Problem 2/61 Page 46, Engineering Mechanics - Dynamics, Meriam and Kraige, 4th Edition
Given: x = A t2 - B t + C and y = D sin w t.
Find: The magnitude of the velocity at time t0, the magnitude of the acceleration at time t0, and the angle between the velocity and acceleration at time t0.
Relevant Parameters:
t0 = 3 s
A = 1 in/s2
B = 4 in/s
C = 20 in
D = 3 in
w = 2 rad/s
v = dr/dt = dx/dt i + dy/dt j
x = A t2 - B t + C
dx/dt =2 A t - B
y = D sin w t.
dy/dt = w D cos w
t
v = ( 2 A t - B ) i + ( w D
cos w t ) j
v(t0) = ( 2 A t0 - B ) i + ( w
D cos w t0 ) j = 2 in/s i + 5.76
in/s j
| v(t0) | = { 22 + 5.762 }1/2
in/s = 6.10 in/s
a = dv/dt = dvx/dt i + dvy/dt j
vx = 2 A t - B
dvx/dt = 2 A
vy = w D cos w
t
dvy/dt = - w2 D sin w
t
a = 2 A i - w2
D sin w t j
a(t0) = 2 A i - w2 D sin w t0 j = 2 in/s2 i + 3.35 in/s2 j
| a(t0) | = { 22 + 3.352 }1/2 in/s2
= 3.90 in/s2
To evaluate the angle between the two vectors we can use the
dot product.
a . v = | a | | v | cos(q) = ax vx + ay vy
cos(q) = { 2 * 2 + 3.35 * 5.76 } / { 3.90 * 6.10 } = 0.979
q = 11.67 degrees