

Driver Yielding Behavior at RRFB-Enhanced Crosswalks in Alabama

Dr. Hugo Zhou, P.E.

Elton Z. and Lois G. Huff Professor Dept. of Civil and Environmental Engineering, Auburn University

October 21-23, 2025

AUBURN UNIVERSITY

Samuel Ginn College of Engineering

Research Project 931-110R

Develop RRFB Supplemental Strategies for Improving Pedestrian Safety

O Tasks

Part 1 (05/24-08/25)

- 1. Literature Review
- Data Collection
- 3. Pedestrian and Driver Behavior Data Analysis
 - RRFB Push Button Placement
 - Pedestrian Sight Distance


Part 2 (08/25-05/26)

 Develop RRFBs Improvement Strategies and Evaluate their Effectiveness

- □ Pedestrian fatality increased by 60% (2012-2023) while overall fatality on Alabama roads increased by 12%
- □124 people died in 760 pedestrian crashes in 2023

Total Fatality

Pedestrian Fatality

Total and Pedestrian Fatalities in Alabama Roads (2012-2023) [Source: FARS]

☐ Mixed Effectiveness

✓ Inconsistent results, with wide range of rates from 45% to 98% at RRFB crosswalk

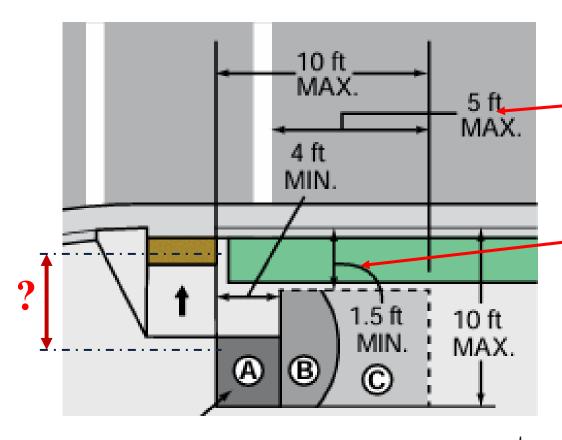
□ Before-and-After RRFB

- ✓8% reduction to 28% increase from past studies
- ✓17% increase based on a case study at Auburn

□Potential Factors

- ✓ Roadway geometry
- ✓ Pedestrian characteristics
- ✓ Vehicle characteristics

LITERATURE REVIEW


CONTRIBUTORY FACTORS

Road Geometry, Pedestrian and Vehicle Characteristics

Author	Year	Study Sites		R	oad G	eome	try				Pe	edestri	an				Veh	icle	
Nowe	Publication	# of study sites (midblock)	Type of crosswalk	# of lanes	Width of the traffic lanes	Width and length of crosswalk	Pedestrian Refuge Island	Stopping Distance	Gender	Age	Volume	Position at Waiting Area	Waiting time	Crossing time	Behavior whilst crossing	Type of vehicles	Speed of Vehicles	Traffic Volume	Traffic Density
Fitzpatrick et al	2014	7	√	✓		√	√												
Porter et al	2016	2		✓		✓	✓		✓	✓	✓	✓				✓		\checkmark	
Zheng et al	2020	19	✓			✓					✓	✓			✓			\checkmark	
Govindaa et al	2020	2	✓			✓			✓	✓	✓				✓			\checkmark	
Anciaes et al	2020	20	✓				✓		✓	✓	✓			✓		✓	✓	\checkmark	
Torres et al	2020	4	✓						✓	\checkmark	✓				✓	✓		\checkmark	
Kadali and Vedagir	2020	8		✓			✓						✓			✓			
Olszewski et al	2015	1			✓				✓	✓							✓		
Bendak et al	2021	5		✓					✓	✓	✓		✓		✓				
Tezcan et al	2019	4		✓					✓	✓		✓						✓	
Sucha et al	2017	4				✓					✓						✓	✓	✓
Figliozzi and																			
Tipagornwong	2016	1						✓			✓	✓			✓	✓	✓	✓	
Bella and Ferrante	2021	2	✓			✓						✓					✓		
Avinasha et al	2020	4		✓											✓	✓	✓	✓	
Count		83	6	6	1	6	4	1	7	7	8	5	2	1	6	6	6	9	1

LITERATURE REVIEW

MUTCD SPATIAL GUIDELINES

Section 4I.05: Pedestrian Detectors

- ✓ Push Button detector should be located <=5ft from the outside edge of marked crosswalk
- ✓ Between 1.5 and 6ft from the face of the curb or from outside edge of shoulder
- ✓ With the face of the push button parallel to the crosswalks

MAX and MIN dimensions are recommendations

Downward slope

Preferred location for push button

Acceptable location
 for push button

© Ad

Acceptable, but less desirable

DATA COLLECTION

■ SPATIAL FACTOR – DISTANCE FROM EDGE OF CURB

✓ Push Button <=3 feet

✓ Push Button > 3 feet

☐ Few studies on how **spatial placement** of RRFB Push Button and **pedestrian crossing sight distance affect yielding rates**

OBJECTIVE

- ☐ Study pedestrian and driver behavior at RRFB crosswalks
- ☐ Develop supplementary strategies to enhance pedestrian safety

DATA COLLECTION

SPATIAL FACTOR – FACE OF PUSH BUTTON

Type-1

Type-2

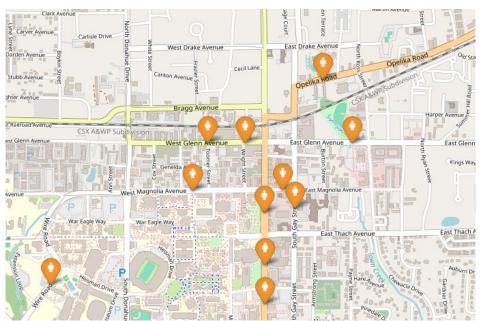
Type-3

Type-4

Face of RRFB Push Button

Face of Push Buttons

- ✓ Type 1 Parallel to crosswalk, pedestrian facing traffic
- ✓ Type 2 Parallel to crosswalk, pedestrian back toward traffic
- ✓ Type 3 Parallel to sidewalk, pedestrian facing traffic
- ✓ Type 4 Parallel to sidewalk, pedestrian back toward traffic



10

DATA COLLECTION

STUDY SITE

Site ID	Land Use	Speed limit (mph)	AADT (vpd)	Number of Lanes	Median Type	Crosswalk	Type of Crosswalk	Number of RRFB
1	Mixed	15	10,184	3	TWLTL	Straight	Raised	2
2	Residential	30	3,141	2	Undivided	Straight	Raised	2
3	Residential	30	9,979	2	Undivided	Straight	Raised	2
4	Commercial	25	13,001	3	TWLTL	Straight	Flat	2
5	Mixed	25	16,113	4	TWLTL	Straight	Flat	2
6	Mixed	35	8,850	3	Left Turn Lane	Straight	Flat	2
7	Commercial	35	10,911	4	Raised	Offset	Flat	3
8	Commercial	25	15,162	2	Raised	Straight	Flat	2
9	Commercial	25	16,034	4	Raised	Offset	Flat	3
10	Residential	25	15,965	3	TWLTL	Straight	Flat	2
11	Mixed	25	12,213	4	Raised	Offset	Flat	3
12	Commercial	35	2,139	2	Undivided	Straight	Flat	2

Locations of 12 Crosswalks in Auburn

STUDY DESIGN

Duration: 3 days per location

Distance: $50 \sim 100$ ft away from crosswalk

 \Box Height: 8 ~10 ft

CountCAM4 Camera Field Installation

□ Events – 1,038

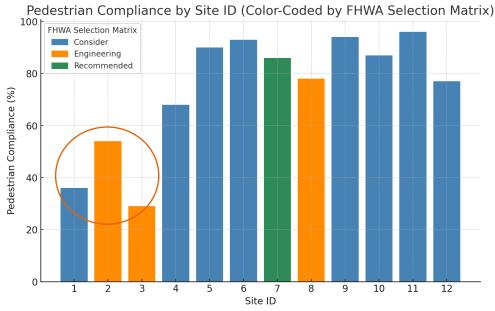
3 70 - 90 per site

☐ Dependent Variables

✓ Driver Yielding Rate

✓ Pedestrian Usage

☐ Independent Variables


√ 12

DESCRIPTIVE ANALYSIS

- ☐ Driver Yielding Rate
- ✓ 24% Non -Yield
- ☐ Pedestrian Compliance
- ✓ 27% Non- Activate
- Events
- ✓ 64% Push Button <=3ft from road edge
- ✓ 68% Single Pedestrian
- ✓ 59% Traffic from one direction

DESCRIPTIVE ANALYSIS – DRIVER YIELD RATE

- ☐ Site 3 having the highest yielding rate (96%) with
 - ✓ 2 lanes raised crosswalk
 - ✓ Push button parallel to crosswalk (**Type-1**)
 - ✓ Push button > 3ft away from curb
 - ✓ 30 mph

- ☐ Site 5 having the lowest driver yield (36%) with
 - ✓ 4 lanes
 - ✓ Push button parallel to sidewalk (Type-4)
 - ✓ Push button > 3ft away from curb
 - ✓ 25 mph

DESCRIPTIVE ANALYSIS – PEDESTRIAN USAGE

- ☐ Site 11 having the highest pedestrian usage (96%)
 - ✓ 4 lanes
 - ✓ Push button parallel to crosswalk pedestrian faces oncoming traffic (Type-1)
 - ✓ Push button < **3ft** away from curb
 - ✓ 25 mph

- ☐ Site 3 having the lowest pedestrian usage (29%)
 - ✓ 2 lanes raised crosswalk
 - ✓ Push button (Type-1)
 - ✓ Push button > **3ft** away from curb
 - ✓ 30 mph

STATISTICAL ANALYSIS

☐ Driver Yielding Rate

Significant predictors:

- ✓ Push button >3 ft from curb are increase yielding rate by 2.2 times those ≤3 ft from the curb (Increase reaction time before entering crosswalk)
- ✓ 2+ pedestrian increased yielding rate.
- ✓ Bi-directional traffic reduced yielding rate
- ✓ Face of Push button parallel to sidewalk, pedestrian back toward traffic (Type 4) had lower yielding rate than Type 1

Pedestrian Compliance

Significant predictors

Positive

✓ Four-lane roads: increase RRFB usage 5 times more than 2-lane roads

Negative

✓ **Distance from face of curb** >3 ft reduces the odds of usage by 87%

PEDESTRIAN CROSSING SIGHT DISTANCE (PCSD)

CURRENT SIGHT DISTANCE PRACTICE AND PEDESTRIAN NEEDS

CURRENT PRACTICE

- □ AASHTO SSD concept prioritize vehicle safety overlooking pedestrian needs
- ☐ Pedestrian variability is ignored
- ☐ No standardized sight distance metric for pedestrians

PEDESTRIAN NEEDS

- ☐ Variable reaction times and gap-judgment
- ☐ Yield rates influencing safety
- ☐ The impact of vehicle-pedestrian distance on yield rate remains underexplored

- □ If a pedestrian can see only up to the SSD, will the crossing be safe?
 - ✓ Will the driver yield?
 - ✓ Will it yield at a safe distance from crosswalk?

PEDESTRIAN CROSSING SIGHT DISTANCE (PCSD)

PEDESTRIAN CENTERED SIGHT DISTANCE

☐ Model by New Zealand Transport Agency:

$$PCSD = \frac{Crossing\ distance\ (m)}{Walking\ speed\ (m/s)} \times \frac{85th\ percentile\ vehicle\ speed\ (km/h)}{3.6}$$

CASE-STUDY

- Examine the correlation between driver yielding behavior and the pedestrian-vehicle distance at crossing initiation.
- Assess whether traditional SSD is sufficient for pedestrian safety, or a separate PCSD perspective is needed.

STUDY DESIGN: Site details

Marked crosswalk on South Gay Street adjacent to Town Creek park

✓ **Roadway Configuration**: 2-lane, 2-way

undivided urban street

✓ Posted Speed Limit

✓ Crosswalk Function

: 35 mph : 2,139

✓ AADT

: Crossing between

trail segments

✓ Additional Features

: RRFBs, bike lanes

✓ Observation Dates

: First 2 weeks of July

2025

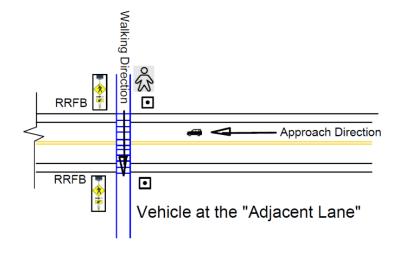
✓ Observation Time

: Daytimes (9:00 AM -

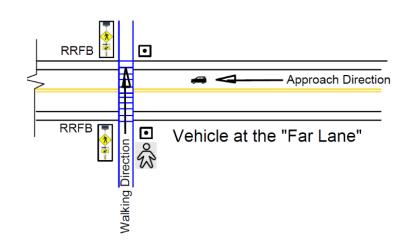
7:00 PM) on weekdays

STUDY DESIGN: Field Experiment


Town Creek


Town Creek

- ☐ Staged Crossings by a single researcher
- ☐ Recorded using video cameras and camera-fitted eyeglass
- ☐ Videos reviewed manually to extract event data
- ☐ A speed detector beyond the specific range recorded vehicle spot speeds



STUDY DESIGN: Data Collection Strategies

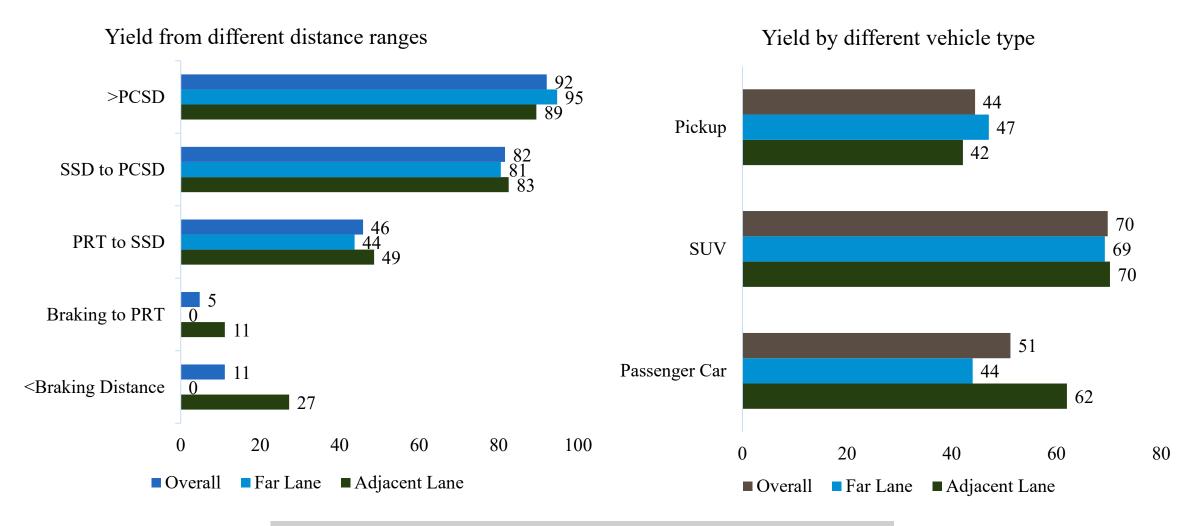
□ A single direction of vehicle movement was studied
 □ Events recorded for vehicles positioned in five distinct ranges
 □ Events for "Adjacent Lanes" and "Far Lanes" based on crossing direction

STUDY DESIGN: Statistical Analysis

□Chi-squared tests to compare yield rates across categorical conditions,

Number of motorist yielded to pedestrian

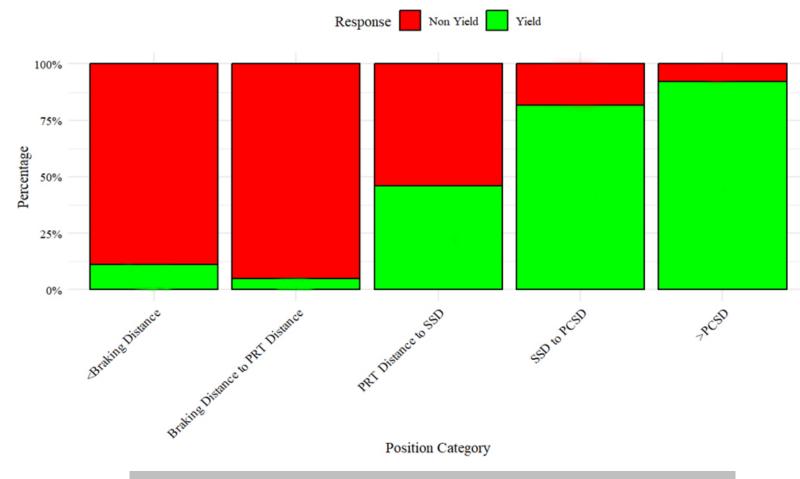
 $Yield\ Rate(\%) = rac{Number\ of\ motorist\ yielded\ to\ pedestrian}{Total\ number\ of\ vehicle-pedestrain\ interaction}$


< **100**

☐ Binomial logistic regression to model "Yield Rate" with approach speed, initial position, vehicle lane, and vehicle type.

□ log-transformed linear regression to model the yielded position with the same predictors.

Group	Variable Name	Tymo	Danga/Lavala	Observations		
Group	variable Name	Type	Range/ Levels	Count Yield 144 144 144 144 144 156 164 165	%	
	Compliance	Catagorical	Yield	144	56	
Dependent	Compliance	Categorical	Non Yield	112	44	
	Yielded Position	Numerical	5 - 180 ft	256	100	
	Approach Speed	Numerical	10 - 39 mph	256	100	
	Initial Vehicle	Numerical	25 470 ft	256	100	
	Position	Numericai	33 – 470 11			
			< braking distance	29	11	
			braking to PRT	22	9	
	Initial Vehicle	Categorical	distance			
	Position Range	Categorical	PRT to SSD	88	34	
Independent			SSD to PCSD	76	30	
			> PCSD	41	16	
	Vehicle Lane	Categorical	Adjacent Lane	120	47	
	Venicle Lane	Categorical	Far Lane	136	53	
			Passenger Car	125	49	
	Vehicle Type	Categorical	SUV	86	33	
	veincie Type	Categorical	Pickup	36	14	
			Other	9	4	


RESULTS: YIELD RATE OBSERVATION

Lane specific yield rates for different distance ranges and different vehicle types

RESULTS: YIELD RATE OBSERVATION

- ☐ Highest yield beyond the PCSD (92%) and approaching SSD (82%), while minimal in early braking zones (5-11%)
- □ Gap > SSD is generally required to achieve high compliance and Gap > PCSD offers a reliable chance for safe pedestrian crossings

Yielding rate by vehicle position ranges

RESULTS: COMPLIANCE PREDICTION MODELS

$$Log - Odds = log\left(\frac{p}{1-p}\right) =$$

 $oldsymbol{eta}_0 + oldsymbol{eta}_1$. Approach Speed + $oldsymbol{eta}_2$. Initial Vehicle Position

 $+\beta_3$. Vehicle Lane: Far

 $+\beta_4$. Vehicle Type: Pickup

 $+\beta_5$. Vehicle Type: SUV (1)

p = probability of Yield

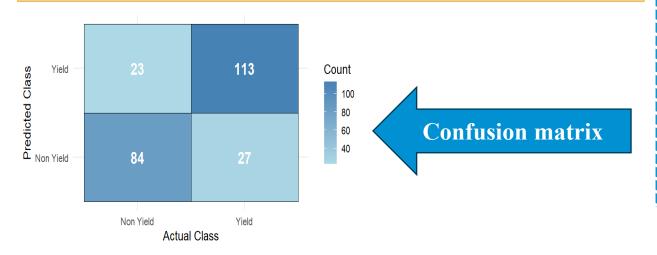
Model	D	Predictor	Estimate	Std.	z/ t	p-value			
Type	Response			Error	value				
		(Intercept)	7.047	1.900	3.709	0.0002			
	Yield Probability	Approach	-0.316	0.061	-5.167	< 0.001			
d E		Speed							
Logistic Regression (Equation 1)		Initial	0.016	0.002	6.480	< 0.001			
		Position							
		Vehicle Lane (relative to Adjacent)							
		Far	-0.349	0.350	-0.997	0.319			
		Vehicle Type (relative to passenger car)							
		Pickup	-0.581	0.537	-1.082	0.279			
		SUV	0.621	0.386	1.607	0.108			

 $log(Yielded\ Position) =$

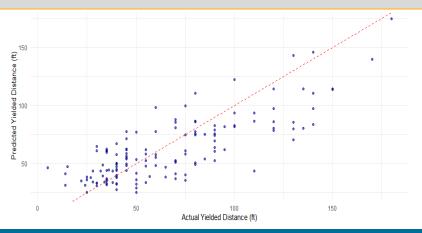
 $\beta_0 + \beta_1$. Approach Speed

 $+\beta_2$. Initial Vehicle Position

 $+ \beta_3$. Vehicle Lane: Far

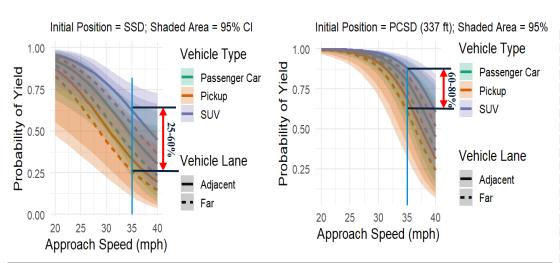

 $+\beta_4$. Vehicle Type: Pickup

 $+\beta_5$. Vehicle Type: SUV (2)

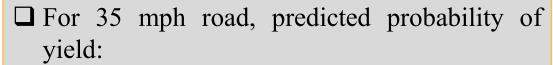

Model	Dagnanga	Predictor	Estima	Std.	z/ t	p-value		
Type	Response		te	Error	value			
Log-transformed Linear Regression (Equation 2)		(Intercept)	4.077	0.25	16.11	< 0.001		
	Yielded Position	Approach Speed	-0.038	0.01	-4.46	< 0.001		
		Initial Position	0.004	0.00	10.68	< 0.001		
		Vehicle Lane (relative to Adjacent)						
		Far	-0.023	0.07	-0.33	0.745		
		Vehicle Type (relative to passenger car)						
		Pickup	0.169	0.12	1.41	0.162		
		SUV	0.037	0.08	0.48	0.635		

RESULTS: COMPLIANCE PREDICTION MODELS

- □ Approach speed and initial position were statistically significant predictors of driver yield
 - ✓ An increase in speed significantly reduced the likelihood of yielding (β = -0.316, p < 0.0001)
 - ✓ A greater initial distance increased the possibility of yielding ($\beta = 0.016$, p < 0.0001)
- □ 23 false positives, and 27 false negatives correspond to an overall accuracy of 80%

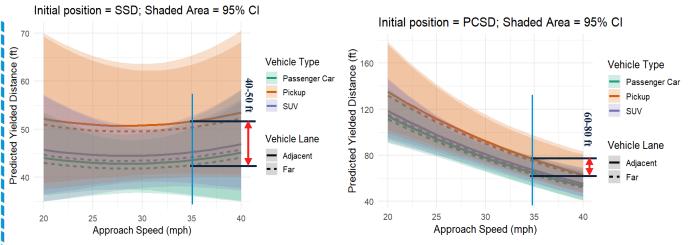


- □ Approach speed and initial position were statistically significant to predict yielded position
 - ✓ Higher speeds led to shorter yield distances $(\beta = -0.3038, p < 0.001)$
 - ✓ Greater initial distances resulted in longer yields ($\beta = 0.004$, p < 0.001)
- ☐ Back-transformed predictions closely aligned with observed values



Actual vs predicted yielded position by log-transformed model

RESULTS: IMPORTANCE OF PCSD



Predicted probability of yield when the vehicle is at PCSD and at SSD

■ Vehicle at SSD : 25% – 60%

■ Vehicle at PCSD : 60% – 80%

Predicted yielded positions when the vehicle is at PCSD and at SSD

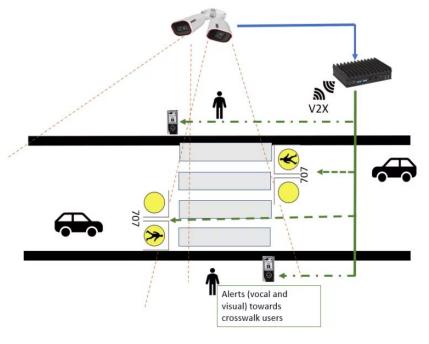
☐ For 35 mph road, the gap between yielded position and crosswalk:

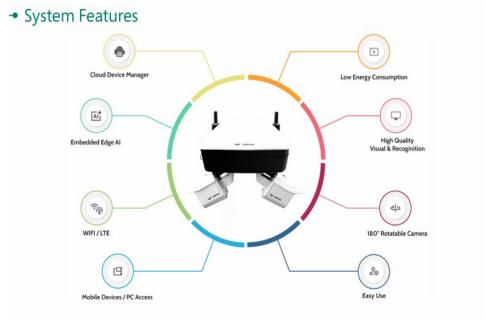
• Vehicle at SSD : 40 - 50 ft

• Vehicle at PCSD : 60 - 80 ft

□ Pedestrian visibility of at least up to the PCSD should be a fundamental design consideration for crosswalks, rather than the current practice of ensuring visibility only up to SSD

RRFB YIELDING BEHAVIOR: CONCLUDING REMARKS


□ Push Button placement within 3 feet from curb increases RRFB activation, however, decreases driver yielding rates.
□ Push Button parallel to crosswalk increase motorist yielding rate.


- **PCSD** distance significantly increases driver yield rate.
- □ At 35 mph, yield probability at the PCSD was 60-80%, a substantial improvement over the 25-60% probability at the SSD.

RECOMMENDATIONS

- ☐ Face of Push Button parallel to crosswalk
- ☐ Incorporate PCSD in Crosswalk Design
- □ NCHRP 15-86 Assessing Pedestrian Sight Distance for Crossing Decisions

DRIVER YIELDING BEHAVIOR AT RRFB-ENHANCED CROSSWALKS IN ALABAMA

THANK YOU!

Dr. Hugo Zhou, P.E.

Elton Z. and Lois G. Huff Professor

Dept. of Civil and Environmental Engineering,

Auburn University

Email: hhz0001@auburn.edu

