Concrete Pavement Intersections

Presented By:
National Ready Mixed Concrete Association

NRMCA Disclaimer

- This presentation has been prepared solely for information purposes. It is intended solely for the use of professional personnel, competent to evaluate the significance and limitations of its content, and who will accept full responsibility for the application of the material it contains. The National Ready Mixed Concrete Association and any other organizations cooperating in the preparation of this presentation strive for accuracy but disclaim any and all responsibility for application of the stated principles or for the accuracy of the content or sources and shall not be liable for any error or damage arising from reliance on or use of any content or principles contained in this presentation. Unless otherwise indicated, all materials in this presentation are copyrighted to the National Ready Mixed Concrete Association. All rights reserved. Therefore reproduction, modification or transmission in any form is strictly prohibited without the prior written permission of the National Ready Mixed Concrete Association.

References for Presentation

Typical 4-Way Intersection
Roundabout Intersection

Common Problems at Intersections...

Intersections and Roundabouts

- Pavement Concerns:
 - Starting and stopping
 - Slow & heavy loads
 - Turning movements
 - High shear stresses
 - Repeated repairs

Keys to Successful Concrete Intersections
Utilizing Concrete For Intersections: Options

- Build New at Time of Initial Construction
- Reconstruct Existing Intersection
- Overlay (or Inlay) Existing Intersection

Concrete Intersections - Considerations

- For existing pavement: Complete reconstruction or overlay/inlay?
- Concrete intersection construction limits
- Thickness Design
- Subgrade and subbase requirements
- Jointing details
- Pavement profiles
- Concrete materials (early opening strength for fast-track paving?)
- Concrete to asphalt transitions
- Coordination with local businesses
- Incorporating decorative elements

What Kind of Concrete Pavement is Recommended? Jointed - Unreinforced Pavement

Concrete Intersections

For Existing Intersections: Rehabilitation or Reconstruction?

Pre-Design Data Gathering*

- Pavement Condition Evaluation
- Pavement Materials Analysis (Destructive/Non-Destructive Testing)
- Existing Pavement Structural Layers (cores, borings, etc.)
- Subgrade Soils (borings, DCP, etc.)
- Expected Future Traffic and/or Use (Service Life)
- Roughness (Smoothness)
- Drainage Conditions
- Grade & Elevation Restrictions

*Typically requires knowledge/alignment with consulting engineer

Pavement Condition Evaluation

- Identify Types of Distress
 - Fatigue (Alligator) Cracking
 - Rutting
 - Transverse or Longitudinal Cracking
 - Etc.
- Identify Severity of Distress
 - Low, Medium, High
- Identify Quantity of Each Type/Severity
 - R', in, ft, etc.

Keys to Successful Concrete Intersections
Concrete Intersections
Pavement Thickness Design Methods

Suitability of Subgrade Soils
- Classification (Gradation, Atterberg Limits, etc.)
- Depth to Bedrock
- Depth to Water Table
- Potential for Compaction
- Presence of Weak or Soft Layers or Organics
- Susceptibility to Frost Action or Excessive Swell
- Soil Strength Characteristics

Soil Strength for Design: Modulus of Subgrade Reaction (k-value)

Concrete Strength
- Design = Modulus of Rupture (MOR)
 - Sometimes referred to as Flexural Strength
- Construction = Compressive Strength (f_c)
 - MOR = 8 to 10 * \sqrt{f_c}
 - 500 psi = 3,500 psi
 - 600 psi = 4,200 psi
 - 650 psi = 4,900 psi

New Construction or Reconstruction: Pavement Thickness Design Software (PDCP)

Pave Ahead
PavementDesigner.org
Paving Limits: Functional Limits

- Stopping Distance
- Average Queue Length
- Limits of Pavement Distress
- Consider Placement and Compaction of Adjacent Asphalt
- Radius Return Minimum

Concrete Intersections: Thickness

<table>
<thead>
<tr>
<th>Route 1</th>
<th>Route 2</th>
<th>Physical Area Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low AADT (T1)</td>
<td>Median AADT (T2)</td>
<td>T2</td>
</tr>
<tr>
<td>Low AADT (T1)</td>
<td>High AADT (T3)</td>
<td>T3</td>
</tr>
<tr>
<td>High AADT (T3)</td>
<td></td>
<td>T3 + 0.5 to 1.0 in.</td>
</tr>
</tbody>
</table>

Note: T3 > T2 > T1

Concrete Intersections

Construction Details and Jointing

Concrete Materials & Mix Design

- Conventional Concrete Mixes Used for Reconstruction or Overlay
 - 4,000 psi Compressive (600 - 800 psi Tensile)
 - Type III Cement (Type III Cement for High Early Strength When Quick Opening is Required)
 - High Early Content Low Water Content Desired (max. w/c = 0.40)
 - Minimum Top Size 1/2" for Thin Overlays
 - Coefficient of Thermal Expansion Must be Considered
 - Admixtures for Adj, etc.
 - Reduce Water
 - Acrilite Bitubate
 - Fibers May be Used (Micro or Macro Synthetic, Steel, or Braid)
 - Improve Strength
 - Improve Post-Casting Behavior
 - Reduce Plastic Shrinkage Cracking

Fiber-Reinforced Concrete

- Fiber reinforcement should be considered in any of the following situations:
 - The project has specific vertical restrictions
 - The asphalt lift is vary thin (and thus may not readily bond with the concrete)
 - The base thickness and/or condition is inadequate
 - The design thickness makes conventional reinforcement for load transfer difficult to use.

Considerations: New Construction/Reconstruction of Intersection

- Removal of existing pavement (reconstruction)
- Preparing the grade
- Selecting forms or slip form paver
- Placing in pavement structures
- Other details prior to placing concrete
- Placing, finishing, and texturing the concrete
- Curing the concrete
- Saw cutting the pavement
- Sealing/Filing joints
- Opening to traffic

Keys to Successful Concrete Intersections
Jointing: Joint Types

- Transverse Joints
- Longitudinal Joints
- Shrinkage Joints
- Temperature Expansion Joints

Jointing: Common Intersections

- **Things to do:**
 - Crack due to severe acute angle
 - Match existing joints or cracks
 - Place joints to meet in-pavement structures
 - Be mindful of the maximum joint spacing
 - Place isolation joints where needed
 - Allow necessary adjustments to joint locations in the field
 - Be practical

- **Things to avoid:**
 - Slabs < 2 ft (0.6 m) wide
 - Slabs > 15 ft (4.5 m) wide, unless local experience dictates otherwise
 - Angles < 60° (~90° is best); do this by dog-legging joints through curve radius points
 - Creating interior corners
 - Odd shapes (keep slabs near-square or pie-shaped)

Forming Contraction Joints by Saw Cutting

- Conventional Sawcut
- Early Entry Sawcut (~1 inch)

Jointing: Common Intersection – 10 Step Process

1. Step 1
2. Step 2
3. Step 3
4. Step 4
5. Step 5
6. Step 6
7. Step 7
8. Step 8
9. Step 9
10. Step 10

Jointing: Roundabouts – 6 Step Process

1. Step 1
2. Step 2
3. Step 3
4. Step 4
5. Step 5
6. Step 6

Concrete Intersections

Maintenance of Traffic (Staging)
Maintenance of Traffic

- Options:
 - Complete closure with detours,
 - Partial closures with detours,
 - Construction under traffic,
 - Complete closures during limited time periods,
 - Combinations of the above.
Keys to Successful Concrete Intersections
Thank you!

Question?

Amanda H. Hult, PE
NRMCA
720/649-0323
ahult@nrmca.org