

A Primal-Dual Solution to Minimal Test Generation Problem
Mohammed Ashfaq Shukoor
 and Vishwani D. Agrawal1,

Abstract

This newly proposed solution to the minimal test generation problem of combinational circuits is based on (1) identifying independent faults, (2) generating tests for them, and (3) minimizing the tests. The third part, test minimization, is accomplished by an already known solution using integer linear programming (ILP). Using the theory of primal-dual linear programs, we model the independent fault set identification as the dual of the test minimization problem. A solution of the dual problem, whose existence is guaranteed by the duality theorem, gives us a conditionally independent fault set (CIFS). We start with any (non-optimal but complete) vector set. Our CIFS is, therefore, not absolute but is specific to the starting vector set. Successively adding more vectors for the identified independent set and solving the dual problem, we bring the independent set closer to its minimal size. Finally, a primal solution minimizes the set of all accumulated vectors. Benchmark results show potential for both smaller test sets and lower CPU times.
Keywords: ATPG, Conditionally independent fault set, Primal-dual ILP, Test minimization
1. Introduction

Integer linear programming (ILP) is an effective mathematical method for test optimization. It gives global optimization and has been used for both combinational and sequential circuits [5, 15, 16] as well as for globally minimizing N-detect tests [10]. It is recognized that the complexity of ILP would be too high even for medium size circuits. This problem is overcome by using reduced-complexity ILP variations [11] and it has been shown that such procedures can effectively solve the test minimization problem.

Although applications of ILP have been reported for optimizing tests for detecting stuck-at faults [5, 15, 16], N-detect stuck-at faults [10], transition faults [17] and multiple fault model tests [18], to our knowledge the primal-dual property of the ILP has never been used before.
The method proposed in this paper belongs to the dynamic test minimization category [7, 9, 10], where test generation and minimization are done interactively.
2. Primal ILP – Test Minimization

Mathematical literature describes a pair of related linear programming (LP) problems known as primal and dual problems [14]. The two problems share a common set of coefficients and constants. If one minimizes a linear objective function of one set of variables then the other will maximize a linear objective function of another set of variables. Duality theorem states that if one problem has a solution then the other too has a solution, and the optimized values of the two objective functions are identical.

The primal-dual problems of LP can be transformed into two ILP problems by treating the variables as integers. The ILP problems share several of the duality properties. In this section, we state the commonly used test minimization ILP. Subsequently, treating this as primal, we will define a new dual problem.
Suppose a combinational circuit has K faults. We assign a [0, 1] integer variable fk, k = 1, 2, . . . , K, to each fault in the fault set F. We are given a vector set V of J vectors and we assign a [0, 1] integer variable vj , j = 1, 2, . . . , J, to each vector. Without loss of generality, we assume that all K faults are detected by these vectors. Our problem then is to find the smallest subset of these vectors that detects all faults. In this primal problem, only vj’s will be used as variables with the following meaning:

· If vj = 1, then vector j is included in the selected vector set.

· If vj = 0, then vector j is discarded.
We simulate the fault set and the vector set without dropping faults. The result is represented as a diagnostic matrix of 0s and 1s shown in Figure 1. In this matrix, an element akj = 1 only if fault k is detected by vector j. The primal ILP problem is stated as,

minimize
[image: image1.wmf]å

=

J

j

j

v

1

 (1)
subject to:

[image: image2.wmf]1

1

³

å

=

J

j

j

kj

v

a

, k = 1, 2, . . . , K (2)
vj
[image: image3.wmf]Î

integer [0, 1], j = 1, 2, . . . , J (3)
The constraint set 2 insures that kth fault is detected by at least one vector in the selected vector set. The fact that we start with a vector set V that detects all faults in the set F and the direction of inequality in constraints that allow us to set any or all fk’s to 1, guarantee the existence of a solution [5, 10]. Additionally, the provable ability of the ILP to find the optimum provided its execution is allowed to complete, and the minimum requirement of 1 guarantees the smallest size test set.
	Fault

number (k)
	Vector number (j)

1 2 3 4 J

	
	
	
	
	
	
	
	
	
	
	

	1
	0
	1
	1
	0
	.
	.
	.
	.
	.
	1

	2
	0
	0
	1
	0
	.
	.
	.
	.
	.
	1

	3
	1
	0
	0
	1
	.
	.
	.
	.
	.
	0

	4
	0
	1
	0
	0
	.
	.
	.
	.
	.
	0

	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.

	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.

	K
	1
	1
	0
	0
	.
	.
	.
	.
	.
	1

Figure 1. Diagnostic matrix {akj}.
3. Dual ILP – Independent Fault Set

We formulate the dual ILP to derive the largest independent fault set (IFS). Two faults are called independent if no vector can detect both [2]. An IFS contains faults that are pair-wise independent. Clearly, the cardinality of the largest IFS for a circuit provides a lower bound on the size of a complete fault detection test set. This lower bound can be closely achieved by selecting tests from the test vectors derived for the faults in the IFS [2, 3]. Note that a fault in the IFS has several tests and only a properly selected one will cover all other faults outside the IFS. However, the problem of finding an IFS is complex.
We formulate the dual of the ILP problem of Section 2 to obtain an IFS. Recall that we assigned a [0, 1] integer variable fk to fault k. The dual ILP is,

maximize
[image: image4.wmf]å

=

K

k

k

f

1

 (4)

subject to:

[image: image5.wmf]1

1

£

å

=

K

k

k

kj

f

a

, j = 1, 2, . . . , J (5)
fk
[image: image6.wmf]Î

integer [0, 1], k = 1, 2, . . . , K (6)
Because a solution to the primal test minimization problem specified by 1, 2 and 3 exists, according to the duality theorem [14], a solution of the dual fault set maximization problem of 4, 5 and 6 must also exist. We interpret this solution as a fault set, which contains fault k only if fk = 1. We show that the dual solution provides an independent fault set.

Definition: We define a pair of faults that is detectable by a vector set V to be conditionally independent with respect to a vector set V if no vector in the set detects both faults.

In comparison, therefore, the conventional fault independence as defined in the literature [2, 3] would mean “absolute” independence, that is conditional to the exhaustive vector set with an additional implication that the faults are irredundant. In a similar way, conditional equivalence, conditional dominance, conditional compatibility or concurrence can be defined with respect to a vector set. Each definition will then become “absolute”, as defined in the literature [1, 4], when the vector set becomes exhaustive and the faults are irredundant.

Definition: For a given vector set, a subset of all detectable faults in which no pair of faults can be detected by the same vector, is called a conditionally independent fault set (CIFS).

Theorem 1: A solution of the dual ILP of 4, 5 and 6 provides a largest conditionally independent fault set (CIFS) with respect to the vector set V.

Proof: The jth constraint of the constraint set 5 consists of fault variables corresponding to non-zero akj , i.e., faults detectable by jth vector. It allows only one of those faults to be selected since no more than a single fk can be set to 1 in any inequality. Suppose, we set fk = 1. Then, constraint inequalities of all other vectors that also detect the kth fault will be violated if any other fault detectable by them was selected. Hence, setting of fk = 1 ensures that no fault that is conditionally compatible with kth fault with respect to vector set V can be selected. This guarantees that the selected set of faults will only contain faults that are conditionally independent with respect to V.

The other part of theorem, i.e., the selected conditionally independent fault set is largest, follows from the provable ability of ILP in finding the optimum solution if one exists. Existence of a solution is guaranteed from the duality theorem [14], combined with the fact that a solution of the primal test minimization problem exists. Note that the optimality of the solution will lead to the largest fault set because the objective function 4 requires maximization.

■
Theorem 2: For a combinational circuit, suppose V1 and V2 are two vector sets such that
[image: image7.wmf]2

1

V

V

Í

 and V1 detects all detectable faults of the circuit. If CIFS(V1) and CIFS(V2) are the largest CIFS with respect to V1 and V2, respectively, then |CIFS(V1)| ≥ |CIFS(V2)|.

Proof: Let G1(U, E1) be the independence graph of the circuit under consideration, where U is the vertex set and E1 the edge set. Each vertex in an independence graph represents a fault, and the presence of an edge between any two vertices indicates that the corresponding faults are independent. The independence relations among vertices in graph G1 have been determined by the vector set V1. Thus, CIFS(V1) is a maximum clique in the graph G1 and |CIFS(V1)| is the clique number of G1. A maximum clique is a clique of largest size and the clique number of a graph is defined as the number of vertices in a maximum clique.

Consider a vector set V2 such that
[image: image8.wmf]2

1

V

V

Í

. Let G2(U, E2) be the independence graph relative to the vector set V2. Thus, CIFS(V2) is a maximum clique in G2, and |CIFS(V2)| is the clique number of G2. U is the vertex set and E2 is the edge set of G2.

The vectors in the set V2 – V1 can only invalidate the independence relations which were determined by the vector set V1, but cannot determine new independence relations among the faults. Thus the edges in graph G1 either remain unchanged or some may be deleted because of the vector set V2, but no new edge can be added to graph G1.

Note that a graph may have several maximum cliques. As no new edge is added to G1, the clique number cannot increase. If an edge is removed such that it was contained in every maximum clique, its removal modifies all these cliques, decreasing their clique numbers. Removing an edge from a clique of m vertices still leaves two cliques of m-1 vertices each. If there is at least one maximum clique from which no edge is removed, then that clique will remain unchanged and clique number will not decrease. Thus, removal of an edge cannot increase the clique number and can only decrease it by 1. This is a well-understood result in graph theory.

■
Theorem 2 implies that the largest CIFS should monotonically converge to the absolute IFS as more vectors are added to an initial vector set. In addition, the augmented vector set will contain multiple tests for each fault of the IFS. This would enhance the capability of the primal ILP to select the “right” vector for each IFS fault such that all faults are covered. Note that one vector per IFS fault is the best we can do.
4. A Primal-Dual ILP Algorithm

An absolute minimal test set would be given by the primal solution of Section 2 if we start with the exhaustive vector set. For large number of primary inputs (PIs), that is impractical. Even for a moderate number of PIs, the solution becomes costly because of the exponential complexity of ILP [14]. In an alternative approach, we start with any vector set and then find a conditionally independent fault set (CIFS) by solving the dual problem stated in Section 3. In this process, we solve the dual ILP iteratively by generating multiple-detect tests generated only for the CIFS. Once, the CIFS is sufficiently converged, we solve the primal ILP to get a minimal vector set.

We implemented the above procedure. The system consists of the following steps:
1. Generate an initial vector set: We used the ATPG program ATALANTA [12] but any other program can be used. In general, for combinational circuits close to 100% coverage is obtained. In terms of the number of vectors, this set is non-optimal and may contain many more vectors than the final minimized set. Some redundant faults are identified and a few others are left undetected due to time or backtrack limits. Both categories are removed from the fault set to obtain a target fault set.

2. Obtain diagnostic matrix: A fault simulator simulates the initial vector set for the target fault set without fault dropping. We used the HOPE [13] program. Thus, the {akj}, matrix of [0, 1] elements shown in Figure 1 is obtained.

3. Solve dual ILP to determine CIFS: Set up the dual ILP of 4, 5 and 6. Obtain a solution using an ILP solver. We used the AMPL package [6]. In order to make this step time efficient, we set a time limit on the dual ILP.

4. Generate tests for CIFS: We generate N-detect tests only for the faults in the CIFS and augment the existing vector set with these vectors. We used ATALANTA [12] to generate 5-detect vectors for the CIFS.

5. Compact CIFS: Repeat steps 2 through 4 until the size of CIFS converges.

6. Solve primal ILP for final vector set: Set up the primal ILP of 1, 2 and 3 for all accumulated vectors. Solve to obtain the final set of vectors.

5. Results

Results of step 1 are given in Table 1. The total faults are equivalence collapsed single stuck-at faults. All CPU times are for a SUN Fire 280R 900MHz Dual Core machine. These times are for ATPG by ATALANTA [12]. Some faults were identified as redundant and some others were not detected due to a per fault limits used in the program. Both were removed from the fault list to obtain a target fault list. The ATPG vector set and target fault list whose sized are shown in Table 1 were used in the subsequent steps of the primal-dual algorithm. Next, we examine the iterations of the dual-ILP for two examples.

5.1 Example 1: c1355

The benchmark circuit c1355 has 41 primary inputs and 506 gates. Of the total of 1574 faults, eight are found to be redundant, giving us a target set of 1566 faults. These faults are covered by an initial ATPG generated set of 114 vectors. The size of CIFS converges to 84 in three iterations as shown in Table 2. This is a case where the iterations converge quickly. At the end of the third iteration a total of 903 vectors were accumulated. The primal ILP selected exactly one vector per fault, giving a final set of 84 vectors. Considering the published data on IFS [7, 9], this is the smallest possible test set. The results are shown in Table 2.
Table 1. Four-bit ALU and benchmark circuits – Initial ATPG vectors and target fault set.

	Circuit name
	Circuit function [8]
	Primary inputs
	No. of gates
	Total faults
	ATPG vectors
	CPU s
	Fault coverage
	Redundant faults
	Target fault set

	4-b ALU
	4-bit ALU
	14
	78
	237
	35
	0.01
	100%
	0
	237

	c17
	-
	5
	6
	22
	10
	0.002
	100%
	0
	22

	c432
	27-channel

interrupt controller
	36
	120
	524
	79
	0.017
	99.24%
	1+31
	520

	c499
	32-bit SEC2 circuit
	41
	162
	758
	67
	0.017
	99.24%
	8
	750

	c880
	8-bit ALU
	60
	320
	942
	109
	0.167
	100%
	0
	942

	c1355
	32-bit SEC2 circuit
	41
	506
	1574
	114
	0.033
	99.49%
	8
	1566

	c1908
	16-bit SEC2/DED2
circuit
	33
	603
	1879
	183
	0.067
	99.52%
	2+71
	1870

	c2670
	12-bit ALU and
controller
	233
	872
	2747
	194
	2.167
	95.74%
	86+311
	2630

	c3540
	8-bit ALU
	50
	1179
	3428
	245
	0.183
	96.01%
	137
	3291

	c5315
	9-bit ALU
	215
	1726
	5350
	215
	0.150
	98.90%
	56
	5291

	c6288
	16 x 16 multiplier
	32
	2384
	7744
	54
	0.233
	99.56%
	34
	7710

	c7552
	32-bit adder/
comparator
	207
	2636
	7550
	361
	6.567
	98.25%
	77+541
	7419

1 ATPG runs terminated due to per fault backtrack or CPU time limit

2 SEC and DED stand for “Single-Error-Correcting” and “Double-Error Detecting”
Table 2. Example 1: Dual ILP iterations and primal ILP solution for c1355.

	Primal or dual
	Iteration number
	No. of vectors
	ATPG

CPU s
	Fault sim.

CPU s
	CIFS

size
	No. of min. vectors
	ILP

CPU s

	Dual
	1

2

3
	114

507

903
	0.033

0.085

0.085
	0.333

1.517

2.683
	85

84

84
	
	0.24

0.97

1.91

	Primal
	
	903
	
	
	
	84
	3.38

5.2 Example 2: c2670

The benchmark circuit c2670 has 233 primary inputs and 872 gates. Of the total of 2747 faults, 86 are found to be redundant and 31 undetectable, giving us a target set of 2630 faults. These faults are covered by an initial ATPG generated set of 194 vectors. The size of CIFS converges to a stable value of 70 in 12 iterations as shown in Table 3. This is a case where the iterations do not converge quickly. At the end of the twelfth iteration a total of 4200 vectors were accumulated. Even though this CIFS is larger than the published results on IFS [7, 9], further iterations were suspended because the last three iterations did not provide any reduction. The primal ILP selected exactly one vector per fault, giving a final set of 70 vectors. Considering the published data on IFS [7, 9], this is not the smallest possible test set, which might be more expensive to find. The results are shown in Table 3. In this example, the size of CIFS is strongly dependent on the vector subset. It indicates that we should explore different strategies for generating vectors for the dual problem.
5.3 Benchmark Results

Benchmark circuit results obtained are summarized in Table 4. To examine the benefit of the primal-dual ILP over the plain (primal) ILP, we compare the results of Table 4 with those in the literature [10]. In that work, ILP was used to minimize large vector sets that were generated for N-detection. In some cases values of N were greater than 100 resulting in large vector sets and therefore large number of variables in ILP. That comparison is shown in Table 5. Principal benefit of the dual problem appears to be in reducing the vector set size, which saves ATPG and fault simulation time, as well as the ILP time. It is also evident that the dual ILP takes much less CPU time than the primal ILP. Hence, the use of the dual ILP in the iterative loop is appropriate, while the primal ILP is used only once. Also, note that after the initial ATPG run that includes all faults, all subsequent runs only work on CIFS that is much smaller.

Table 3. Example 2: Dual ILP iterations and primal ILP solution for c2670.

	Primal or dual
	Iteration number
	No. of vectors
	ATPG

CPU s
	Fault sim.

CPU s
	CIFS

size
	No. of min. vectors
	ILP

CPU s

	Dual
	1

2

3

4

5

6

7

8

9

10

11

12
	194

684

1039

1424

1738

2111

2479

2836

3192

3537

3870

4200
	2.167

1.258

1.176

1.168

1.136

1.128

1.112

1.086

1.073

1.033

1.048

1.033
	3.670

5.690

6.895

8.683

10.467

12.333

14.183

15.933

17.717

19.267

20.983

22.600
	102

82

79

78

76

76

74

73

72

70

70

70
	
	1.99

3.22

7.90

3.69

5.89

7.43

7.16

8.45

9.81

10.90

12.02

13.44

	Primal
	
	4200
	
	
	
	70
	316.52

Table 4. Test sets obtained by primal-dual ILP for 4bit ALU and benchmark circuits.
	Circuit
	ATPG and fault simulation
	Dual-ILP solution
	Primal-ILP solution with time-limit

	
	Initial vectors
	Final vectors
	CPU

s
	No. of

iterations
	CIFS size
	CPU

s
	Minimized

vectors
	CPU

s

	4b ALU
	35
	270
	0.36
	5
	12
	1.23
	12
	0.78

	c17
	5
	6
	0.03
	2
	4
	0.07
	4
	0.03

	c432
	79
	2036
	1.90
	13
	27
	25.04
	30
	2.2

	c499
	67
	705
	2.41
	4
	52
	2.33
	52
	1.08

	c880
	109
	1384
	4.11
	15
	13
	635.39
	24
	1001.06*

	c1355
	114
	903
	2.89
	3
	84
	1.21
	84
	3.38

	c1908
	183
	1479
	7.00
	4
	106
	10.79
	106
	19.47

	c2670
	194
	4200
	34.85
	12
	70
	91.9
	70
	316.52

	c3540
	245
	3969
	24.76
	9
	84
	622.09
	104
	1007.74*

	c5315
	215
	1295
	13.83
	5
	39
	510.82
	71
	1004.51*

	c6288
	54
	361
	10.03
	6
	6
	311.03
	16
	1004.3*

	c7552
	361
	4929
	114.00
	8
	116
	287.65
	127
	1015.06*

* Execution terminated due to a time limit of 1000 s

5.4. Primal LP with Recursive Rounding [11]

Due to the high computational complexity of the primal ILP, we transform it into a linear program by treating the variables as real numbers in the range [0.0, 1.0]. We then use the recursive rounding technique [11] to round off the real variables to integers. In the recursive rounding method, the LP is recursively used, each time rounding off the largest variable to 1 and reducing the size of the LP. This is done until an integer solution is obtained. This is a polynomial time solution, but an absolute optimality is not guaranteed.

Table 5. Comparing primal-dual ILP solution with ILP-alone solution [10].
	Circuit Name
	Lower bound on vectors [7, 9]
	ILP-alone minimization [10]
	Primal-dual minimization [this paper]

	
	
	Unopt. vectors
	LP

CPU s
	Minimized vectors
	Unopt. vectors
	Total

CPU s
	Minimized vectors

	4b ALU
	12
	2370
	5.19
	12
	270
	2.01
	12

	c432
	27
	14822
	82.3
	27
	2036
	27.24
	30

	c499
	52
	397
	5.3
	52
	705
	3.41
	52

	c880
	13
	3042
	306.8
	25
	1812
	1636.45*
	24

	c1355
	84
	755
	16.7
	84
	903
	4.59
	84

	c1908
	106
	2088
	97.0
	106
	1479
	30.26
	106

	c2670
	44
	8767
	1568.6*
	71
	4200
	408.42
	70

	c3540
	78
	-
	-
	-
	3969
	1629.83*
	104

	c5315
	37
	-
	-
	-
	1295
	1515.53*
	71

	c6288
	6
	243
	519.7
	18
	361
	1315.33*
	16

	c7552
	65
	2156
	1530.0*
	148
	4929
	1302.71*
	127

* ILP execution was terminated due to a CPU time limit
Table 6. Test sets obtained by primal_LP–dual_ILP solution for 4bit ALU and benchmark circuits.

	Circuit
	Number of unoptimized vectors

	Dual-ILP solution

	Primal-LP solution with recursive rounding

	Total CPU s

	
	
	No. of

iterations
	CIFS size
	CPU

s
	Minimized

vectors
	CPU

s
	

	4b ALU
	270
	5
	12
	1.23
	12
	0.63
	1.86

	c17
	6
	2
	4
	0.07
	4
	0.03
	0.10

	c432
	2036
	13
	27
	25.04
	30
	1.14
	27.28

	c499
	705
	4
	52
	2.33
	52
	0.43
	3.41

	c880
	1384
	15
	13
	635.39
	24
	19.42
	654.81

	c1355
	903
	3
	84
	1.21
	84
	0.82
	4.59

	c1908
	1479
	4
	106
	10.79
	107
	0.38
	30.26

	c2670
	4200
	12
	70
	91.9
	70
	10.73
	102.3

	c3540
	3969
	9
	84
	622.09
	95
	99.75
	721.84

	c5315
	1295
	5
	39
	510.82
	63
	298.50
	809.32

	c6288
	361
	6
	6
	311.03
	16
	44.77
	355.8

	c7552
	4929
	8
	116
	287.65
	119
	160.57
	448.22

Table 6 gives test set sizes and CPU times for the primal-dual test minimization method. Observe that the test sets obtained from the primal LP with recursive rounding are smaller than those obtained by primal ILP (Table 4) for cases in which the primal ILP gave suboptimal solution due to CPU time limited termination. Thus using primal LP with recursive rounding is a good trade-off between optimality and computational complexity.

It is evident from Table 7 that for almost similar unoptimized vector set sizes, the primal-dual minimization technique performs better than the LP-alone minimization technique. This confirms the role of the dual ILP in obtaining proper vectors, which then can be optimized by the primal LP.

Table 7. Comparing primal_LP–dual_ILP solution with LP-alone solution [11].

	Circuit Name
	Lower bound on vectors [7, 9]
	LP-alone minimization [11]
	Primal-dual minimization [this paper]

	
	
	Unopt. vectors
	LP

CPU s
	Minimized vectors
	Unopt. vectors
	Total

CPU s
	Minimized vectors

	c432
	27
	608
	2.00
	36
	983
	5.52
	31

	c499
	52
	379
	1.00
	52
	221
	1.35
	52

	c880
	13
	1023
	31.00
	28
	1008
	227.21
	25

	c1355
	84
	755
	5.00
	84
	507
	1.95
	84

	c1908
	106
	1055
	8.00
	107
	728
	2.50
	107

	c2670
	44
	959
	9.00
	84
	1039
	17.41
	79

	c3540
	78
	1971
	197.00
	105
	2042
	276.91
	95

	c5315
	37
	1079
	464.00
	72
	1117
	524.53
	67

	c6288
	6
	243
	78.00
	18
	258
	218.9
	17

	c7552
	65
	2165
	151.00
	145
	2016
	71.21
	139

6. Conclusion

We have presented a novel application of the primal-dual ILP technique for test optimization. We hope that this work will excite interest among researchers and improvements of the present technique as well as new applications will appear in the future. We should point out that the ILP formulation is exact and has exponential complexity. In some cases, such as c880, we see large CPU time. Fortunately, lower complexity approximate solutions for ILP are possible. One such method, known as recursive ILP [11], has been used for test minimization problem and has shown excellent results. That method can be easily used for the primal-dual ILP solution proposed here.

A useful application of the dual ILP and the conditionally independent fault set (CIFS), we believe, is in fault diagnosis. We hope to explore that in the future.

Acknowledgment – We are thankful to Professor D. G. Hoffman of Auburn University for his guidance on graph theory problems.

References

 [1]
V. D. Agrawal and A. S. Doshi, “Concurrent Test Generation,” in Proc. 14th IEEE Asian Test Symp., Dec. 2005, pp. 294–297.

 [2]
S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of Independent Fault Sets in the Generation of Minimal Test Sets,” in Proc. International Test Conf., 1987, pp. 1100–1107.

 [3]
S. B. Akers and B. Krishnamurthy, “Test Counting: A Tool for VLSI Testing,” IEEE Design & Test of Computers, vol. 6, no. 5, pp. 58–77, Oct. 1989.

 [4]
A. S. Doshi and V. D. Agrawal, “Independence Fault Collapsing,” in Proc. 9th VLSI Design and Test Symp., Aug. 2005, pp. 357–364.

 [5]
P. Drineas and Y. Makris, “Independent Test Sequence Compaction through Integer Programming,” in Proc. International Conf. Computer Design, 2003, pp. 380–386.

 [6]
R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. South San Francisco, California: The Scientific Press, 1993.

 [7]
I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational Circuits,” IEEE Trans. on CAD, vol. 19, no. 8, pp. 957–963, Aug. 2000.
 [8] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

 [9]
S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost E ective Generation of Minimal Test Sets for Stuck at Faults in Combinational Logic Circuits,” IEEE Trans. on CAD, vol. 14, no. 12, pp. 1496–1504, Dec. 1995.

[10]
K. R. Kantipudi and V. D. Agrawal, “On the Size and Generation of Minimal N-Detection Tests,” in Proc. 19th International Conf. VLSI Design, 2006, pp. 425–430.

[11]
K. R. Kantipudi and V. D. Agrawal, “A Reduced Complexity Algorithm for Minimizing N-Detect Tests,” in Proc. 20th International Conf. VLSI Design, Jan. 2007, pp. 492–497.

[12]
H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for Combinational Circuits,” Tech. Report 12-93, Dept. of Elec. Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1993.

[13]
H. K. Lee and D. S. Ha, “HOPE: An Effcient Parallel Fault Simulator for Synchronous Sequential Circuits,” IEEE Trans. on CAD, vol. 15, no. 9, pp. 1048–1058, Sept. 1996.

[14]
G. Strang, Linear Algebra and Its Applications. Fort Worth: Harcourt Brace Javanovich College Publishers, third edition, 1988.

[15]
N. Yogi and V. D. Agrawal, “High-Level Test Generation for Gate-Level Fault Coverage,” in Proc. 15th IEEE North Atlantic Test Workshop, May 2006, pp. 65–74.

[16]
N. Yogi and V. D. Agrawal, “Spectral RTL Test Generation for Microprocessors,” in Proc. 20th International Conf. VLSI Design, Jan. 2007, pp. 473–478.

[17]
N. Yogi and V. D. Agrawal, “Transition Delay Fault Testing of Microprocessors by SpectralMethod,” in Proc. 39th Southwestern Symp. on System Theory, Mar. 2007, pp. 283–287.

[18]
N. Yogi and V. D. Agrawal, “N-Model Tests for VLSI Circuits,” in Proc. 40th Southwestern Symp. on System Theory, Mar. 2008.
� Department of Electrical Communication Engineering, Auburn University, Auburn, AL 36849, USA, � HYPERLINK "mailto:shukoma@auburn.edu" �shukoma@auburn.edu�, � HYPERLINK "mailto:vagrawal@eng.auburn.edu" �vagrawal@eng.auburn.edu�.

� Research supported in part by the National Science Foundation Grant CNS-0708962.

PAGE
Proc. 12th IEEE VLSI Design & Test Symp. (VDAT08), Bangalore, July 23-26, 2008, pp. 269-279.

_1273203012.unknown

_1273203025.unknown

_1273203066.unknown

_1273200529.unknown

_1273202930.unknown

_1273200623.unknown

_1273124960.unknown

