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Abstract This paper studies the decentralized control of

multiple redundant manipulators for the cooperative task

execution problem. Different from existing work with

assumptions that all manipulators are accessible to the

command signal, we propose in this paper a novel strategy

capable of solving the problem even though there exists

some manipulators unable to access the command signal

directly. The cooperative task execution problem can be

formulated as a constrained quadratic programming prob-

lem. We start analysis by re-designing the control law

proposed in (Li et al. Neurocomputing, 2012), which solves

the optimization problem recursively. By replacing the

command signal with estimations with neighbor information,

the control law becomes to work in the partial command

coverage situation. However, the stability and optimality of

the new system are not necessarily the same as the original

system. We then prove in theory that the system indeed also

globally stabilizes to the optimal solution of the constrained

quadratic optimization problem. Simulations demonstrate the

effectiveness of the proposed method.

Keywords Recurrent neural network � Quadratic

programming � Cooperative task execution � Redundant

manipulator � Decentralized control � Hierarchical tree

1 Introduction

With the development of mechanics, electronics, computer

engineering, etc, the costs of manipulators are reducing.

This tendency cast lights to use a collection of manipula-

tors to perform a complicated task, which was often per-

formed by special purpose machinery. Beyond the cost

consideration, another explicit advantage of using multiple

manipulators instead of a single special purpose machinery

for task execution lies that the multiple manipulator system

is reconfigurable and can also be used for other applica-

tions while the special purpose machinery cannot adapt to

other applications. Due to this reason, considerable

research attentions are paid to multiple manipulator coo-

perations and find applications in robotics, such as load

transport [2], cooperative assembly [3], dextrous grasping [4],

coordinate welding [5], etc., are becoming increasingly pop-

ular, and have received considerable studies. Among the large

variety of manipulators, redundant manipulator, which have

more degree of freedom (DOF) than required, can be used for

task execution with the exploitation of the extra DOF for

optimization of other criteria, such as velocity optimization,

obstacle avoidance, etc. and thus has strong potential in dex-

trous cooperation of multiple manipulators.

S. Li (&)

Department of Electrical and Computer Engineering,

Stevens Institute of Technology, Hoboken, NJ 07030, USA

e-mail: lishuai8@gmail.com

H. Cui

School of Nursing, Sun Yat-Sen University,

Guangzhou, Guangdong, China

Y. Li

Robot Sensor and Human-machine Interaction Lab,

Institute of Intelligent Machines, Chinese Academy of Sciences,

Hefei, Anhui, China

B. Liu

Department of Computer Science,

University of Massachusetts, Amherst, MA 01003, USA

Y. Lou

School of Mechatronics and Information,

Yiwu Industrial and Commercial College,

Yiwu, Zhejiang, China

123

Neural Comput & Applic (2013) 23:1051–1060

DOI 10.1007/s00521-012-1030-2



In [6], the authors investigated the cooperation problem

in the Martha Project with multiple mobile robots. For this

method, a central station is used to decompose the task and

then the task is assigned to all robots. Therefore, this

method essentially is a centralized method and may

encounter difficulties when the collection includes a large

number of robots since the computation and communica-

tion load of the central station will increase exponentially

for such a non-scalable method. In [7], an optimization-

based framework is proposed for optimal multiple robot

cooperation. The problem is formulated as an optimization

problem while the solution of this problem may need

global information and thus the method is a centralized

one. In [8], the multiple impedance control strategy is

applied to the coordination of multiple manipulators on a

space free-flyer. As the manipulators locate on the same

free-flyer, the information exchange between manipulators

is not a big issue. A PD-like controller is developed in [9]

to control the coordination of multiple under-actuated

manipulators. The stability of the control is proven in

theory. Most existing works on multiple manipulator con-

trol consider non-redundant manipulators. Compared with

redundant ones, there is no extra design freedom for opti-

mization purpose. Also, most works assume the commu-

nication network is all-to-all connected and each

manipulator can use information of all manipulators in the

network. This assumption is very restrictive for a large

scale manipulator network and the control strategy often

results in a huge communication burden in this case and

may lead to network congestion or even paralysis.

In this paper, we consider the case with redundant manip-

ulators for multiple manipulator task execution. The use of

redundant manipulators left extra design freedom for opti-

mization of the trajectory in certain sense. we formulate the

cooperative task execution problem as a separable constrained

quadratic programming problem and relax the original control

law obtained by solving this optimization problem iteratively

to a new one without requiring a full command coverage. The

proposed control law is essentially a recurrent neuro-con-

troller and thus has the same real-time performance as other

neuro-controllers [10–15]. Also, the proposed strategy is a

distributed one: each manipulator in the network only needs to

get information from its neighbors in the communication

network for control, which makes this method scalable to a

network involving a large number of manipulators.

The remainder of this paper is organized as follows. In

Sect. 2, some preliminaries on redundant manipulators and

graph theory are introduced. In Sect. 3, the multiple

manipulator cooperative task execution problem is formu-

lated as a constrained quadratic programming problem and

a distributed neural network with partial command cover-

age is presented for the control. In Sect. 4, the global sta-

bility of the proposed neural network and the optimality of

the neural solution are proven in theory. In Sect. 5, simu-

lations are performed to validate the effectiveness of the

proposed method. Section 6 concludes this paper.

2 Preliminaries

In this section, we describe the problem of cooperative task

execution with multiple redundant manipulators. We first

give a brief introduction to the redundant manipulator

kinematics and then, based on this, we formulate the

multiple manipulator task execution problem as a con-

strained quadratic programming problem.

2.1 Redundant manipulator

For a m-DOF redundant manipulator working in a

n-dimensional Cartesian space (m [ n), we have the fol-

lowing nonlinear function:

rðtÞ ¼ f ðhðtÞÞ ð1Þ

where rðtÞ 2 R
n and hðtÞ 2 R

m are the coordinate of the

manipulator in the Cartesian space at time t and the coordinate

in the joint space, respectively. The velocity of the

manipulator in the joint space, which is _hðtÞ, and that in the

Cartesian space, which is _rðtÞ, have the following relation,

_rðtÞ ¼ JðhðtÞÞ _hðtÞ ð2Þ

where JðhðtÞÞ ¼ of ðhðtÞÞ
ohðtÞ is the Jacobian matrix.

2.2 Graph theory

A graph G(V, E) is denoted by (V, E), where V is the set of

nodes, E is the set of edges with E � V � V . A path in a

graph is a sequence of vertices such that from each of its

vertices, there is an edge to the next vertex in the sequence. A

tree is a graph in which any two vertices are connected by

exactly one simple path. A rooted tree is a tree in which a

special node is singled out. This node is called the ‘‘root’’.

The depth of a node is the length of the path from the root to

the node. In a rooted tree, vertex v1 is the parent of vertex v2

if v1 immediately precedes v2 on the path from the root to v2.

Vertex v2 is the child of v1 if and only if v2 is a child of v1.

3 Problem formulation and the solution

3.1 Multiple manipulator cooperation

The goal of multiple manipulator cooperation, for example

in the application of cooperative payload transportation, is

to move the payload along a desired reference trajectory

and simultaneously maintain the relative positions of the
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end effectors. This task involves two aspects: first, the

reference point of the payload tracks the desired trajectory.

Second, the end effectors maintain the original formation

in space, that is, end effectors have the same velocity as the

reference point. Such a multiple manipulator cooperation

problem can be formulated as the following constrained

optimization problem [1]:

minimize
1

2

Xk

i¼1

_hT
i

_hi ð3aÞ

subject to J1
_h1 ¼ vd; J2

_h2 ¼ vd; . . .; Jk
_hk ¼ vd

ð3bÞ

g� � _h1� gþ; g� � _h2� gþ; . . .; g� � _hk � gþ ð3cÞ

where k denotes the number of manipulators, vd 2 R
n is the

desired velocity of the reference point, hi 2 R
m and

_hi 2 R
m are the coordinate and the velocity of the ith

manipulator in the joint space for i ¼ 1; 2; . . .; k, respec-

tively. Ji 2 R
n�m is the Jacobian matrix of the ith manip-

ulator for i ¼ 1; 2; . . .; k. gþ 2 R
m and g� 2 R

m are the

upper and lower limit of the allowed velocity in the joint

space.

Note that the optimization problem formulation (3)

minimizes the Euclidean norm squared of the joint veloc-

ities (3a) (corresponds to the minimum kinematic energy)

within the joint velocity limits (3c) and with the end

effector moving at the velocity vd (3b).

Our previous work [1] presents a dynamic neural net-

work with k independent modules converges to the solution

of the optimal problem (3). The ith module of the dynamic

neural network has the following dynamics,

state equation � _ki ¼ Jigð�JT
i kiÞ � vd ð4aÞ

output equation _hi ¼ gð�JT
i kiÞ ð4bÞ

where �[ 0 is a scaling factor, gðxÞ ¼ ½g1ðx1Þ; g2ðx2Þ;
. . .; gmðxmÞ�T for x ¼ ½x1; x2; . . .; xm�T and gj(xj) to be of the

following form for j ¼ 1; 2; . . .;m,

gjðxjÞ ¼
gþj if xj [ gþj
xj if g�j � xj� gþj
g�j if xj\g�j

8
<

: ð5Þ

where gj
- and gj

? are the jth elements of g- and g?,

respectively.

The neural network (4) has k modules. Each module can

be implemented in hardware and mounted on the associ-

ated manipulator to serve as its motion controller. A

prominent advantage of this neural model is that every

module is self-autonomous and evolves locally without any

dependence on the state of other manipulators, but all the

modules all together are still able to collaboratively solve

the global optimization problem (3). However, this neural

network requires that all modules are accessible to the

desired reference velocity command (i.e., this neural net-

work requires a full command coverage), since vd appears

in the dynamic Eq. (4) of the ith module for all possible i. It

is necessary for the command center to broadcast the

desired reference velocity to all modules distributed in

different places. This neural network is not applicable to

applications without direct signal connections from the

command center to all manipulators. In this paper, we

present a new dynamic neural network model, which is

redesigned based on (4) to remove the requirement of

broadcasting command to all manipulators.

3.2 Inspirations from social behaviors in nature

Let us image a queue of geese in migration. When flying in

the V formation, it appears that one goose is the leader, first

in the formation and all the other geese follow the leader to

maintain the formation. For many geese in such a group

with a long distance from the leader goose, the leader

goose may be out of the vision of them shaded by other

geese in their front. Actually, as observed and verified by

simulation, the flock of geese can reach formation and

reach the flying speed and direct led by the leader by

adapting its flying speed and flying direction based on its

observation of its direct neighbors instead of following the

leader goose. This phenomena inspires us to redesign

the neural network module (4) to a new one with vd in the

equation replaced by Jj g(-Jj
Tkj) with j 2 NðiÞ for i outside

the coverage of vd. This intuition provides a mechanism for

the propagation of vd from the command center to those

manipulators with direct access to vd and then from them to

their neighbors in communication and from neighbors to

neighbor until all manipulators receive the signal. To avoid

loops of information flow and to guarantee the stability of

the whole network, we then present the dynamic neural

network formally and prove the convergence, the opti-

mality of the neural solution rigorously.

3.3 Hierarchical topology generation

The proposed neural network is a locally interconnected

network in topology and is a dynamic system for each

module in the neural network. In this subsection, we

present the procedure to construct the neural network

topology based on the communication network structure.

For a strict presentation, we first define the communi-

cation graph G1ðN1;E1Þ consisting of the node set N1,

which includes all manipulators and the command center,

and the edge set E1, which includes all communication

connections between manipulators and the communication

links from the command center to the directly connected
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manipulators. For a node in the graph G1ðN1;E1Þ, there is

no direct parent node nor direct child node defined, and

therefore, there is no explicit hierarchy for this manipulator

network. In order to form a hierarchical structure, where

each node has a unique parent node from whom an esti-

mation of the reference velocity can be obtained, we first

define a command-center-rooted spanning tree G2ðN2;E2Þ
generated from the graph G1ðN1;E1Þ. We use a recursive

procedure to construct the tree G2ðN2;E2Þ as summarized

in Algorithm 1 in pseudo code. Hierarchy appears in the

rooted tree G2ðN2;E2Þ with each manipulator-associated

node having a unique parent. A typical rooted tree structure

is depicted in Fig. 1, where the arrows indicate the direc-

tion of information flow and the numbers aside the

manipulators denote the depth of the node in the tree.

3.4 Neural dynamics

In this section, we present the dynamics of the neural

network.

As the neural modules neighboring the command center

can directly access the information of vd, we simply use the

same dynamics as (4) for them. While for those neural

modules, which are outside the neighborhood of the com-

mand center, the estimation of the desired velocity is used

as the reference signal. Concretely, we have the following

dynamic equations for the neural network,

state equation

�i
_ki ¼

Jigð�JT
i kiÞ � vd if i 2 C

Jigð�JT
i kiÞ � JpðiÞgð�JT

pðiÞkpðiÞÞ if i 62 C

�

ð6aÞ

output equation _hi ¼ gð�JT
i kiÞ ð6bÞ

where the function p(i) is a mapping from i, which is the

label of the ith manipulator, to the label of its parent, C is

the command set, whose elements are children of the root

in the tree G2ðN2;E2Þ.

Algorithm 1 Construction of the tree G2ðN2;E2Þ

Require:

The communication graph G1ðN1;E1Þ
The root node nr (the one associated with the command center)

Ensure:

The resulting graph G2ðN2;E2Þ is a tree rooted at the command

center and spanning the graph G1ðN1;E1Þ.
N2 ( fnrg
E2 ( /

1: repeat

2: S1 ( NðN2;N1Þ � N2 (NðN2;N1Þ denotes the neighbor set

of the set N2 in the set N1)

3: S2 ( the edges in E1 bridging the set S1 and the set N2

4: N2 ( N2

S
S1

5: E2 ( E2

S
S1

6: until N2 = N1

Fig. 1 The generated

hierarchical topology from the

communication network of the

multiple redundant manipulator

system, where the number aside

the manipulators denotes the

depth of the node in the rooted

tree generated by the

communication network
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Remark 1 For manipulators in the command set C, the

associated neural module dynamic is identical to that of

(4). Equation (6) implies that Ji g(-Ji
Tki) = vd at the

equilibrium point for i 2 C. Accordingly, the value of Ji

g(-Ji
Tki) can be regarded as an estimation of vd if the whole

neural network is convergent and therefore used by the

neighboring manipulators j 62 C as the desired reference

velocity signal. However, the dynamic interaction between

neural modules bring challenges to the convergence anal-

ysis, which is crucial for the neural dynamics to solve the

optimization problem (3).

4 Theoretical results

In this section, we present theoretical results on the opti-

mality and convergence of the proposed neural network

(6).

Before stating the main results, we first introduce the

following lemmas, which are useful for the derivation of

the main theoretical results.

Theorem 1 Let ½k�T1 ; k
�T
2 ; . . .; k�Tk

T � be an equilibrium

point of the neural network dynamic (4a). The output of this

neural network at ½k�T1 ; k
�T
2 ; . . .; k�Tk �

T
, which is ½ _h�T1 ;

_h�T2 ;

. . .; _h�Tk �
T ¼ ½gTð�JT

1 k�1Þ; gTð�JT
2 k�2Þ; . . .; gTð�JT

k k�kÞ�
T
, is

the optimal solution to the cooperative task execution

problem (3).

Proof The statement of this theorem is exactly the same

as the one in reference [1]. It is notably that the neural

dynamic of (6) and that in [1] are different and thereby the

proofs are not the same. However, noticing that the equi-

librium ½k�T1 ; k
�T
2 ; . . .; k�Tk �

T
of (6) satisfies

Jigð�JT
i k�i Þ ¼vd

_h�i ¼gð�JT
i k�i Þ for i ¼ 1; 2; . . .; k:

ð7Þ

which is exactly the same as the equilibrium points of the

neural network investigated in [1]. Using the KKT condi-

tions, we are able to finally prove that this set of equilib-

rium is the optimal solution to (3) by following a similar

argument as in Theorem 2 in [1].

Theorem 1 reveals that the equilibrium point of the

recurrent neural network (6) corresponds to the optimal

solution to the cooperative task execution problem. In the

next step, we are going to show that the neural network is also

convergent, which implies that the neural network converges

to the optimal solution of (3) with any initialization of the

state variables. On this point, we have the following theorem,

Theorem 2 The recurrent neural network (6) with �[ 0

is globally asymptotically stable and converges to the

optimal solution of the cooperative task execution problem

(3).

Proof As we have proved in Theorem 1 that the optimal

solution of (3) is identical to the equilibrium point of the

neural network (6), we only need to prove the globally

asymptotical stability of the neural network to its equilib-

rium point. We prove that by induction. As the neural

network has a hierarchical structure, we analyze the neuron

layer by layer in the structure.

We denote d(i) as the depth of the ith neuron. In the

network, represented by the graph G2ðN2;E2Þ constructed

in Algorithm 1, the root node corresponds to the command

center has d = 0 and all the other nodes have a depth larger

than or equal to 1. We first prove that the globally

asymptotical stability to the equilibrium point of the neu-

rons in G2ðN2;E2Þ with d = 1.

For the neuron i with d(i) = 1, its parent node is the

node corresponding to the command center and therefore

the neuron i belongs to the command set C. According to

the neural dynamic equation (6), its dynamic is governed

by

� _ki ¼ Jigð�JT
i kiÞ � vd ð8Þ

This neuron is self-autonomous and has no dependence on

others in dynamics. To prove the asymptotically stability of

this neuron, we construct the following Lyapunov function,

V ¼� kT
i Jigð�JT

i kiÞ �
1

2
kgð�JT

i kiÞk2 þ vT
d ki

¼ 1

2
ðkJT

i kik2 � k � JT
i ki � gð�JT

i kiÞk2Þ þ vT
d ki

ð9Þ

Note that k � JT
i ki � gð�JT

i kiÞk can be regarded as the

distance from the vector -Ji
Tki to the box set bounded by

the upper and lower limits of the function gð�Þ. Based on

the derivative rules for the projection functions [16, 17], we

have

rki

1

2
k � JT

i ki � gð�JT
i kiÞk2 ¼ Ji JT

i ki þ gð�JT
i kiÞ

� �

ð10Þ

Therefore, we get

rki

1

2
ðkJT

i kik2 � k � JT
i ki � gð�JT

i kiÞk2Þ

¼ JiJ
T
i ki � JiJ

T
i ki � Jigð�JT

i kiÞ
¼ �Jigð�JT

i kiÞ ð11Þ

Accordingly,

rki
V ¼ �Jigð�JT

i kiÞ þ vd ð12Þ

Clearly, the Hessian matrix of V with respect to ki is,
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r2
ki

V ¼ Jig
0JT

i ð13Þ

where g0 ¼ ogð�JT
i kiÞ

oð�JT
i
kiÞ . According to the definition of gð�Þ, we

know that g0 is a diagonal matrix with the diagonal

elements either 1 or 0. Thus, we conclude g0 is semi-

positive definite and rk_i
2 V is also semi-positive definite.

Therefore, the function V(ki) is convex and we have the

following inequality according to the property of convex

functions,

VðkiÞ � Vðk�i Þ	rT Vðk�i Þðki � k�i Þ ð14Þ

where ki
* denotes the equilibrium point, which satisfies Ji

g(-Ji
Tkk_i

2 ) - vd = 0. Substituting (12) and vd = Ji g(-

Ji
Tkk_i

2 ) into (14) yields,

VðkiÞ	Vðk�i Þ � ðki � k�i Þ
T

Jigð�JT
i kiÞ � Jigð�JT

i k�i Þ
� �

¼Vðk�i Þ þ ð�JT
i kiÞ � ð�JT

i k�i Þ
� �T

gð�JT
i kiÞ � gð�JT

i k�i Þ
� �

ð15Þ

Notice that the function gð�Þ is an increasing function (not

strictly increasing as it saturates when the entry goes to

infinity); therefore, we have,

ð�JT
i kiÞ � ð�JT

i k�i Þ
� �T

gð�JT
i kiÞ � gð�JT

i k�i Þ
� �

	 0 ð16Þ

Together with (15), we obtain,

VðkiÞ	Vðk�i Þ ð17Þ

which means that the function V is lower bounded and

therefore in turn validates that V is indeed qualified to be a

Lyapunov function.

Calculating time derivative of V along the trajectory of

(8) yields,

_V ¼ _kT
i �Jigð�JT

i kiÞ þ vd

� �

¼� 1

�
kJigð�JT

i kiÞ � vdk2

� 0

ð18Þ

Let _V , we find Ji g(-Ji
Tki) - vd = 0, which corresponds to

the equilibrium point of ki. According to Lasalle’s invariant

set principle [18], the dynamic asymptotically evolves to

the equilibrium point.

We have completed the analysis for d = 1. Now, we

assume that the neurons with the depth d = l in the graph

G2ðN2;E2Þ, say the jth one, asymptotically stabilizes to the

equilibrium Jj g(-Jj
Tkj) - vd = 0. We aim to prove the

same result also hold for neurons with the depth d = l ? 1.

We consider a particular neuron with the depth of

d = l ? 1. We denote this neuron the qth one and denote

r = p(q), meaning that the rth neuron is the parent node of

the qth neuron. As we assumed that neurons with the depth

of d = l are asymptotically stable and the rth neuron, as the

parent node of the qth one, has the depth d = l, we

conclude that the rth neuron is asymptotically stable to Jr

g(-Jr
Tkr) - vd = 0. The dynamic of the qth neuron for

q [ 1 writes,

� _kq ¼Jqgð�JT
q kqÞ � Jrgð�JT

r krÞ
¼Jqgð�JT

q kqÞ � vd þ vd � Jrgð�JT
r krÞ

ð19Þ

Define u = vd - Jr g(-Jr
Tkr). The system (19) can be

regarded the following system with input,

� _kq ¼ Jqgð�JT
q kqÞ � vd þ u ð20Þ

where u gets input from the output of the rth neuron. It

attenuates to zero as time elapses. Compared with the

dynamic equation (8), the only difference is the presence of

the extra input term u in (20). Following a similar way in

the asymptotical stability analysis for d = 1, we are able to

prove that the system (20) is ISS (input-to-state stable).

According to the property of serially connected ISS sys-

tems [18], we conclude that the qth neuron asymptotically

stabilizes to Jqg(-Jq
Tkq) - vd = 0, which is the equilib-

rium point.

Until now, we have shown that the asymptotical stability

to the equilibrium points for the neurons with the depth

d = l implies such a property for neurons with the depth

Table 1 Summary of the D–H parameters of the Puma 560 manip-

ulator used in the simulation

link a(m) a(rad) d(m)

1 0 p/2 0

2 0.43180 0 0

3 0.02030 -p/2 0.15005

4 0 p/2 0.43180

5 0 -p/2 0

6 0 0 0.30000

Fig. 2 The structure of the communication network and the structure

of the generated hierarchical tree by running Algorithm 1 for the four

robot arm collaboration example
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d = l ? 1. Therefore, we conclude that this property holds

for all neurons in the neural network. Recalling that the

equilibrium point is identical to the optimal solution of (3),

we completes the proof.

5 Simulation results

The same as in [1], we use the robot arm Puma 560 as a

testbed for the effectiveness of our method. The Puma 560

has 6-DOFs. For the task only considering the end

effector’s position in 3-D space, without taking its pose

into consideration, the Puma 560 robot arm is a redundant

manipulator with redundancy 3. The D-H parameters of the

Puma 560 manipulator are summarized in Table 1.

In this section, we apply the proposed recurrent neural

network model to the cooperative tracking problem with

four Puma 560 manipulators. In the simulations, only

positioning of the reference point in three-dimensional

space is considered, so n = 3. Each Puma 560 manipulator

has 6 DOF (m = 6), and therefore for the simulation, the

degree of redundancy are 12 in total for the four manipu-

lators. In this simulation, we consider cooperative target

tracking with four identical Puma 560 manipulators. The

goal is to control the end effectors of multiple manipulators

to simultaneously track a desired trajectory. In this simu-

lation, the bases of the four Puma 560 manipulators, Robot

1, Robot 2, Robot 3, and Robot 4, whose shoulder joints

locate at [ -0.5, 0.5, 0]m, [ -0.5, -0.5, 0]m

, [0.5, 0.5, 0]m, and [0.5, -0.5, 0] in the Cartesian space,

respectively (as shown in Fig. 3). The desired trajectory is

a circle centered at [0, 0, 0]m with diameter 0.4m and a

revolute angle about y-axis for p/6 rad. The starting posi-

tion of the trajectory is [0, 0, 0.2]m and the desired

tracking speed is 0.04 m/s.

Among all the four manipulators, only the 4th one is

directly accessible to the velocity command. As such, the

control strategy proposed in [1] is not applicable since the

method requires all manipulators accessible to the com-

mand signal. For other manipulators in the system, they
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Fig. 4 The trajectories of all

manipulators in the workspace

(drawn separately)
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cannot access the command signal directly but are able to

track the desired trajectory by following observations of

their neighbors. As shown in Fig. 2, Robot 1 can com-

municate with Robot 4 bidirectionally and can also send

information to Robot 2. Robot 3 can communicate with

Robot 4 bidirectionally. Robot 2 can observe information

from Robot 1 and pass information to Robot 4. With such a

communication topology, we can get the corresponding

hierarchical tree by running Algorithm 1 as shown in Fig. 2

(Fig. 3).

As to the neural dynamics, we choose � ¼ 10�3; gþ ¼
½1; 1; 1; 1; 1; 1�T and g- = -g? for the neural network.

Figures 4 and 5 illustrate motion trajectories of the manipu-

lators in the workspace. From this figure, we can observe that
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Fig. 6 The time profile of joint

angle h and dual parameter k for

all manipulators
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the end effectors of all manipulators track the desired circular

trajectory simultaneously. The evolutions of h and k with time

for the manipulators are shown in Fig. 6. We can see from

Fig. 7 that the velocity error, measured with the difference

between the velocity of the end effector and the desired

velocity, converge to a small value very fast after a short

transient at the very beginning. Figure 8 plots the time profile

of the position error, measured by the position difference

between the end effector and the desired reference point. From

this figure, we can see that the position errors are controlled

within 2 9 10-3m in the three axial directions, which dem-

onstrates the accuracy of the proposed strategy.

6 Conclusions and future work

In this paper, the multiple manipulator task execution

problem with only partial command coverage of manipu-

lators is investigated. This problem cannot be solved with

existing distributed neural approach [1], which requires

the command signal available to all manipulators. A

strategy with hierarchical tree generation on topology and

nonlinear neural dynamics as controllers are proposed to

tackle the problem. The novelty of this paper lies

that most existing work is centralized method, which is

not scalable to networks involving a large number of

manipulators while the proposed strategy is a distributed

one, which only need information from neighbors for each

manipulator. On the other hand, most studies on multiple

manipulator coordination focus on general manipulators

instead of redundant manipulators. Redundant manipula-

tors have extra degree of freedom (DOF) and can be

exploited for optimization. However, the extra design

degrees also bring new challenge to the control design as

not only stability must be guaranteed but also optimality

be guaranteed by the design. The global stability of the

neural network and the optimality of the solution are both

theoretically proven. Simulations show that the proposed

method is effective and accurate. As the proposed strategy

need to first generate a hierarchical tree from the com-

munication topology and the signal of a children manip-

ulator has dependence on that of its parent manipulator,

the proposed method may be fragile to link failure,

especially for links close to the command center. For

example, if a manipulator loses connection from its par-

ent, then all the descendants of this manipulator will be

out of control. This issue will be examined in our future

work and information exchanges between all neighbors

may help to tackle this problem.
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