COVID-19 and Its Effect on the Transportation System

Overview
- Broad Impacts
 - Transit, Air, Freight, Rail, ...
- Focus
 - Roadway Volume / Safety Metrics
- Detailed Analysis: Travel Time
 - Travel Time Reliability
 - Case Study: Major Arterials
- Concluding Remarks

PART 1 – COVID-19
Roadways - “The Big Picture”

By the end of March 2020, global road transport activity declined ~50% (IEA, 2020).

In Birmingham, Alabama:
- Estimated VMT decreased by 35%, 20% and 10% in April, May, June 2020 (ALDOT).

US Monthly Vehicle Miles Traveled: 2019 vs 2020 (2nd Quarter)

APRIL: Passenger Cars: -46% Commercial Vehicles -13%
Typically ~2% fluctuation; 2008 ~3.5%

What happened in 2020?
- Traffic Volume
 - 3.3 trillion vehicle-miles traveled (VMT) in 2019
 - 2.83 trillion VMT in 2020
 - Decrease of 13.2%
- Motor Vehicle Fatalities
 - Increase of 7.2%
- Traffic Fatality Rate
 - Traffic fatality rate per 100 million VMT ~1.37
 fatalities per 100 million VMT
 - Attributable: speeding, impaired/distracted driving, failure to wear seatbelts, …
What happened in 2021?

- “US Road Deaths Rise at Record Pace as Risky Driving Persists”, Hope Yen, Associated Press, February 5, 2022
- “U.S. Road Deaths Keep Breaking Records”, Sean Tucker, Kelley Blue Book February 2, 2022
- “Soaring US road deaths reflect the same lawlessness as Murder Surge Does” Nicole Gelinas, New York Post, February 6, 2022

First 9 Months of 2021

- Motor Vehicle Fatalities: 12% increase (31,720 deaths versus 28,325)
- VMT: 11.7% increase (244 billion miles)
- Crash fatality rate: remained relatively unchanged
 - 2021 (1.34) versus 2020 (1.28)
 - Declined in 2nd and 3rd quarters compared to the same two quarters in 2020

Lessons Learned: Big Picture

- COVID – 19 impacted
 - VMT, crashes
 - All modes (Transit down, bicycles up/down, air traffic, etc.)
 - Some ~unexpected
 - Risky behavior increased
 - 2020: Fatality rate increased
 - Originally: Volume decreased faster than decrease in fatalities

PART 2 – COVID-19

TRAVEL TIME RELIABILITY (TTR)

“A Deep Dive”
Q: What is travel time reliability (TTR)?

- Historically, transportation engineers have measured system performance by point estimates
 - Mean travel time
 - 95th percentile travel time
- Recently
 - Travel Time Reliability (TTR)

Q: What is travel time reliability (TTR)?

- FHWA
 - TTR measures the extent of unexpected delay to drivers
 - “the consistency or dependability in travel times, as measured from day-to-day and/or across different times of the day”

Q: What is travel time reliability (TTR)?

- Highway Capacity Manual (HCM-6)
 - "Travel time reliability reflects the distribution of trip travel time over an extended period."
 - Function of weather events, incidents, and work zones, ...
- Highway Capacity Manual 6
 - New TTR Estimation Methodology (Arterials)

Does the HCM6 TTR Procedure Work?

- No longer measure performance by single measure
 - Mean, 95th percentile, etc.
- Reliability: Function of travel time distribution
 - Mean, median, variance, 95th percentile…
- No clear definition of TTR
- HCM6 uses simulation to model travel time
 - Not calibrated to any empirical data

Lessons Learned

- No longer measure performance by single measure
 - Mean, 95th percentile, etc.
- Reliability: Function of travel time distribution
 - Mean, median, variance, 95th percentile…
- No clear definition of TTR
- HCM6 uses simulation to model travel time
 - Not calibrated to any empirical data

ASCE JTE 2020 DOI: 10.1061/JTEPBS.0000451
COVID 19 PANDEMIC: Natural Experiment

- Is travel on US roadways “safer”?
 - Number of deaths, crash rate
- Did the pandemic result in more reliable arterial roadway travel times?
 - If so, which of the commonly used travel time reliability (TTR) metrics is ‘best’?

INRIX Travel Time Data

- Private sector
- Spatial: arterial roadway corridors (Nebraska)
- Time of day:
 - AM peak, PM, peak
 - 15 minute sub-periods
- Aggregation:
 - Average travel times
- March, April and May
 - 2018, 2019 and 2020 (Pandemic)

Testbeds (4 corridors, 2 Peak Periods, 2 directions) → 16 scenarios

Testbed 1: Omaha - Dodge Street (3.05 miles)

Part of National Highway System (US 6)

Max. AADT = 79,800 veh. PM Peak LOS = F

What Happened: WB Dodge Street AM Peak

<table>
<thead>
<tr>
<th>Period of TTD</th>
<th>Average Travel Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar18-May18</td>
<td>12</td>
</tr>
<tr>
<td>Mar19-May19</td>
<td>11</td>
</tr>
</tbody>
</table>

What Happened: WB Dodge Street AM Peak

<table>
<thead>
<tr>
<th>Period of TTD</th>
<th>Average Travel Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar18-May18 2018</td>
<td>12</td>
</tr>
<tr>
<td>Mar19-May19 2018</td>
<td>11</td>
</tr>
<tr>
<td>Mar20-May20 2020</td>
<td>14</td>
</tr>
</tbody>
</table>
The COVID-19 Pandemic and Its Effects on the Transportation System

What Happened: WB Dodge Street AM Peak

- Mean: -16.7%
- Standard Deviation: -46.8%

All 16 scenarios (4 corridors, 2 Peaks, 2 Directions)

- Mean (μ):
 - 7.1% to 23.2%; Average: -14.0%
- Standard Deviation (σ):
 - 16.5% to 69.4%; Average: -43.4%
- Coefficient of Variation (σ/μ):
 - -7.8% to -60.3%; Average: -34.3%
- Conclusion?
 - Travel times became more reliable
 - Regardless of definition

US Transportation Agencies

- Do not use common statistical metrics
 - Mean, standard deviation, etc.
 - “Users don’t understand”
- Have created a wide range of metrics
 - Travel Time Index (TTI)
 - Planning Time Index (PTI)
 - Level of Travel Time Reliability (LOTTR)
 - Buffer Index (BI)

Travel Time Index

\[TTI = \frac{\text{Mean Travel Time}}{\text{Free Flow Travel Time}} \]

- “How much more time will I need to travel corridor compared to free flow conditions”
- Only considers mean travel time

Planning Time Index

\[PTI = \frac{95^{th} \text{Percentile Travel Time}}{\text{Free Flow Travel Time}} \]

- “How much more time will I need to travel corridor compared to free flow conditions”
- Only considers mean travel time

Travel Time Index

- Difference (2020 to 2018/2019)
 - -7.1% to -23.2%; Average -14.0%
 - Same as mean analysis
The COVID-19 Pandemic and Its Effects on the Transportation System

Planning Time Index

\[PTI = \frac{95^{th} \text{Percentile Travel Time}}{\text{Free Flow Travel Time}} \]

- “How much more time will I need to travel corridor and be less than 95 percent of the travel times compared to free flow conditions”
- Only considers 95th percentile travel time

Level of Travel Time Reliability (LOTTR)

\[LOTTR = \frac{80^{th} \text{Percentile Travel Time}}{50^{th} \text{Percentile Travel Time}} \]

- Mandated: US National Highway System
- Difference (2020 to 2018/2019)
 - 0.5% to – 12.6%; Average: -3.1%
 - 80th Percentile and 50th Percentile
 - Changed at same rate
 - ~ No change in travel time reliability?

Buffer Index

\[BI = \frac{95^{th} \text{Percentile Time} - \text{Mean Travel Time}}{\text{Mean Travel Time}} \]
The COVID-19 Pandemic and Its Effects on the Transportation System

Buffer Index

• Ratio
 • Measure of Dispersion to Measure of Central Tendency
 • Similar to COV

\[BI = \frac{95th \ Percentile \ Time}{Mean \ Travel \ Time} \]

• Were the arterial roadways more reliable?
• Average across all 16 scenarios:
 - TTI: -14.0%
 - PTI: -19.6%
 - LOTTR: -3.1%
 - BI: -34.3%

• Answer: Depends what metric you use

Lessons Learned

• COVID 19
 • Profound effect on the transportation system
• Natural Experiment: How do we measure system performance
 • Crash rate up – we are less safe?
 • Travel Time Reliability ~ same (LOTTR)?
• Lesson
 • Reducing complex system to simple metrics can be misleading
 • Know your data, know your statistics in order to make meaningful inferences
The COVID-19 Pandemic and Its Effects on the Transportation System

All models are wrong but some are useful

Acknowledgements
- City of Lincoln, Nebraska DOT
- Data
- Paper Reviewers
- Great comments
- Graduate Students and Colleagues
- Dr. Jianan Zhou, Dr. Ernest Tufour, Dr. Antonio Hurbel, Dr. Li Zhao, Dr. George List*, Dr. Nagui Rouphail*, Dr. Elizabeth Jones, Dr. Jim Bonneson*, Mr. Sean Murphy, …
- * HCM6 Developers

THANK YOU!

Transportation Research Institute

Any Questions?

Travel Time Data Collection in US
- Government
 - Speed detectors (Radar, video)
 - Loop detectors
- Private Sector
 - Cell phone location, Bluetooth
 - StreetLight, ClearGuide, INRIX*

Example: EB Dodge Street, Omaha, NE (2019)
- Omaha - Dodge Street (1.55 miles)
- AADT Range (45700-79800 veh.)
- Posted Speed Limit (35-45 mph)
- LOS PM Peak (F)
Findings

- 5 test corridors / 9 scenarios
- Underestimated:
 - mean: 10.6% (1%, 31%)
 - variance: 51% (14%, 83%)
- In general, more congested the larger the differences

Lessons Learned

- HCM-6: Very innovative
- Simulation (Monte-Carlo)
- Importance
- Validation
- Calibration
- Next Steps
- Transferability of Calibrated Model
- Temporal, Spatial
- New approaches for TTR
- micro-simulation

Bike Travel

- Areas that are not known for bicycle commuting e.g. Knoxville (TN), Provo (UT)
- doubled in bike activity during May and June
- Others Metro areas that are well known for cycling to work
- had a decline but at a much lower rate than the decline in the VMT
The COVID-19 Pandemic and Its Effects on the Transportation System

65th Annual Alabama Transportation Conference

February 9-10, 2022

Bike Travel % Change

Source: streetlightdata.com

US Monthly Urban Rail Trips: 2019 vs 2020

FTA: Urban transit dropped 85% -- still not rebounded

Traffic Volume Effect – Air Transport

- Commercial flight activity declined approximately 75% (IEA, 2020)
- Decrease of 50% in airport revenue and two-fifths of passenger traffic (ACI 2020)
- 47% to 58% reduction of airline seats; loss of operating revenues of US$112 to 135 billion (ACI 2020)

Traffic Volume Effect – Air Transport

- Over the past years, US VMT fluctuate within 1 to 2% each year
- 2008 (great recession) VMT declined by 3.5%
- Covid-19 caused a 40.2% decrease in VMT by April 2020 compared to 2019

2nd Quarter 2020

- Traffic Volume
 - Total traffic volume decreased by more than 16%
- Fatalities
 - 8,870 people died in motor vehicle crashes
 - Decrease of 3.3% compared to 2019
 - Speeding, impaired/distracted driving, failure to wear seatbelts …
- Traffic Fatality Rate Increased
 - Traffic volumes decreased more significantly than did the number of fatal crashes
 - Traffic fatality rate per 100 million VMT ~ 1.37

Travel Time Data Collection in US

- Government
 - Speed detectors (Radar, video)
 - Loop detectors
- Private Sector
 - Cell phone location, Bluetooth
 - StreetLight, ClearGuide, INRIX*

Q: What is travel time reliability (TTR)?

- F-SHRP program defined TTR
 - as the variation in travel times over a time period, for example, an hour-to-hour or day-to-day variations