Evaluation of Remediation Strategies for Shrink-Swell Clays in Western Alabama

J. Brian Anderson, Ph.D., P.E.
Dan T. Jackson, M.S.
Elizabeth Stallings Young, Ph.D., P.E.
Lydia Kennedy Aboamathy, M.S.
Dylan T. Jones, M.S.

Alabama Transportation Conference
02.10.2022

Acknowledgements

- ALDOT - Scott George, Kaye Davis, John Jennings, Lyndi Blackburn, Robert Shugart, Valerie Branyon, Chris Strickland, Brad Darden, and Benji Cantrell
- Ronnie Baldwin, Dee Rowe, and Buddy Cox
- Students - Jeremy Herman, Meredith Harbison, Connie Fike, Jameson Moulis, Matt Barr, Justin McLaughlin, Jonathan Hogan, Lester Lee, and Pavel Vointeko

Outline

- Introduction
- Insitu observations, Soil Behavior, Shear Strength, and Tree interaction
- Remediation Strategies
- Instrumentation Program
- Performance
- Evaluation
- Summary and Conclusions

Introduction

Introduction - Background

- Expansive clays shrink and swell with fluctuations in moisture
- Causes billions of dollars of damage to pavements and lightly loaded structures in the United States, annually
- Many roads in Alabama are constructed over expansive clay
- Techniques are needed to remediate this problem with minimal road closures

Alabama Highway 5

- Farm-to-market road
- AL 5 is a popular route for trucks between Birmingham and Mobile
- In many places, road closures are not feasible due to lack of detour routes
- Initial observations showed extreme pavement distress resulting in a very rough and unsafe road
- Ruts
- Cracks
- Standing water
Impacts and Remediation of Expansive Clays:
Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays:
Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5

Summary and Conclusions

- AL 5 in Southern Perry County Alabama exhibits extreme pavement distress.
- The causes of this distress are likely a combination of:
 - The presence of Montmorillonite (high PI) clays beneath the roadway that have potential swelling pressures of 1500psf
 - Low long term drained shear strength of the Montmorillonite clays
 - Frequent overloaded truck traffic
 - High uptake trees within the right of way
- Five remediation techniques were implemented in test sections at AL 5
 - Sand Blanket
 - Vertical Barriers
 - Lime Columns
 - Paved Shoulders
 - Edge Drains
Impacts and Remediation of Expansive Clays: Lessons Learned from AL 5

Summary and Conclusions

- Instrumentation was installed during the summer of 2016 to measure:
 - Pavement strain beneath the resurfacing
 - Pore pressure in the subgrade
 - Soil Suction in the subgrade
 - Water content in the subgrade
 - Weather
- The final resurfacing was completed in the summer of 2016 after all remediation implemented.

Summary and Conclusions

- Instruments were monitored up through May of 2020.
- Measurement shows accumulating compressive strain in the pavement.
- Moisture contents are somewhat stable below 7.5 ft.
- IRI tests show some decline, but the ride overall is well below damage threshold, with some local defects.

Summary and Conclusions

- Evidence proves the presence of clays that possess a high potential to swell.
- Atterberg limits of the clays suggest their swelling potential.
- Shrinking and swelling cycles not only cause roadway settlement/heave, but also contributes to reduced soil strength in embankments.
- Trees close to the roadway are contributing to pavement damage.
- Visual and IRI tests show little distress since resurfacing.

Summary and Conclusions

- When considering new construction or resurfacing, soil sampling along with Atterberg limits should be routinely used to identify the presence of expansive clay minerals.
- When the minerals are identified, the following actions should be considered:
 - Observe the presence and types of trees and their proximity to the roadway, if they are broad leaf and within the right or way, they should be removed.
 - The safety widening should be increased to a minimum of 6 feet.

Implementation

- When considering new construction or resurfacing, soil sampling along with Atterberg limits should be routinely used to identify the presence of expansive clay minerals.
- When the minerals are identified, the following actions should be considered:
 - Observe the presence and types of trees and their proximity to the roadway, if they are broad leaf and within the right or way, they should be removed.
 - The safety widening should be increased to a minimum of 6 feet.

Questions?
Evaluation of Remediation Strategies for Shrink-Swell Clays in Western Alabama

J. Brian Anderson, Ph.D., P.E.
Dan T. Jackson, M.S.
Elizabeth Stallings Young, Ph.D., P.E.
Lydia Kennedy Abernathy, M.S.
Dylan T. Jones, M.S.

Alabama Transportation Conference
02.10.2022