NCHRP 09-46

Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content

Randy West Andrea Kvasnak Jo Daniel

Project Tasks

Phase I

- Task 1 Literature review
- Task 2 Propose mix design & analysis procedure
- Task 3 Lab work plan
- Task 4 Interim report (Tasks 1-3)

Phase II

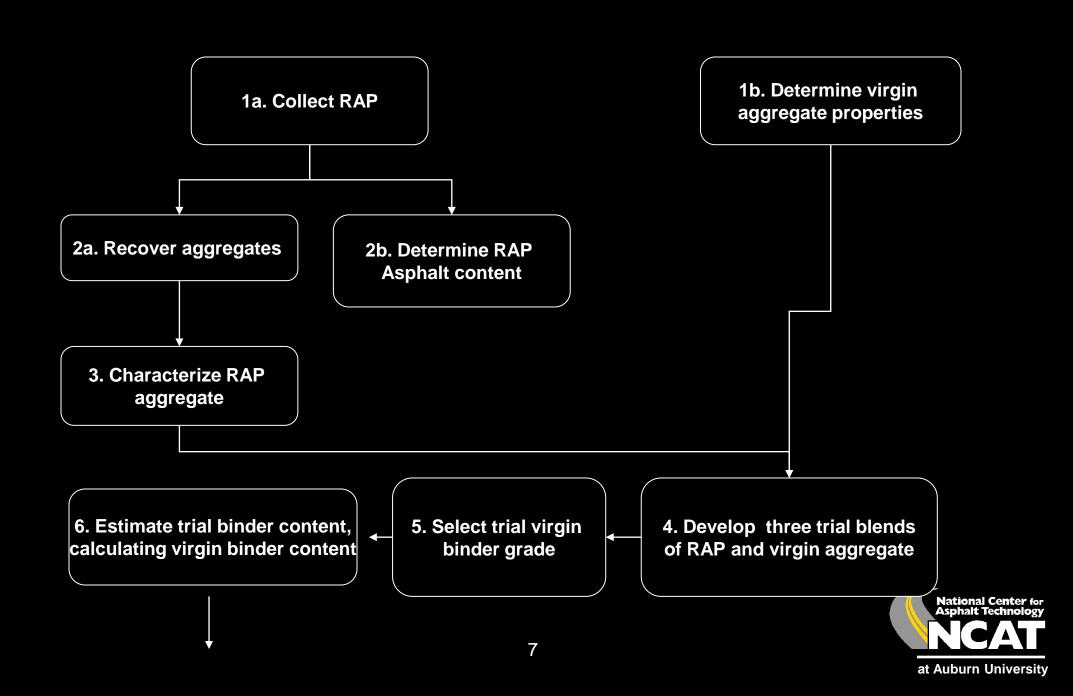
- Task 5 Conduct lab work plan
- Task 6 Compare RAP mixes to virgin mixes
- Task 7 Evaluate min. of 3 field projects
- Task 8 Propose changes to standards
- Task 9 Final report

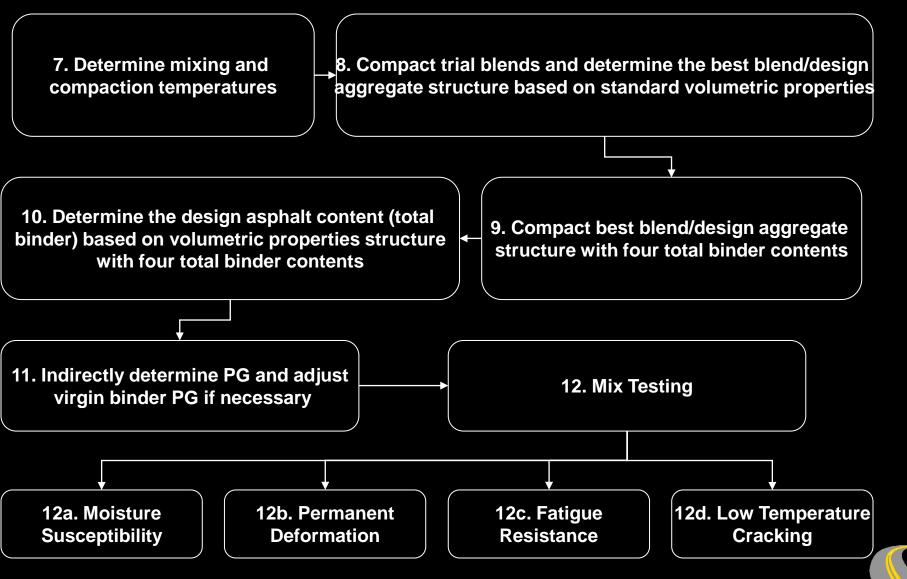
Task 1 Literature Review

- Mix design issues
 - Mix design procedures
 - Reclaimed aggregates
 - Binder content and properties
- Materials management
- Performance Tests

Task 2: Proposed Mix Design and Mix Evaluation

RAP Mix Design Philosophy


- Current guidelines for RAP in M 323 are sound, with a few possible exceptions for high RAP contents.
 Better guidance is needed for...
 - Determining RAP AC content
 - Determining RAP aggregate Gsb
 - Selection of virgin binder
 - Materials preparation and heating
 - Mixing and compaction temperatures
 - Basic calculations (see technician manual)



RAP Mix Design Philosophy

- Follow R 35 and M 323 as much as possible
- Additional performance tests besides T 283 to assure durability
- Performance test selection
 - Use existing methods
 - Input from panel
 - Methods should be reasonable for a mix design lab (cost, time, complexity)

Test	Moisture Damage	Permanent Deformation	Fatigue	Low Temperature Cracking
Moisture Susceptibility (AASHTO T 283)	√			
Asphalt Pavement Analyzer		✓		
Hamburg Wheel Tracking Device	✓	✓		
Dynamic Modulus		✓	✓	
Repeated Load Permanent Deformation		✓		
Beam Fatigue			✓	
AMPT Fatigue			✓	
Overlay Tester			✓	
Indirect Tension Creep Compliance				✓
Semi-Circular Bend				✓
BBR with Mix Beams				✓

Research Team Recommendations

- Moisture Susceptibility
 - -TSR
- Permanent Deformation
 - Repeated Load Permanent Deformation
- Fatigue
 - Beam fatigue, AMPT Fatigue, or Overlay Tester
- Low Temperature
 - SCB and BBR with mix beams

Example Mix Design

Initial Mix Design Information

- Location: Wisconsin
 - Standard binder grade: PG 58-28

 RAP: Crushed and worked with a front end loader

Virgin aggregate: Limestone

Identify available virgin aggregate and RAP materials

Conduct sieve analyses on virgin aggregate

Ascertain apparent and bulk specific gravity

Reclaim RAP aggregates

- Recommendations for reclaiming will be given
 - UNR cooperative study

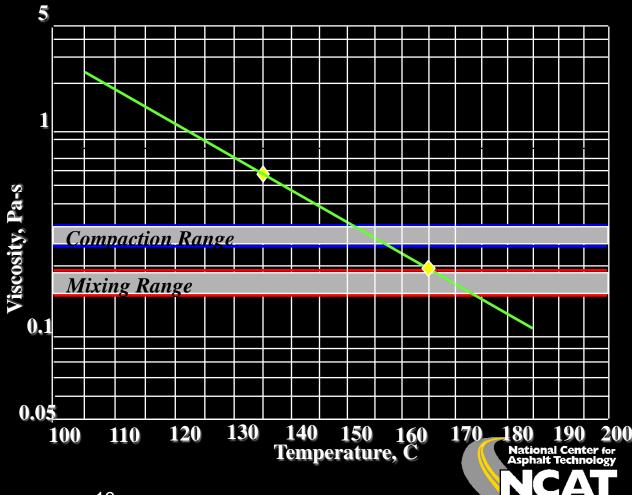
Conduct a sieve analysis of RAP aggregate

 Ascertain the apparent and bulk specific gravities of recovered RAP aggregate

Ascertain aggregate source properties

- Develop trial blends using virgin aggregates and RAP
- M 323 gradation criteria should be adhered to
- Evaluate combined aggregate properties for each trial blend
 - Coarse aggregate angularity
 - Fine aggregate angularity
 - Flat and elongated
 - Sand equivalent
- Batch specimens for trial gradation

- Use LTPPBind to aid in selecting standard binder
 - -PG 58-28



 Estimate trial binder content for each trial blend that met the AASHTO M 323 aggregate requirements

- Experience or method outlined in AASHTO R 35
- Account for RAP asphalt

The mixing and compaction temperatures will be determined based on virgin binder

at Auburn University

- Select number of gyrations to compact the trial blends based on expected traffic volume
- Heat batched aggregate (and RAP)
- Mix trial gradations with selected trial binder content at selected mix temperature
 - Binder used is the PG 58-28
- Age loose mix in accordance with R 30
 - 2 hours at selected compaction temperature
- Determine G_{mm}
- Compact to N_{design} gyrations and determine G_{mb}

SGC is insensitive to binder stiffness

- Numerous references in the literature
- SGC is a constant strain device
- If binder stiffness does affect the density, then...
 - Lower density will yield slightly higher AC content, which will help durability
 - The proposed method will evaluate mix and binder stiffness with E*. If they are too high, then the procedure will force the mix designer to iterate with a softer virgin grade
 - Mix performance tests will help avoid mixes which could have performance problems

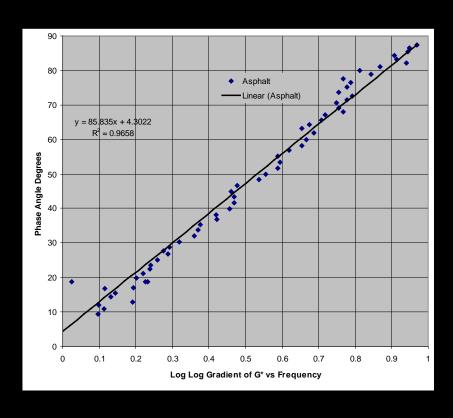
Step 8 (cont.)

- Evaluate specimens in accordance with AASHTO R 35 section 9
- Select trial blend which appears to meet all volumetric requirements

- Batch materials for the selected trial blend
- Make specimens using the selected trial blend at three additional asphalt contents
 - Trial asphalt content ± 0.5% and trial asphalt content + 1.0%
- Compact using same gyrations used in step 8

- Evaluate for each total binder content:
 - Air void % vs. binder content %
 - VMA % vs. binder content %
 - VFA % vs. binder content %
 - Density vs. binder content %
- Identify which binder content yields 4.0% air voids at N_{design}

- Dynamic Modulus Testing (AASHTO TP 62)
 - Loose mix aged for 4 hours at 135°C
 - Cut and cored specimens will have 7 ± 0.5% air voids
 - -4.4, 21.1, 37.8, and 54°C
 - -0.1, 0.5, 1.0, 5, 10, and 25 Hz
 - Condition specimens to desired test temperature
 - Develop master curve
 - Back calculate binder stiffness


Hirsch Model

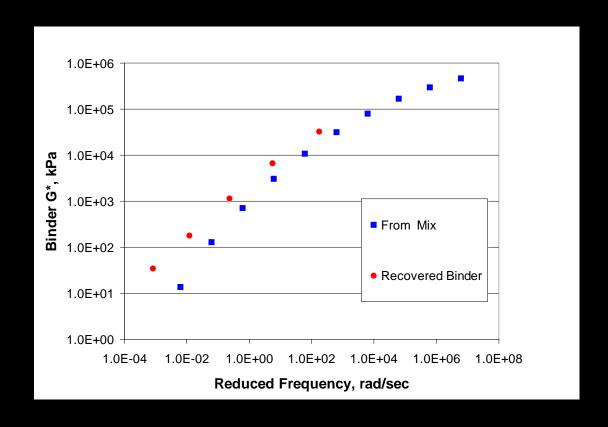
- Relationship between |E*| of mixture and |G*| of binder, VMA, and VFA
- Developed for forward calculation of |E*|
- Can be used to backcalculate |G*| with mix information

Phase angle and |G*| relationship

 Rowe determined linear relationship between phase angle and log log slope of G* vs freq

Backcalculation Procedure

- Measure |E*|, VMA, VFA
- Backcalculate |G*|
- Use relationship by Rowe to get phase angle


Forward calculation Procedure

- Following Bonaquist work
- Measure |E*|
- Extract binder and measure |G*|
- Calculate |E*| from |G*| (fully blended)
- Compare |E*| curves to evaluate extent of blending

Example of Forward Calculation

Step 11 cont.

- Moisture susceptibility (AASHTO T 283):
 - Material mixed, cured, and short term aged in accordance with AASHTO T 283 section 6
 - Compact to 7 ± 0.5% air voids and stored for 24 hours at room temperature
 - Dry specimens placed in bag and then 25°C water bath for 2 hours
 - Wet specimens vacuum saturated to 70-80%, 1 freeze cycle (-18°C), thaw at 60°C for 24 hours, conditioned in 25°C water bath
 - Diametrically load at a rate of 50mm/min
 - Calculate tensile strength ratio

Step 11 cont.

 If moisture susceptibility results are 80% or better and dynamic modulus results are not too stiff continue with additional mix tests

 Criteria for back calculated stiffness will be based on conclusions from evaluating existing pavements

Step 11: Permanent Deformation

- Repeated load permanent deformation
 - Loose mix aged for 4 hours at 135°C
 - Cut and cored specimens will have 7 ± 0.5% air voids
 - Test temperature PG high -6°C
 - Condition specimens to desired test temperature
 - Confine specimens
 - Deviator stress of 70 psi
 - Confinement 10 psi

Step 11: Low Temperature Cracking

- Semi Circular Bend (SCB)
 - Loose mix aged at 135°C for 4 hours
 - Compact cylindrical specimens to 7 ± 0.5% air voids
 - Age specimens at 85°C for 120 hours
 - Test at PG low

Step 11: Fatigue

- Beam Fatigue (AASHTO T 321)
 - Loose mix aged at 135°C for 4 hours
 - Compact beams
 - Age beams at 85°C for 120 hours
 - 400 microstrain level

Step 11: Fatigue cont.

- Overlay Tester
 - Loose mix aged at 135°C for 4 hours
 - Compact cylindrical specimens to 7 ± 0.5% air voids
 - Age specimens at 85°C for 120 hours

Mixes to Evaluate

- Materials from 4 regions
- Southwest
 - Binder compatibility (binders from two sources)
 - Binder effect on volumetrics
 - WMA
 - Performance testing
- Northeast
 - Binder compatibility
 - Binder effect on volumetrics
 - Performance testing
- Midwest
 - Multiple freeze-thaw cycles
 - Performance testing
 - RAP with different NMAS
- Southeast
 - Performance testing
 - RAP with different NMAS

RAP Sampling and Testing

- Minimum frequency of 1 test/1000 tons
- Test minimum of 10 samples from random locations around RAP stockpile
 - Do not combine samples
 - Test AC content and gradation, calculate averages and standard deviations
 - Test methods to be determined
- Use average and standard deviation in blending variability analysis
- Tighter control of RAP stockpiles for higher RAP contents based on statistical analysis of combined variability of materials

<u>at Au</u>burn University

RAP Management Best Practices

- Crushing
 - Minimize creating additional fines
- Stockpiling
 - Minimize moisture content
 - Minimize segregation
- Plant Operations
 - In-line crusher should only be used to break up agglomerations
 - RAP feed calibration
 - Superheating
 - Emissions
 - Warm mix asphalt technologies
- Processing and stockpile management should not be a method specification such as requiring fractionation

Questions and Comments

