What is an algorithm?

- Ideas behind computer programs
- Solves a general, well-specified problem
- Stays the same no matter – Which kind of hardware it is running on – Which programming language it is written in
- Specifies – The set of instances (input) – The desired properties of the output

Important Properties of Algorithms

- Correct
 – always returns the desired output for all legal instances of the problem.
- Efficient
 – Measured in terms of time or space
 – Time tends to be more important
 – The running time analysis allows us to improve our algorithms

Expressing Algorithms

- English description
- Pseudocode
- High-level programming language
Pseudocode

- A shorthand for specifying algorithms
- Leaves out the implementation details
- Focus on the essence of the algorithm

Algorithm ArrayMax(A,n)
- **Input:** An array A storing n>=1 integers
- **Output:** The maximum element in A.

 currentMax ← A[0]
 for i ← 1 to n-1 do
 if currentMax < A[i] then
 currentMax ← A[i]
 return currentMax

Analysis of Algorithms

- Why analyze algorithms?
 - evaluate algorithm performance
 - compare different algorithms
- Analyze what about them?
 - running time, memory usage
 - worst-case and “typical” case
- Analysis of algorithms compare algorithms and not programs

Analysis of Algorithms (cont.)

- If each line takes constant time the whole algorithm will take constant time, right?
 - *Wrong*
- The majority of algorithms varies its number of steps based on the size of instance
- The efficiency of an algorithm is always stated as a function of the problem size
 - We generally use the variable N to represent the problem size

Algorithm Complexity

- **Worst Case Complexity:**
 - the function defined by the maximum number of steps taken on any instance of size n
- **Best Case Complexity:**
 - the function defined by the minimum number of steps taken on any instance of size n
- **Average Case Complexity:**
 - the function defined by the average number of steps taken on any instance of size n
Best, Worst, and Average Case Complexity

Doing the Analysis
- It's hard to estimate the running time exactly
 - Best case depends on the input
 - Average case is difficult to compute
 - So we usually focus on worst case analysis
 - Easier to compute
 - Usually close to the actual running time
- Strategy: try to find upper and lower bounds of the worst case function.

Running Time Analysis

Analysis of Running Time
Comparing Algorithms

- Establish a relative order among different algorithms, in terms of their relative rates of growth.
- The rates of growth are expressed as functions, which are generally in terms of the number of inputs n.

Asymptotic Analysis

- Asymptotic analysis of an algorithm describes the relative efficiency of an algorithm as n get very large.
- When you're dealing with small input size, most of algorithms will do
- When the input size is very large things change
- Eg: For very large n, algorithm 1 grows faster than algorithm 2.

An simple comparison

- Let's assume that you have 3 algorithms to sort a list
 - $f(n) = n \log_2 n$
 - $g(n) = n^2$
 - $h(n) = n^3$
- Let's also assume that each step takes 1 microsecond (10^{-6})

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>33.2</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>664</td>
<td>10000</td>
<td>15sec</td>
</tr>
<tr>
<td>1000</td>
<td>9966</td>
<td>1seg</td>
<td>16min</td>
</tr>
<tr>
<td>10000</td>
<td>1.7s</td>
<td>2.8 hours</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>

Theoretical Framework

- “Big-Oh”
 - Definition:
 $T(n) = O(f(n))$ if there are positive constants c and N such that $T(n) \leq c f(n)$ when $n \geq N$
 - This says that function $T(n)$ grows at a rate no faster than $f(n)$; thus $f(n)$ is an upper bound on $T(n)$.
Big-Oh Upper Bound

\[T(n) = O(f(n)) \text{ if there are positive constants } \]
\[c \text{ and } N \text{ such that } T(n) \leq cf(n) \text{ when } n \geq N \]

An Example

- **Prove that** 7\(n^3 + 2n^2 = O(n^3)\)
 - Since 7\(n^3 + 2n^2 < 7n^3 + 2n^3 = 9n^3 \) (for \(n \geq 1\))
 - Then 7\(n^3 + 2n^2 = O(n^3)\) with \(c = 9\) and \(N = 1\)

- Similarly, we can prove that 7\(n^3 + 2n^2 = O(n^4)\)
 The first bound is tighter.

Tighter Upper Bound

\[T(n) = \Omega(f(n)) \text{ if there are positive constants } \]
\[c \text{ and } N \text{ such that } T(n) \geq cf(n) \text{ when } n \geq N \]

Big-Omega

Definition:

\[T(n) = \Omega(f(n)) \text{ if there are positive constants } \]
\[c \text{ and } N \text{ such that } T(n) \geq cf(n) \text{ when } n \geq N \]

- This says that function \(T(n)\) grows at a rate no slower than \(f(n)\); thus \(f(n)\) is a lower bound on \(T(n)\).
Big Omega Lower Bound

<table>
<thead>
<tr>
<th>Number of Input Items n</th>
<th>Running Time $T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$T(n)$</td>
</tr>
<tr>
<td></td>
<td>$c f(n)$</td>
</tr>
</tbody>
</table>

Big Omega Example

- Prove that $2n + 5n^2 = \Omega(n^2)$
 - Since $2n + 5n^2 > 5n^2 > 1n^2$ (for $n \geq 1$)
 - Then $2n + 5n^2 = \Omega(n^2)$ with $c = 1$ and $N = 1$

- Similarly, we can prove that $2n + 5n^2 = \Omega(n)$
- The above bound is tighter.

Tighter Lower Bound

<table>
<thead>
<tr>
<th>Number of Input Items N</th>
<th>Running Time $T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_0</td>
<td>$T(n) = 2n + 5n^2$</td>
</tr>
<tr>
<td>$f(1)(n) = n^2$</td>
<td>$f_2(n) = n$</td>
</tr>
</tbody>
</table>

Big Theta

- Definition:
 - $T(n) = \Theta(f(n))$ if and only if
 - $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$
 - This says that function $T(n)$ grows at the same rate as $f(n)$.
- Put another way:
 - $T(n) = \Theta(f(n))$ if there are positive constants $c, d,$ and N such that $cf(n) \leq T(n) \leq df(n)$ when $n \geq N$
Big Theta Example

- If two functions f and g are proportional then $f(N) = \Theta(g(n))$

- Since $\log_B n = \log_B n / \log_B A$
 - Then: $\log_B n = \Theta(\log_B n)$
 - The base of the log is irrelevant.

little-oh

- Definition:

 $T(n) = \omega(f(n))$ if and only if
 $T(n) = O(f(n))$ and $T(n) \neq \Theta(f(n))$

 This says that function $T(n)$ grows at a rate strictly less than $f(n)$.

A Hierarchy of Growth Rates

$c < \log n < \log^2 n < \log^k n < n < n \log n < n^2 < n^3 < 2^n < 3^n < n! < n^n$

General Rules

If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$, then

(a) $T_1(n) + T_2(n) = \max(O(f(n)), O(g(n)))$
(b) $T_1(n) \cdot T_2(n) = O(f(n)) \cdot O(g(n))$

Example: Algorithm A:

Step 1: Run algorithm A1 that takes $O(n^3)$ time
Step 2: Run algorithm A2 that takes $O(n^2)$ time

$T_A(n) = T_{A1}(n) + T_{A2}(n) = O(n^3) + O(n^2) = \max(O(n^3), O(n^2)) = O(n^3)$
General Rules (cont.)

If $T(n)$ is a polynomial of degree k, then

$T(n) = \Theta(n^k)$

Example:

$T(n) = n^8 + 3n^5 + 4n^2 + 6 = \Theta(n^8)$

$\log^k(n) = O(n)$ for any constant k.

An Example

Let $f(n) = n \log n$ and $g(n) = n^{1.5}$.

Which grows faster?

$n \log n$ grows faster than $f(n)$.

Another Useful Technique

We can always determine the relative growth rates of two functions $f(n)$ and $g(n)$ by computing

$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$, invoking L’Hôpital’s rule if necessary.

1) If $L = 0$, then $f(n) = o(g(n))$
2) If $L = c$, then $f(n) = \Theta(g(n))$
3) If $L = \infty$, then $g(n) = o(f(n))$

An Example

Let $f(n) = 7n^2 + n$ and $g(n) = n^2$.

Then $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

$= \lim_{n \to \infty} 7 + \frac{1}{n}$

$= 7 + \lim_{n \to \infty} \frac{1}{n} = 7$.

So $f(n) = \Theta(n^2)$.
The Model

- To analyze algorithms in the formal framework, we need a model of computation.
- Our model has the standard set of simple instructions including addition, multiplication, comparison, and assignment. We assume:
 - It takes one time unit to do anything simple. This is not entirely realistic since not all operations take the same amount of time.
 - We also assume infinite memory. This won’t take into account effects like page faults.

The Model (cont.)

- The most important resource to analyze is the running time.
 - We will not model the compiler and computer, although they affect the results.
 - Instead we focus primarily on the algorithm (not necessarily the program) and the input to the algorithm. Typically the size of the input (n) is the main consideration.

The Model (cont.)

- We define two functions, $T_{avg}(n)$ and $T_{worst}(n)$ as the average and worst-case running time of the algorithm.
- Generally the quantity required is the worst-case time, since this provides a bound for all input.
- The average running time is much harder to compute, let alone define.
 - For example, what is the “average” input to the algorithm? This is not always well defined.

A Simple Example

```
int (int n) 
{
    int partial_sum = 0;
    int i;
    for (i = 1; i <= n; i++)
        partial_sum = partial_sum + (i * i);
    return partial_sum;
}
```

Time Units to Compute

- 1 for the assignment.
- 1 assignment, $n+1$ tests, and n increments.
- n loops of 3 units for an assignment, an addition, and two multiplications.
- 1 for the return statement.

Total: $1 + (1 + n + 1 + n + 3n + 1) = 5n + 4 = O(n)$

Analysis is too complex.
General Rules

- Loops
 - The running time of a “for” loop is at most the running time of the statements inside the “for” loop (including tests) times the number of iterations.

\[
\text{for (i = 1; i <= n; i++)} \\
\text{sum = sum + i; }
\]

- The above example is \(O(n)\).

General Rules (cont.)

- Nested loops
 - The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

\[
\text{for (i = 1; i <= n; i++)} \\
\text{for (j = 1; j <= m; j++)} \\
\text{sum = sum + i + j; }
\]

3nm = \(O(mn)\)

- The above example is \(O(mn)\).

General Rules (cont.)

A Question:

- 4pmn = \(O(pmn)\).

General Rules (cont.)

- Consecutive statements
 - These just add, and the maximum is the one that counts.

\[
\text{for (i = 1; i <= n; i++)} \\
\text{sum = sum + i; }
\]

\[
\text{for (j = 1; j <= m; j++)} \\
\text{sum = sum + i + j; }
\]

\[
\text{O(n)} \quad \text{O(n^2)}
\]

- The above example is \(O(n^2 + n) = O(n^2)\).
General Rules (cont.)

A Question:

\[n^2 + 1 + n + n = O(n^2 + 2n + 1) = O(n^2). \]

General Rules (Cont.)

- The running time is never more than the running time of the test plus the larger of the running times of s1 and s2.

\[
\text{The running time} = 1 + \max(n, n^2) = O(n^2).
\]

General Rules (Cont.)

- The running time of factorial(n) = T(n) = 2 + T(n-1) = 4 + T(n-2) = 6 + T(n-3) = \ldots = 2n = O(n).

General Rules (Cont.)

Recursion:

- Analyze from the inside (or deepest part) first and work outwards. If there are function calls, these must be analyzed first. This even works for recursive functions:

```c
long factorial (int n) {
    if (n <= 1)
        return 1;
    else
        return n * factorial(n-1);
}
```

Time Units to Compute

- 1 for the test.
- 1 for the multiplication statement.
- What about the function call?

General Rules (Cont.)

- The running time of factorial(n) = T(n) = 2 + T(n-1) = 4 + T(n-2) = 6 + T(n-3) = \ldots = 2n = O(n).
Another Recursive Example

```java
long fib (int n) {
    if (n <= 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

The running time of \(\text{fib}(n) = T(n) = T(n-1) + T(n-2) + 2 \). Can we estimate \(T(n) \) from this?

Fibonacci Analysis

Let \(F(n) \) be the \(n \)th Fibonacci number. We can prove that \(1) T(n) \geq F(n) \) and \(2) F(n) \geq (3/2)^n \). Thus \(T(n) \geq (3/2)^n \), which means the running time grows exponentially. This is quite bad.

Proof by Induction

- Proof by induction:
 - Show a theorem true for trivial case.
 - Assuming the theorem true up to case \(k-1 \).
 - Show true for \(k \).
 - Thus true for all \(k \).

Proof that \(T(n) \geq F(n) \)

Proof by induction.

Base cases: \(T(1) = 1 \geq F(1) = 1 \),
\(T(2) = 3 \geq F(2) = 1 \).
By inductive hypothesis: \(T(n-1) \geq F(n-1) \) and \(T(n-2) \geq F(n-2) \). Then clearly:
\(T(n-1) + T(n-2) \geq F(n-1) + F(n-2) \) and
\(T(n) \geq F(n-1) + F(n-2) = F(n) \)
Proof that $F(N) \geq (3/2)^N$

Proof by induction.

Base cases: $F(6) = 8 \geq (3/2)^6 = 7.6$,

$F(7) = 13 \geq (3/2)^7 = 11.4$.

By inductive hypothesis: $F(n-1) \geq (n/2)^{n-1}$ and

$F(n-2) \geq (3/2)^{n-2}$. Then: $F(N) =$

$F(n-1) + F(n-2) \geq (3/2)^{n-1} + (3/2)^{n-2} =$

$(3/2)^{n-1}(1 + (2/3)) = (3/2)^{n-1}(5/3) >$

$(3/2)^{n-1}(3/2) = (3/2)^n$.
