Quicksort Algorithm

Given an array of \(n \) elements (e.g., integers):
- If array only contains one element, return
- Else
 - pick one element to use as pivot.
 - Partition elements into two sub-arrays:
 - Elements less than or equal to pivot
 - Elements greater than pivot
 - Quicksort two sub-arrays
 - Return results

Example

We are given array of \(n \) integers to sort:

\[
40 \ 20 \ 10 \ 80 \ 60 \ 50 \ 7 \ 30 \ 100
\]

Pick Pivot Element

There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

\[
40 \ 20 \ 10 \ 80 \ 60 \ 50 \ 7 \ 30 \ 100
\]

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:
1. One sub-array that contains elements \(\geq \) pivot
2. Another sub-array that contains elements \(< \) pivot

The sub-arrays are stored in the original data array.
Partitioning loops through, swapping elements below/above pivot.

Partition Result

\[
\begin{align*}
7 & \ 20 & \ 10 & \ 30 & \ 40 & \ 50 & \ 60 & \ 80 & \ 100 \\
\end{align*}
\]

\(\leq \) data[pivot] \hspace{2cm} \(> \) data[pivot]
Recursion: Quicksort Sub-arrays

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 1. Partition splits array in two sub-arrays of size n/2
 2. Quicksort each sub-array
 - Depth of recursion tree? O(log n)
 - Number of accesses in partition? O(n)

Quicksort Analysis

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log_2 n)
- Worst case running time?

Quicksort Analysis

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log_2 n)
- Worst case running time?

Quicksort Analysis

- Assume first element is chosen as pivot.
- Assume we get array that is already in order:
 - Recursion:
 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition? O(n)
Quicksort Analysis
- Assume that keys are random, uniformly distributed.
- Best case running time: $O(n \log_2 n)$
- Worst case running time: $O(n^2)$!!!
- What can we do to avoid worst case?

Merge Sort
- Problem: Given n elements, sort elements into non-decreasing order
- Apply divide-and-conquer to sorting problem
 - If $n=1$ terminate (every one-element list is already sorted)
 - If $n>1$, partition elements into two sub-arrays; sort each; combine into a single sorted array
- How do we partition?

Partitioning
- Let’s try to achieve balanced partitioning
- A gets $n/2$ elements, B gets rest half
- Sort A and B recursively
- Combine sorted A and B using a process called merge, which combines two sorted lists into one
 - How?

Partitioning (cont.)
merge-sort(data)
if data have at least two elements then
merge-sort(left half of data);
merge-sort(right half of data);
merge(both halves into a sorted list);
endif

Evaluation
- Recurrence equation:
- Assume n is a power of 2
 \[
 T(n) = \begin{cases}
 c_1 & \text{if } n=1 \\
 2T(n/2) + c_2n & \text{if } n>1, \ n=2^k
 \end{cases}
 \]