Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama

J. Brian Anderson, Jim Davidson, Mike Stallings, Chukwuma Okator, Bujing Liu, and Olga Rojas

Acknowledgements

• ALDOT Maintenance Bureau
 • Daniel Jones
 • Eric Christie
 • Mike Wall
 • John “Jip” Pitts
 • Bridge Maintenance Field Crew
• City of Anniston AL
 • Lance Armbruster
• Auburn Team
 • Ashton Babb, Sam Dunlop, Frank Russel

Outline

• Motivation
• Objectives
• Brief review of Corrugated Metal Culvert Load Rating Practice
• Testing Anniston Culverts
• Results and Conclusions

ALDOT 930-987: Load Rating for Corrugated Metal Culverts - Motivation

• Load rating CM culverts is a complex task
• There are a number of these structures that are part of ALDOT’s bridge inventory
• Particular issues exist with the rating of “low cover” structures

ALDOT 930-987: Load Rating for Corrugated Metal Culverts - Objectives

• Load rate CM culverts in Anniston AL
• Develop method for load rating low profile arch and pipe arch CM culverts for ALDOT

Anniston Culverts

• All but one is on former Ft. McClellan
• Annexed by the city of Anniston
• Culverts are nearly 80 years old
• Double barrel constructed from 5 galvanized plates
• Concrete pedestal foundations on rock
Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama

Rating Factor Definition

- The procedures and criteria for load rating and posting of existing bridges are defined by the Manual for Bridge Evaluation (MBE).
- The complexity of the rating methodology for a given structure therefore depends upon the complexity of the structure and its behavior under loading (i.e., linear or nonlinear response).

Rating Factor Definition

- Definitions are provided for Allowable Stress, Load Factor, and Load and Resistance Factor ratings (ASR, LFR, LRFR, respectively).
- The MBE does not dictate which rating approach (ASR, LFR, or LRFR) must be used; rather, the rating method is typically decided based upon the original adopted design philosophy.

Rating Factor Definition

- The lowest rating factor defines the load rating for the structure. To generate the load rating for a bridge, the rating factor is multiplied by the weight of the rating vehicle.
- Although applied to culverts, MBE was developed with typical steel and concrete superstructure bridges in mind.
- **“Rating of Reinforced Concrete Box Culverts”** is relatively mature, but rating procedures for other categories of buried structures is recognized as lacking.

Rating Factor Definition

- When soil cover is less than L/8 (low cover), CM culverts rate below 1 when using simplified methods. This is exacerbated by inability to account for pavement.
- Original ODOT > RF = H2/h2 < 1 when cover is less than AASHTO minimum (1.25ft).
- Modified ODOT attempted to improve by adding work by Galambos (1998). MDOT improved resistance definitions (does not compare cover, evaluates structural limit states).

Analysis Options

- Beam global stiffness state-space models are permitted in ODOT as well as AASHTO.}
- Rating of calculation is based on resisting flexural strength and flexural stiffness.
- Rating of calculation is based on resisting flexural strength and flexural stiffness.
- Improved load rating calculations account for loading (i.e., linear or nonlinear response).

Consequences of Low Cover

- When soil cover is less than L/8 (low cover), CM culverts rate below 1 when using simplified methods. This is exacerbated by inability to account for pavement.
- Original ODOT > RF = H2/h2 < 1 when cover is less than AASHTO minimum (1.25ft).
- Modified ODOT attempted to improve by adding work by Galambos (1998). MDOT improved resistance definitions (does not compare cover, evaluates structural limit states).

<table>
<thead>
<tr>
<th>Analysis Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Stiffness State-space Models</td>
<td>Calculations of RF by state-space models are typically decided based upon the original adopted design philosophy.</td>
</tr>
<tr>
<td>Modified ODOT</td>
<td>Improved load rating calculations account for loading (i.e., linear or nonlinear response).</td>
</tr>
<tr>
<td>Multi-Phase Stress (MPSS)</td>
<td>Developed specifically for culvert analysis.</td>
</tr>
<tr>
<td>Finite Element Analysis (FEA)</td>
<td>Can predict the accuracy of any other analytical method.</td>
</tr>
<tr>
<td>Load Transfer</td>
<td>Can improve the accuracy of any other analytical method.</td>
</tr>
</tbody>
</table>
Impact of Load Testing on Rating

Per AASHTO MBE (2018)

\[RF_L = RF_K K_1 \]

and \[K_1 = \frac{\varepsilon_T}{\varepsilon_C} - 1 \]

where \(\varepsilon_T \) is the maximum measured member strain during load test and \(\varepsilon_C \) is the corresponding theoretical strain for the test vehicle at the same position in the load test.

Load Testing for Load Rating

- Anecdotally, the Anniston culverts appear to have sufficient capacity to rate higher than 1, even though the soil cover is minimal.
- Limited load testing was proposed to prove that the culverts indeed carry a representative overload.
- Prove that pavement contributes to the capacity of these types of structures.

Initial Rating by CANDE

Linear Analysis, Pavement Included

<table>
<thead>
<tr>
<th>BIN</th>
<th>Vehicle</th>
<th>PA</th>
<th>LPA</th>
<th>LPA</th>
<th>LPA</th>
<th>LPA</th>
<th>LPA</th>
<th>LPA</th>
<th>LPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Truck LC-5</td>
<td>1.3</td>
<td>7.8</td>
<td>8.0</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>BIN Vehicle</td>
<td>1.2</td>
<td>12.8</td>
<td>13.4</td>
<td>13.1</td>
<td>12.9</td>
<td>12.9</td>
<td>12.6</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>TWO-AXLE</td>
<td>2.5</td>
<td>11.7</td>
<td>11.8</td>
<td>11.8</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>TRI-AXLE</td>
<td>1.6</td>
<td>9.0</td>
<td>9.3</td>
<td>9.2</td>
<td>9.1</td>
<td>9.1</td>
<td>9.0</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>CONCRETE</td>
<td>1.7</td>
<td>9.5</td>
<td>9.6</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.4</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>18 WHEELER</td>
<td>3.8</td>
<td>13.4</td>
<td>13.5</td>
<td>13.5</td>
<td>13.5</td>
<td>13.5</td>
<td>13.4</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>6 AXLE</td>
<td>3.8</td>
<td>12.7</td>
<td>12.9</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.7</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>SCHOOL BUS</td>
<td>6.5</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Anniston Culvert Selection

- All culverts had thin covers
- Some culverts were in secure areas behind fences and gates
- One culvert was highly skewed, and pavement removed (road closed)
- Significant tree roots and other issues were observed as well
- Choice was made to load test two representative structures

Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama
Berman Road
- Likely least amount of cover of all structures on one barrel
- Ease of access for instrumentation

Soil Profile
- Non-destructive seismic testing used to determine soil profile
- MASW, Seismic Refraction, Direct Wave

Soil Profile
- In situ/Natural Material:
 - \(V_p = 370 \text{ m/s} \) (measured compressive wave velocity)
 - \(V_s = 210 \text{ m/s} \) (measured shear wave velocity)
 - \(p = 1800 \text{ kg/m}^3 \) (assumed mass density)
 - \(\gamma = 0.25 \) (Poisson's Ratio)
 - \(G = 79.4 \text{ MPa} = 1600 \text{ ksf} \) (Shear Modulus determined from \(V_s \))
 - \(E = 198.5 \text{ MPa} = 4150 \text{ ksf} \) (Young's Modulus determined from \(G \))
- Compacted fill:
 - \(V_p = 240 \text{ m/s} \) (measured compressive wave velocity)
 - \(V_s = 140 \text{ m/s} \) (measured shear wave velocity)
 - \(p = 1800 \text{ kg/m}^3 \) (assumed mass density)
 - \(\gamma = 0.25 \) (Poisson's Ratio)
 - \(G = 35.3 \text{ MPa} = 740 \text{ ksf} \) (Shear Modulus determined from \(V_s \))
 - \(E = 88.3 \text{ MPa} = 1840 \text{ ksf} \) (Young's Modulus determined from \(G \))

Posting/Design Vehicles

Loading Schedule

<table>
<thead>
<tr>
<th>Load Line</th>
<th>Stoppage Points</th>
<th>Number of Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck centered in lane (L1)</td>
<td>start, ½, crown, end</td>
<td>3</td>
</tr>
<tr>
<td>Truck centered in lane (L1)</td>
<td>end, ½, crown, start</td>
<td>1</td>
</tr>
<tr>
<td>Right wheels over lane center (L2)</td>
<td>start, ½, crown, end</td>
<td>3</td>
</tr>
<tr>
<td>Right wheels over lane center (L2)</td>
<td>end, ½, crown, start</td>
<td>1</td>
</tr>
</tbody>
</table>
Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama
Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama

Load Rating Adjustment

\[
K_a = \frac{\varepsilon_a}{\varepsilon_T} - 1 = \frac{10.32E-04}{2.43E-04} - 1 = 3.24
\]

\[
K_b = K_{b1}K_{b3}
\]

(select \(K_{b1} = 0.5\) and \(K_{b3} = 1\)) so \(K_b = 0.5\)

\[
K = 1 + K_aK_b = 1 + (3.24)(0.5) = 2.62
\]

Results and Conclusions

- Two of the Anniston Culverts were load tested to measure vertical displacement and radial strain using a load truck with LC-5 load combination.
- The maximum vertical displacement measured was around 0.12 in <0.1% of span.
- The largest strain measured during testing was approximately 243\(\mu\varepsilon\) for Berman Rd.
- Results increased load rating by a factor of 2.62.

Rating Factor Comparison

Concrete Truck / 13-inch cover / LRFR

<table>
<thead>
<tr>
<th></th>
<th>CANDE Level 1</th>
<th>CANDE Level 2</th>
<th>3D-FEM</th>
<th>ODOT1</th>
<th>ODOT2</th>
<th>MDOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN 20441</td>
<td>0.44</td>
<td>2.40</td>
<td>2.80</td>
<td>0.40</td>
<td>1.47</td>
<td>1.03</td>
</tr>
<tr>
<td>Test K factor</td>
<td>1.18</td>
<td>1.88</td>
<td>1.06</td>
<td>X</td>
<td>X</td>
<td>2.62</td>
</tr>
<tr>
<td>Adjusted RF</td>
<td>12.11</td>
<td>4.51</td>
<td>2.97</td>
<td>0.40</td>
<td>1.47</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Conclusions

- Load rating of CM culverts is a complex process.
- Previous theoretical approaches made assumptions to simplify the rating calculations, often resulting in very conservative results.
- Current spreadsheet solutions based on these approaches carry these limitations when considering low cover and pavement.
- CANDE is a more sophisticated approach but has a steep learning curve and requires experience to properly model and interpret results.

Conclusions

- Engineers considering load rating CM culverts should follow these steps:
 - Attempt a simple spreadsheet rating (these may fail due to cover or pavement considerations)
 - If < 1, utilize CANDE to determine a rating using the prescribed method
 - If still < 1, consider a full finite element analysis and/or rating load test
 - Otherwise, post the structure
Load Rating Corrugated Metal Culverts with Thin Cover in Anniston, Alabama

J. Brian Anderson, Jim Davidson, Mike Stallings, Chukwuma Okafor, Bujing Liu, and Olga Rojas

Alabama Transportation Conference
02.09.2022