
- · We'll use the Standard Building Code
 - methods in SBC limited to buildings < 35 ft high
- · Methods determine:
 - seismic forces on members and connections
 - story drift

Determining Seismic Forces

- Two methods for determining seismic forces (in SBC)
 - · equivalent base shear
 - modal analysis

 Base Shear calculated by (1999 Standard Building Code):

$$V = C_s W$$

- V = equivalent shear force acting on the base of the structure (lbs)
- C_s = seismic design coefficient
- W = total dead load of the building (lbs)